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Abstract

QCD splittings are among the most fundamental theory concepts at the LHC.
We show how they can be studied systematically with the help of invertible
neural networks. These networks work with sub-jet information to extract
fundamental parameters from jet samples. Our approach expands the LEP
measurements of QCD Casimirs to a systematic test of QCD properties based
on low-level jet observables. Starting with an toy example we study the effect
of the full shower, hadronization, and detector effects in detail.
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1 Introduction

The upcoming Run 3 and HL-LHC are starting an era of precision physics at hadron
colliders. With this perspective we need to re-think our strategies for measurements, in-
terpretation frameworks, and first-principle theory predictions. A big step in the direction
of Machine Learning (ML) based measurements has been made in jet classification based
on low-level detector output. It starts from the observation that subjet taggers benefit
immensely from multivariate approaches [?,?], combined with the ability of modern con-
volutional networks to extract subjet information [?, ?, ?, ?, ?, ?]. Alternatively, we can
feed a network the subjet 4-momenta [?, ?, ?, ?], or change the architecture to recurrent
networks [?] or point clouds [?,?]. Top tagging is an especially interesting subjet problem,
because the tagger output is theoretically well defined and the training can be done on
data only. This makes top taggers an excellent conceptual testing ground [?], including
the crucial question how to control uncertainties [?,?]. Already in the context of taggers,
the focus on data-driven ML-applications becomes a major problem for particle physics
when it breaks our central promise of understanding LHC collisions entirely in terms of
fundamental physics. The question then becomes how we can use these new approaches
to improve our understanding of QCD [?,?].

From a theory perspective, the LHC objects described by the simplest fundamental
laws, at least to leading order, are parton showers [?]. In perturbative QCD their entire
behavior can be described by the quark-gluon interaction and the triple gluon interaction.
Their leading kinematic behavior can be understood as logarithmically enhanced collinear
and soft splittings, in which we can replace the particle interactions by a set of simple
splitting kernels. Predictions beyond this simple approximation are an active research
field in view of the coming LHC runs [?,?,?,?,?,?].

Unlike other LHC observables, the parton shower does not require us to understand
parton densities or mass effects or electroweak corrections. This

::::
This

::::::::
progress

:
motivates

the question what kind of fundamental QCD properties we can test there.
:
in

:::::::
terms

::
of

::::::
parton

::::::::::
splittings

::::::::
defining

::::::::::
relatively

:::::::
simple

:::::::
physics

::::::::
objects.

:

There exists a range of subjet observables for which we can compare precision predictions
with precision measurements [?,?,?]. Making use of the progress in subjet taggers using
low-level observables, we propose to expand fundamental QCD measurementsin the same
direction. At the event level, such an approach is related to new methods referred to as
likelihood-free or simulation-based inference [?,?]. In contrast to them, our focus will be
on modern ML-inference from low-level (subjet) observables. Following our first-principles
motivation, we want to learn properties which can be related to fundamental QCD , namely
quark and gluon splitting kernels.

At LEP, similar fundamental QCD measurements are reported as measurements of
the QCD

:::::::
history

:::
of

::::::::::
extracting

::::::
QCD

::::::::::
properties

:::::
from

::::::::
collider

:::::
data.

:::::::
Before

::::
the

:::::
LHC

:::::
era,

:
a

::::::
global

::::::::
strategy

:::::::::::
combining

:::::::::::::::::::
LEP-measurements

::::
like

:::
jet

::::
and

::::::
event

::::::::
shapes,

:::::::
scaling

:::::::::
violation,

:::::::::::::
fragmentation

::::::::::
functions,

::::::::
Z-pole

::::::::::::::
measurements,

:::::
and

:::::::::
τ -decays

:::::
with

:::::::::::
low-energy

::::::::::
e+e−-data

:::::::::
extracted

::::
the

:::::
value

:::
of

:::
the

:::::::
strong

:::::::::
coupling

::
as

::::::::::::::::::::::::::
αs(mZ) = 0.1211± 0.0021

::::::
[?,?].

:::::::::::
Obviously,

::::
this

:::::::::::::
measurement

:::
has

:::::
since

:::::
been

::::::::::
improved

:::
by

:::::::
hadron

:::::::
collider

::::
and

:::::::
HERA

:::::
data.

:::
In

:::::::::
addition,

::::
LEP

:::::
data

::::
has

:::::
been

:::::
used

::::
for

::::::::
another

::::::::::::
fundamental

::::::
QCD

::::::::::::::
measurement,

:::::::
namely

::::::
QCD

:
color

factors or
::::::::::
specifically

:
quadratic SU(3) Casimir invariants . Measurements

::
as

:::::
they

:::::::
appear

::
in

::::::
QCD

::::::::::
splittings.

:::::::
They

::::
can

:::
be

::::::::::
extracted

::::::
from

::
a

:::::::
variety

:::
of

:::
jet

:::
or

::::::
event

::::::::
shapes

:
in 3-

jet
:::
and

:::::
4-jet

::::::
final

:::::::
states.

::::
To

::::::
start

:::::
with,

:::::::::::::::
measurements

:::
in

:::::
3-jet

:
events by OPAL give

CA/CF = 2.232 ± 0.14 [?], while the 3-jet measurements by DELPHI lead to CA/CF =
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2.26±0.16 [?]. Studies of the electroweak 4-jet kinematic by ALEPH gives CA = 2.93±0.60
and CF = 1.35 ± 0.27 [?], a similar analysis by OPAL quotes CA = 3.02 ± 0.56 and
CF = 1.34 ± 0.30 [?] . In both 4-jet analyses there exists a strong, positive correlation
between CA and CF . Event shapes [?,?,?,?,?,?], similar to modern jet shapes [?], can be
used to extract the same parameters and give CA = 2.84± 0.24 and CF = 1.29± 0.18 [?].
The combined analysis reports [?,?]

CA = 2.89± 0.21 and CF = 1.30± 0.09 , (1)

with both measurements being clearly systematics limited.

The goal of this paper
::
In

::::
this

::::::
paper

:::
we

::::::::
propose

::
a

::::
way

:::
to

::::::
adapt

:::::
these

::::::::::::::
measurements

:::
for

:::
the

:::::
LHC

::::
era.

::::
An

::::::::
obvious

:::::
path

::::::
would

:::
be

::
a

::::::::::::::
comprehensive

::::::::
analysis

:::
of

:::::::::
multi-jet

:::::::::::
production,

::::::
which

::::::
would

:::::::::
probably

:::::
have

:::
to

:::
be

:::::::::
combined

:::::
with

::::
the

:::::::
global

::::::::::
extraction

::
of

:::::::
parton

:::::::::
densities

::::::::
together

:::::
with

:::::
the

:::::::
strong

:::::::::
coupling

::::::::::
constant.

:::::::::
Instead

:::
of

:::::
such

::
a
:::::::::::::::

comprehensive
:::::::

global

::::::::
analysis

:::
we

::::
base

::::
our

::::::
study

:::
on

:::::::
parton

:::::::
shower

:::::
data,

::::::
which

:::::
does

::::
not

:::::::
require

:::
us

::
to

:::::::::::
understand

::::::
parton

:::::::::
densities

:::
or

:::::
mass

:::::::
effects

:::
or

:::::
large

::::::::::::
electroweak

:::::::::::
corrections.

:::::
Our

:::::
goal

:
is to put these

:::
the

::::::
above

:
LEP measurements into a broader QCD context and to propose a new

:::::::
context

::
of

::::::
QCD

::::::::::::::
measurements

:::
at

::::
the

::::::
LHC

::::
and

:::
to

::::::::
develop

::
a
:
framework for learning the prop-

erties of QCD splittings.
::
At

::::
the

:::::::
subjet

::::::
level

::::::
there

::::::
exists

::
a
:::::::

range
:::
of

::::::::::::
observables

:::
for

::::::
which

:::
we

::::
can

:::::::::
compare

::::::::::
precision

:::::::::::
predictions

:::::
with

::::::::::
precision

::::::::::::::
measurements

:::::::::
[?,?,?].

::::
On

:::
the

::::::
other

:::::::
hand,

:::::::
parton

::::::::
showers

::::
are

:::
a

::::::
prime

:::::::::
example

::::
for

:::::::::
precision

:::::::::::::
simulations,

:::
so

:::
we

:::
will

:::::::
follow

::::
the

:::::::::::
orthogonal

::::::::::
approach

:::
of

:::::::::::
extracting

:::::::::::::
fundamental

::::::
QCD

:::::::::::
parameters

::::::
using

::::::::::::::::
simulation-based

::::::::::
inference.

:::::
The

:::::::::::
inspiration

:::
for

::::
our

::::::::
analysis

::::
are

:::::
new

::::::::
methods

:::::::::
referred

::
to

::
as

::::::::::::::
likelihood-free

:::::::::
inference

:::
at

::::
the

::::::
event

:::::
level

:::::::
[?,?].

:::
In

:::::
both

::::::
cases,

::::
the

:::::::
crucial

::::::::::
ingredient

:
is
::::::::::::::
first-principle

:::::::::
precision

:::::::::::
simulations

:::::
with

::::
full

:::::::
control

:::::
over

::::
the

::::::::::
underlying

:::::::::::
hypothesis

::::
and

::::
over

:::
its

:::::::::::
theoretical

:::::::::::::::
self-consistency

:::
in

::::::::::
describing

::::
the

::::::::::::::
corresponding

::::::::
objects.

:

Technically, our BayesFlow approach [?] is based on the conditional version [?,?] of in-
vertible networks (INNs) [?,?,?], a specific realization of normalizing flows [?,?,?,?]

:::::::::
[?,?,?,?].

These networks have been studied in relation to phase space generation [?,?,?,?], event
generation [?], anomaly detection [?], detector and parton shower unfolding [?], and den-
sity estimation [?]. We will introduce our QCD inference framework in Sec. 2 and illus-
trate our splitting kernel measurements in Sec. 3. Finally, we will attempt a more realistic
benchmarking for the Sherpa [?] shower with hadronization and detector effects in Sec. 4.

2 INN-Inference and BayesFlow

INN The workhorse of our inference method is an invertible neural network (INN) which
realizes a normalizing flow [?] between model parameters m viewed as random vectors and
a latent random vector z. Such an INN with the trainable parameters θ represents an easily
invertible function gθ(m) which transforms m into z, whereas its inverse ḡθ(z) transforms
z back into m. This way the INN simultaneously encodes both directions of a bijective
mapping between m and z via a single set of parameter θ learned through gradient-based
optimization.

Coupling flows are a widely used invertible architecture, since they are capable of
learning highly expressive transformations with tractable Jacobian determinants [?,?]. We
construct our INNs by composing multiple affine coupling layers [?, ?] into a composite
invertible architecture. A single coupling layer gθj splits its input vector m into two halves,

3
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m = (mA, mB), to obtain z = (zA, zB) via the bijective transformation(
zA

zB

)
=

(
mA � es2(mB) + t2(m

B)

mB � es1(zA) + t1(z
A)

)
⇔

(
mA

mB

)
=

(
(zA − t2(mB))� e−s2(mB)

(zB − t1(zA))� e−s1(zA)

)
.

(2)

By construction, this bijection works independently of the form of the functions s and t.
For our application, s and t are realized via feed-forward neural networks with trainable
parameters θj in each coupling layer. The Jacobian of each coupling flow layer is the
product of two triangular matrices

∂gθj (m)

∂m
=

(
11 0

finite diag es1(z
A)

)(
diag es2(m

B) finite
0 11

)
, (3)

making its determinant fast to compute. Much effort has gone into improving the efficiency
of invertible coupling layers. We use the all-in-one coupling layer with three additional
features [?,?]. First, each layer incorporates a fixed permutation before splitting its input,
to ensure that each component in the final z is influenced by each component of the
initial m. Second, it includes a global affine transformation to induce a bias and linear
scaling. Third, it applies a bijective soft clamping after the exponential function in Eq.(2)
to prevent instabilities from divergent outputs [?].

We combine multiple coupling layers to increase the expressiveness of the learned
transformation. This is possible because a combination of invertible functions is again
invertible and its Jacobian is the product of the individual Jacobians. For J coupling
layers, our composite INN is given by

z = gθJ ◦ gθJ−1
◦ · · · ◦ gθ1(m) (4)

with trainable parameters θ = (θ1, . . . , θJ) and the inverse

m = ḡθ1 ◦ · · · ◦ ḡθJ−1
◦ ḡθJ (z) (5)

Such a composition can be viewed as transforming or normalizing a complicated, in-
tractable source distribution P (m) into a much simpler, tractable, P (z) prescribed by the
optimization criterion.

Conditional INN To recover model parameters from a set of measurements x we need
to augment the INN architecture in two ways. First, we turn the invertible network into
a conditional invertible network (cINN). A cINN still defines a bijective mapping between
m and z, but the functions s and t in each coupling layer take a set of measurements as
an additional input, z = gθ(m;x). Second, since the number of measurements can vary in
practice, we introduce a relatively small summary network hψ with trainable parameters
ψ. It reduces measurements of variable size to fixed-size vectors, x̃ = hψ(x), by respecting
the probabilistic symmetry of the measurements [?]. For independent measurements we
use a permutation invariant summary network such that its output is invariant under the
ordering in x [?]. The summary network does not have to be invertible, since its output is
concatenated with m and fed to s and t, but not directly mapped to z. Moreover, the two
networks can be trained together to approximate the true parameter posterior P (m|x) via
an approximate posterior Q defined by the network weights. Due to the change of variable
formula, this approximate posterior is given by

Q(m|x) = P (z)

∣∣∣∣det

(
∂z

∂m

)∣∣∣∣ with z = gθ(m;hψ(x)) (6)
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cINN

Summary
net

Sherpa
jets

QCD
model

Gaussian

h

{xm}

m z

g(m;h) P (z)

Training

cINN

Summary
net

LHC
jets

QCD
measurement

Gaussian
sampling

Inference

h

{x}

m z

P (m|{x}) ḡ(z;h) z ∼ P (z)

Figure 1: BayesFlow setup of the cINN for training and inference [?].

and it represents the probabilistic solution to the inverse inference problem.

Together, the cINN and the summary network minimize the expected Kullback-Leibler
divergence between the true and approximate posterior. Ignoring all terms that do not
depend on the network parameters, this corresponds to minimizing the expected negative
logarithm of the approximate posterior,

min
θ,ψ
〈KL (P (m|x) ||Q(m|x))〉m,x ∼ min

θ,ψ
〈− logQ(m|x)〉m,x + const. (7)

Finally, we can apply a coordinate transformation for the bijective mapping and enforce
a Gaussian noise distribution with mean zero and width one for the latent distribution
P (z), so the loss function becomes

L(θ, ψ) = −
〈

logP (gθ(m;hψ(x))) + log

∣∣∣∣∂gθ(m;hψ(x))

∂m

∣∣∣∣〉
m,x

= −
〈
−1

2
‖gθ(m;hψ(x))‖2 + log

∣∣∣∣∂gθ(m;hψ(x))

∂m

∣∣∣∣〉
m,x

. (8)

This loss guarantees that the networks recover the true posterior under perfect conver-
gence [?].

Inference BayesFlow [?] provides a cINN framework which we can use to measure fun-
damental QCD parameters. From the inversion of a detector simulation and QCD radia-
tion [?] we know how, given a single detector-level event, the cINN generates samples from
a probability distribution over the phase space of the hard scattering. For the jet inference
presented in this paper, the BayesFlow setup corresponds to this unfolding setup, in which
we replace the parton-level phase space with the model parameter space and the detector-
level phase space with the simulated data. In Fig 1 we give a graphical illustration of the
inference setup, for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary
number of jets fast. This allows us to employ mini-batch gradient descent to approximate
the expectation in the above optimization criterion via its Monte-Carlo empirical mean.
Moreover, if we train the networks on jet samples of varying size, we can use them on
data samples with any size, as long as this size is within the domain of the pre-defined
distribution over sample sizes. The networks will approximate the correct push-forward
from a given prior P (m) in model space to a posterior P (m|x) contingent on a set of
measurements x. When the test sample size leaves the training domain the posterior
accuracy will degrade. In case we need to analyse larger data sets we can then follow the
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Bayesian logic behind the BayesFlow framework [?] and use the posterior from an earlier
measurement as a prior.

3 Idealized jet measurements

Before applying BayesFlow to LHC jets including hadronization and detector simulation,
we define our theory assumptions and test the corresponding model on an idealized data
set using a toy shower [?]. That will give us an idea what kind of measurement we could
aim for and will also allow for some simple benchmarking. We have checked that this toy
shower agrees with the full Sherpa shower, except that we do not include the effects from
the 2-loop cusp anomalous dimension.

Theory setup The physics goal in our paper is to understand the QCD splittings build-
ing up parton showers. In the leading collinear approximation these kernels relate the
amplitudes of an n-particle hard process Mn to the amplitude with an additional parton
Mn+1 [?]

|Mn+1|2 '
2g2s
p2a

P̂ (z, y) |Mn|2 , (9)

where gs is the strong coupling, p2a = (p + k)2 the invariant mass of the splitting parton,
and P̂ (z, y) the un-regularized splitting kernel. It depends on the energy fraction z and the
momentum transfer y, which in combination with a Catani-Seymour spectator momentum
ps can be combined to the transverse momentum in the splitting,

z =
pps

pps + kps

y =
pk

pk + pps + kps
⇒ yz(1− z) ∝ p2T . (10)

Symbol Value

Number of parameters L 2, 3
Maximum number of constituents F 13
Jets per parameter point (variable/fixed) M 102 ... 105 / 104

Batch size N 16
Batches per epoch E 6250
Output dimension summary network S 32
Fully connected summary net architecture Si 64,64,64,64,32,32
Coupling layers nlayers 5
Fully connected coupling layer architecture si/ti 64,64,64
Epochs e 10 ... 40
Decay steps (toy shower/PF flow) ns 200 ... 500 / 500 ... 1000
Learning rate after t batches ηt 10−3 · 0.99bt/nsc

Training/testing points 100k / 10k

Table 1: Network setup and hyperparameters.
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In massless QCD some of the kernels P̂ include infrared divergences. They can be partially
fractioned to remove soft double counting, giving us the three QCD splittings [?]

Pqq(z, y) = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq(1− z) + Cqqyz(1− z)

]
Pgg(z, y) = 2CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fggz(1− z) + Cggyz(1− z)

]
Pgq(z, y) = TR

[
Fqq

(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
. (11)

In this form we include a set of parameters which to leading order in perturbative QCD
are given by

Dqq,gg = 1 Fqq,gg = 1 Cqq,gg,gq = 0 . (12)

In
::::
The

:::::::::
splitting

:::::::
kernels

::::::
given

:::
in

::::
Eq.(11)

::::::
define

::::
the

:::::::::::::
fundamental

::::::::
physics

:::::::::::
hypothesis

::
of

:::
our

:::::::::::::::
measurements,

:::::::
which

:::::::
should

::::::::::
generalize

::::
the

::::::::
CA/CF::::::::

studies
:::::
from

::::::
LEP

::::::
[?,?].

::::::
This

::::::::::
hypothesis

::
is
::::::::

flexible
::::::::
enough

:::
to

::::::::::::
accomodate

::::::::::
precision

:::::::::::
predictions

::::::::::::
consistently

:::::
with

::::
the

::::::::::
kinematics

:::
of

:::::::
parton

::::::::
shower

:::::
data

:::
at

::::
the

::::::
LHC.

::::::::::::
Concerning

:::
its

::::::::::::
uniqueness,

:::
in

:
standard

parton showers, D is typically modified to include a universal K-factor that coincides
with the two-loop cusp anomalous dimension and resums sub-leading logarithms arising
from the collinear splitting of soft gluons [?]. For simplicity, we will set these terms to zero
in our toy shower. Within SherpaSherpa, they are included through a modified running
coupling.

::::
The

:::::::
second

:::::
term

::::::::
reflects

:::
the

::::::::
leading

::::::
terms

:::
in

::::
pT ,

::
in

::::
our

:::::
case

::::::::::
truncated

:::
in

:::
the

::::::
strong

::::::::::
coupling.

:::::
The

::::
rest

:::::::
terms

:::
Cij:::::

are,
:::
in

::::
our

:::::
case,

::::::::
defined

:::
by

::::
the

::::::::::::
appearance

::
of

::::
p2T .

::::::::::
Generally,

:::
we

::::
only

:::::::::
consider

:::
Eq.(11)

::
as

:
a
:::::
first

::::::::
attempt

:::
for

:::
an

:::::::::::
appropriate

:::::::
theory

:::::::::::
hypothesis,

::::::
which

::::::
might

:::::
have

::
to

:::
be

::::::::
slightly

:::::::::
modified

::::::::::
according

::
to

::::
the

:::::::::
precision

:::::::::::
simulation

::::::::::
framework

::::
used

:::
for

::::
the

::::::
actual

:::::::::
analysis.

:::::::::
Another

:::::::::::
motivations

:::
for

::
a
:::::::::
modified

::::::
theory

:::::::::::
hypothesis

::::::
could

::
be

:::::::
specific

:::::::::::::::::
parametrizations

:::
to,

:::
for

:::::::::
instance,

::::::::::::
incorporate

:::::::::
quantum

::::::
effects

:::
or

::::::
1→ 3

::::::::::
splittings.

:::
We

:::::
skip

::::
this

::::::::
option

::::::::
because

:::
we

:::::
will

::::
see

:::::
that

::::::::
already

::::
the

::::::
global

:::::
rest

::::::
terms

:::
of

::::
Eq.(11)

:::::::::
challenge

::::
our

::::::::::
simulated

::::::
data.

::::
As

::::::::
alluded

:::
to

:::
in

::::
the

::::::::::::::
Introduction,

::
a
:::::::
caveat

:::::::::::
concerning

:::
the

::::::::::::
pre-defined

:::::::
theory

:::::::::::
hypothesis

::
is
::::::::::

common
::
to

::::
all

:::::::::::::::::
simulation-based

:::
or

::::::::::::::
likelihood-free

::::::::
analyses.

:

We will vary the parameters in Eq.(12) away from the leading order QCD prediction,
always making sure that the splitting kernels give positive splitting probabilities all over the
collinear phase space by setting negative kernel values to zero. Given that the numerically
leading contribution comes from the regularized pole, we can approximately identify the
measurement of Dqq and Dgg with measurements of CF and CA, as quoted in Eq.(1).

Data and network To understand the proposed measurement in a controlled setup we
simulate the on-shell process

e+e− → Z → qq̄ (13)

assuming massless quarks and combined with a fast approximate parton shower cutoff at
1 GeV. Its phase space is completely defined by the scattering angle. For each event we
apply the parton shower to one of the outgoing quarks, such that the second quark acts as
the spectator for the the first splitting and all sub-leading jets are ignored

::
we

:::::
only

::::::::
consider

:::
one

::::
jet. For our jets sample this means that we

:::
we

:::::::::
generally

:
have

pT,j <
mZ

2
, (14)
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Figure 2: Posterior probabilities for the toy shower, gluon radiation only, {Dqq, Fqq, Cqq}.
We assume SM-like jets and show results for truth-sorting (left) and for kT -sorting (right).

with the majority of jets at the upper boundary. After that, any other parton can act as
the spectator. For this simple setup we

:
a

:::
jet

::::::::::::::
reconstruction

::
is
::::
not

::::::::::
necessary,

::::::
since

:::
we

::::
only

::::::::
simulate

::
a

::::::
single

::::::::
shower,

::::
and

:::
we

:
neither include hadronization nor detector effects.

The network then analyses the set of outgoing momenta except for the initial spectator
momentum. Even though this constitutes an information backdoor, we first study what the
network can extract if we order the constituents following their appearance in the shower,
referred to as truth-sorting. This means that after a splitting the daughter constituents are
either appended to the end of the list or replace the mother momentum. Which daughter
momentum overwrites the mother momentum is chosen by the showering algorithm. To
avoid this backdoor we construct a similar ordering from the shower history given by
the kT -algorithm [?,?], referred to as kT -sorting. We start with the first splitting and
follow the hard constituents as the particles with the highest energy fraction in each
splitting. This list

::::
The

:::
list

:
of constituents includes up to F entries, and is zero-padded

or cropped. For our training data we scan the parameter space {Dij , Fij , Cij} with L = 2
and 3 dimensions. For each parameter point we generate M probabilistic showers. To
observe the correct posterior contraction with the size of the test sample we train the
network with variable M . During the training we use batches of size N . The input to
the summary network per batch are N ×M × F 4-vectors. The output of the summary
networks is mean-pooled over M and has dimension S for each batch, plus the value of√
M , so (S + 1) entries per batch, if the posterior contraction is trained.

The distribution of the number of jets M over the N batches can be adapted to the
problem. We find that distributing the batches with 1/M is effective to counter the
computational effort at high M . We will explicitly show that we retain enough high-M
information to guarantee the correct scaling of the error.

The cINN then provides a bijective mapping of the L-dimensional parameter space to
the latent space of the same dimension, again per batch. The latent space is forced into
a Gaussian noise form, so we can sample from it to compute the probability distribution
for a given set of Meval showers in model space. Values Meval not included in the training
will lead to unstable results, if

√
M was added to the summary network output. All
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parameters of the network architecture and the hyperparameters are given in Tab. 1. For
the cINN we combine five coupling layers. The internal networks of the coupling layers,
s1/2 and t1/2, are three fully connected layers with ELU activation. The summary network
is built out of six fully connected layers with ReLU activation, ELU activation in the last
layer, followed by average pooling. We use the Adam optimizer [?] with an exponentially
decaying learning rate.

::::::::
Sorting

:::::
Even

:::::::
though

:::::
this

:::::::::::
constitutes

:::
an

::::::::::::
information

::::::::::
backdoor,

:::
we

::::
first

::::::
study

::::::
what

:::
the

::::::::
network

::::
can

:::::::
extract

::
if

:::
we

::::::
order

:::
the

:::::::::::::
constituents

:::::::::
following

:::::
their

:::::::::::
appearance

:::
in

::::
the

:::::::
shower.

:::
We

:::::
refer

:::
to

:::::
this

:::::::::::
unrealistic

:::::::::
ordering

:::
of

::::
the

::::::::::::
constituents

:::
as

::::::::::::::
truth-sorting.

::::::
This

:::::::
means

::::
that

:::::
after

::
a
:::::::::
splitting

:::
the

::::::::::
daughter

::::::::::::
constituents

::::
are

::::::
either

::::::::::
appended

::
to

::::
the

::::
end

:::
of

::::
the

:::
list

::
or

::::::::
replace

::::
the

:::::::
mother

:::::::::::::
momentum.

::::::::
Which

:::::::::
daughter

::::::::::::
momentum

:::::::::::
overwrites

::::
the

:::::::
mother

:::::::::::
momentum

::
is

:::::::
chosen

:::
by

::::
the

:::::::::::
showering

::::::::::
algorithm.

::::
To

::::::
avoid

:::::
this

:::::::::
backdoor

::::
we

:::::::::
construct

:
a
:::::::
similar

:::::::::
ordering

:::::
from

::::
the

:::::::
shower

::::::::
history

::::::
given

:::
by

::
a

:::::::::::::
kT -algorithm

:::::::
[?,?],

::::::::
referred

:::
to

::
as

::::::::::
kT -sorting.

::::::
Since

::::
we

::::::::
simulate

:::::
only

::
a

::::::
single

::::
jet,

:::
no

:::
jet

::::::
radius

::::
has

:::
to

:::
be

:::::::::
specified.

::::
We

:::::
start

::::
with

::::
the

:::::
first

::::::::
splitting

:::::
and

::::::
follow

::::
the

:::::
hard

::::::::::::
constituents

:::
as

::::
the

:::::::::
particles

:::::
with

::::
the

:::::::
highest

::::::
energy

::::::::
fraction

:::
in

:::::
each

::::::::
splitting

:::
to

::::::::::
determine

::::
the

:::::
first

:::::
entry

:::
of

::::
the

::::
list.

:::::
The

::::
next

::::::
entry

::
is

:::::::::
generated

:::
by

:::::::::
following

::::
the

:::::
hard

::::::::::::
constituents

:::::::::::
originating

:::::
from

::::
the

::::::
softer

:::::::::::
constituent

:::
of

:::
the

:::::::
earliest

:::::::::
splitting.

:::::
This

:::
is

:::::
done

:::
for

::::::
every

:::::::::
splitting

:::::
going

::::::
from

::::
first

:::
to

:::::
last.

::
If

:::
an

::::::::::
appearing

::::::
parton

:::
is

:::::::
already

:::::::::
assigned

:::
to

:::
the

:::::
list,

::
it

::
is

::::
not

:::::::::
assigned

::::::
again.

:

Gluon-radiation shower For our first test we restrict the shower to the Pqq kernel of
Eq.(11), implying that a hard quark successively radiates collinear and soft gluons. This
way our 3-dimensional model space is given by

{Dqq, Fqq, Cqq} . (15)

For the prior in model space we start with a uniform distribution over [0.5, 2] × [0, 4] ×
[−10, 10] and train the network for 100000 randomly distributed points in model space.

In Fig. 2 we show the distribution of the posterior probabilities for 102...105 training
jets per parameter point and 10000 test jets assuming SM-values. The fit confirms that all
1-dimensional posteriors are approximately Gaussian. Correlations among them are weak.
As expected, we are more sensitive for the truth-sorting with its information backdoor.
The reduced performance with the kT -sorting indicates that pre-processing of the data
plays an important role, and that information from jet algorithms should help. For the
kT -sorting the best-measured parameter in our toy model is the regularized divergence with
a Gaussian standard deviation σ(Dqq) = 0.019.∗ The finite terms are slightly harder to
extract with σ(Fqq) = 0.13. Finally, the rest term with its assumed pT -suppression comes
with an even larger error, σ(Cqq) = 1.0. These increasing errors reflect the hierarchical
structure of the splitting kernel. In addition to the reduced performance we also see
that the information lost between truth-sorting and kT -sorting induces visible correlations
between the extracted model parameters. This correlation explains some of the loss in
performance for instance in the Dqq vs Fqq plane, where the widths of the 1-dimensional
posterior distributions are driven by the integration over the other parameters.

In Fig. 3 we show how the errors on these three model parameter change with the
statistics of the test data set. Given the size of the training samples, M = 102 ... 105, we
evaluate Meval = 103 ... 105 SM-like jets and find that the Gaussian errors σ(Dqq), σ(Fqq),
and σ(Cqq) all scale like 1/

√
Meval. This is expected for a statistically limited measurement.

∗All numerical results in this paper are also collected in Tab. 2.
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Figure 3: Uncertainty on {Dqq, Fqq, Cqq} for gluon radiation only, as a function of the
number of test jets. We show the standard deviation of the posterior (red) and the the
absolute difference between the estimated and true parameters (blue) for truth-sorting
(upper) and for kT -sorting (lower). The black line is a fit to the posterior.

We also check the consistency of the network by comparing the reported standard deviation
with the deviation between the central estimates and the truth. Altogether, the network
performs exactly as expected, with the exception of a slight degradation in the challenging
rest term Cqq towards large test statistics.

QCD splittings In a second step, we include all three QCD splitting kernels from
Eq.(11) and extract the soft-collinear divergences,

{Dqq, Dgg} . (16)

Assuming that the leading logarithms really dominate the splittings and the sub-jet fea-
tures, this measurement corresponds to measuring the two Casimirs CF and CA. Because
we only consider quark-jets from Z-decays, we expect the measurement of Dqq or CF to
be better, which is also what we observe in Fig. 4. Notably, for truth-sorting and for
kT -sorting there is no correlation between the two measurements, unlike for the standard
LEP results.

For the final test on our toy model we include all QCD splitting kernels from Eq.(11)
and determine the three pT -suppressed rest terms

{Cqq, Cqg, Cgg} . (17)

Hypothesis-wise this means that we assume that our predictions for the two leading con-
tributions hold, and we want to estimate the size of an unknown contribution at higher
power in pT . The network is the same as for the gluon-radiation shower, with the results
shown in Fig. 5. For Cqq we first see that in the absence of the dominant contribution,
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Figure 4: Posterior probabilities for the toy shower, soft-collinear leading terms for all
QCD splittings, {Dqq, Dgg}. We assume SM-like jets and show results for truth-sorting
(left) and for kT -sorting (right).

the error drops slightly with respect to Fig. 2. The reason is that it is challenging for the
network to disentangle the hierarchical structure of {Dqq, Fqq, Cqq} in Fig. 2. For the other
two rest terms, Cgg and Cgq, we find significantly larger 1-dimensional errors and, related
to these a strong anti-correlation. This correlation already exists for the truth-sorting
case, so we expect it to remain in any realistic measurement.

High-level observables To judge the impact of the low-level network input we can use
the same setup as before, but feed high-level observables into the summary network. We
use a set of six such observables [?], not all of them infrared and collinear safe. The simplest
high-level observable for subjet analysis tracks the size of the splitting probabilities in
terms of particle multiplicity (nPF) [?]. The width of the distributed radiation or girth is
denoted at wPF [?]. The effect of the soft divergence can be measured using pTD [?]. In
addition, the two-point energy correlator C0.2 is designed to separate quarks and gluons
with an optimized power of ∆Rij [?]. This defines a set of four standard observables

nPF =
∑
i

1 wPF =

∑
i pT,i∆Ri,jet∑

i pT,i

pTD =

√∑
i p

2
T,i∑

i pT,i
C0.2 =

∑
ij ET,iET,j(∆Rij)

0.2∑
iE

2
T,i

. (18)

In addition, we evaluate the highest fraction of pT,jet contained in a single jet constituent
and the minimum number of constituents which contain 95% of pT,jet [?],

xmax and N95 . (19)

The latter is obviously correlated with the number of constituents nPF.

In the left panels of Fig. 6 we compare the posteriors from the low-level observables
and the six high-level observables for the gluon-radiation shower. The low-level results
correspond to Fig. 2, and we remind ourselves that the truth-sorting with its information
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Figure 5: Posterior probabilities for the toy shower, pT -suppressed rest terms for all QCD
splittings, {Cqq, Cgg, Cgq}. We assume SM-like jets and show results for truth-sorting (left)
and for kT -sorting (right).

backdoor clearly leads to the best results. On the other hand, the kT -sorting still delivers
much better results than the high-level observables. In particular, the additional infor-
mation from the complete low-level information passed through the summary net reduces
the correlations between the three measured parameters.

The right panels of Fig. 6 show the same pT -suppressed rest terms as we see in Fig. 5,
but including the projected measurements from the high-level observables. Again, the
truth-sorting should not be taken as a realistic benchmark, but even the kT -sorting avoids
the non-Gaussian structures we see for the high-level observables. Aside from that, the
more democratic structure of the parameter set {Cqq, Cgg, Cgq} implies that the high-level
and low-level observables show more similar performance.

This comparison between the high-level and the low-level observables should be taken
with a grain of salt. First, we know that pre-processing plays a role for the low-level
network input, and one could hope to recover a performance closer to the truth-ordering.
Second, the non-Gaussian posterior of Cgg from the high-level observables suggests that
not all trainings might be as stable as the successful training we show here.

4 Hadronization and detector

Obviously, the results from the quark-induced toy shower are not what we can expect from
an LHC analysis. Already for the comparison with the LEP measurements we need to
include hadronization rather than cutting off the QCD splittings at a fixed scale of 1 GeV.
In addition, we know that the LHC detectors cannot compete with the e+e− environment,
but on the other hand the available number of jets will eventually be much larger. Given
the promising results for the toy shower the question is how well the analysis would work
in a more realistic environment.

For a more realistic simulation we turn to a modified version of Sherpa 2.2.10 [?] and
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Figure 6: Posterior probabilities from the low-level observables with two sortings and
the high-level observables given in Eqs.(18) and (19). In the left panel we assume gluon
radiation only, {Dqq, Fqq, Cqq}, corresponding to Fig. 2. In the right panel we measure the
pT -suppressed terms in all QCD splittings, {Cqq, Cgg, Cgq}, corresponding to Fig. 5.

again generate the process

e+e− → qq̄ with q = u, d, s , (20)

without the weakly decaying heavy quarks. The leptonic initial state plays no role for
our jet analysis and allows us to ignore initial state radiation. The parton shower is
modified to include our parameterized splitting functions and has a cutoff at 1 GeV.
Within Sherpa we still use the modified splitting kernels of Eq.(11) and vary different
parameter sets while setting all the others to their SM-values. Unlike for the toy shower
we do not remove QCD splittings for the Sherpa case. Without a detector simulation
we save the 4-momenta of hadrons, photons and charged leptons. The maximum number
of constituents, jets per parameter points etc are identical to our toy shower analysis,
and our kT -sorting algorithm is applied to these 4-momenta. In a second step we include
LHC detector effects using Delphes 3.4.2 [?] with the default ATLAS card. Now we save
the 4-momenta of all particle flow (PF) objects. The jets are constructed with FastJet
3.3.4 [?], either processing the hadronization output or the Delphes Delphes output as
R = 1.2 anti-kT jets, giving the spectrum

pT,j = 20 GeV ...
mZ

2
, (21)

We select only one jet per event for the jet sample. By LHC standards these jets are soft,
and since we are testing the structure of QCD splittings, harder jets would include much
more information. Because this additional information will at some point be balanced by
challenging the calorimeter resolution we stick to this probably over-conservative setup.
We also ignore underlying event and pile-up, because standard tools are going to be far
from an optimal working point for subjet analyses using low-level observables.

To illustrate the physics behind our proposed measurement, we show the high-level
observables from Eq.(18) for the toy shower, after hadronization, and after detector effects
in Fig. 7. The bands are defined by a variation Dqq = 0.5. ... 2, to illustrate the dependence
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on the splitting kernels. The number of constituents nPF generally increases with Dqq. The
toy shower does not generate a very large number of splittings. Hadronization increases the
number of constituents significantly, but this effect has nothing to do with QCD splittings.
The detector simulation with its resolution and thresholds again leads to a slight decrease.
The width of the constituent distribution, wPF, is small for the toy shower, with a peak
once the toy shower generates enough splittings. An increase in Dqq moves the distribution
away from very small values. Hadronization enhances the peak around wPF ≈ 0.2, driven
by the hadron decays, and the detector effects have a limited effect because of the explicit
pT -weighting. For pTD a single hard object gives pTD = 1 and adding a soft constituent
leads to a downward shift. The small number of QCD splittings leads to a second peak
structure around pTD ∼ 0.7 for the toy shower, but the entire toy-level distribution has
to be taken with a grain of salt. Hadronization then induces the typical shape with a
broad maximum below 0.5, again with little impact from the detector effects. Finally, the
constituent-constituent correlation C0.2 loses all toy-level events at small values when we
include hadronization, and the broad feature around C0.2 ∼ 0.4 becomes more narrow and
moves to values around 0.6. As a side remark, this variable is particularly effective to
distinguish jets from hard quarks and hard gluons, because the two peak structures are
relatively well separated with gluons giving larger values of C0.2.

10 20
nPF

0.0

0.1

0.2

0.3

0.4

toy shower

hadronization
detector

0.0 0.2 0.4 0.6 0.8
wPF

0

2

4

6 toy shower

hadronization

detector

0.4 0.6 0.8 1.0
pTD

0

2

4

6 toy shower

hadronization

detector

0.00 0.25 0.50 0.75 1.00
C0.2

0

1

2

3

4

5
toy shower

hadronization

detector

Figure 7: High-level observables nPF , wPF , pTD, and C0.2 for 100k jets. We show results
for the toy shower, the Sherpa shower with hadronization, and including detector effects
with Delphes. Bands show the variation of Dqq = 0.5. ... 2 (dotted and dashed).
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Figure 8: Posterior probabilities for the Sherpa shower, varying the gluon radiation pa-
rameters only, {Dqq, Fqq, Cqq}. We assume SM-like jets and show results without Delphes
detector simulation (left) and including detector effects (right).

The main message from Fig. 7 is that from a QCD point of view the hadronization
effects are qualitatively and quantitatively far more important than the detector effects.
Therefore, we split our study into two parts. First, we shift from the toy shower to the
full Sherpa shower [?], including hadronization. Next, we add detector effects using
Delphes [?] with the default ATLAS card. Unlike for the toy shower, we now vary the
parameters for gluon radiation,

{Dqq, Fqq, Cqq} (gluon radiation varied) , (22)

while keeping the other splittings fixed to their SM-values. The results are shown in Fig. 8.
We apply our kT -sorting throughout this section, to ensure that there is no information
backdoor. Compared to the toy-shower in Fig. 2 all error bars for the Sherpa shower are
increased by a factor two to four. Intriguingly, the detector resolution adds very little to
the uncertainties in the case of our relatively soft jets.

Throughout our analysis we have always assumed that testing our network on SM-like
jets is representative of the whole parameter range the model is trained on. For this three-
parameter case with a variable quark-gluon splitting we also evaluate 1000 measurements
over the whole range covered by the prior. For each parameter point we generate M = 104

showers, sample 2000 points from the latent space to the measurement, and identify the
actual measurement with the average over these 2000 measurements. In Fig. 9 we correlate
the true values with the measured values and find that they track each other without a
bias, but with a spread corresponding to the known error bars.

Next, we allow for all QCD splittings included in the Sherpa shower and measure the
leading soft-collinear contributions, corresponding to measuring CF and CA from a sample
of quark-induced showers. The combined measurement of the varied parameters

{Dqq, Dgg} (soft-collinear varied) (23)

is shown in Fig. 10 and can be directly compared to the toy shower results from Fig. 4.
Here we see a significant degradation of the Sherpa measurements, especially in Dgg. This
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Figure 9: Posterior means vs true values of Dqq (left), Fqq (middle) and Cqq (right) for
a test data set with 1000 parameters sets drawn from the prior with 10000 events each
calculated including detector simulations in analogy to Fig. 8.

is at least partly due to the correlation between the two extracted model parameters which
we do not observe for the toy setup. This correlation is, if anything, slightly enhanced
by the detector effects, but as before the effect of the hadronization clearly dominates.
For an actual LHC measurement the correlation could be easily removed by combining
a quark-dominated and a gluon-dominated jet sample. This is why we also report the
measurement for one free model parameter at a time in Tab. 2, indicating that at the
LHC we might be able to measure the leading contributions to the splitting kernels in
Eq.(11) to the few per-cent level.

Our final hypothesis is that we know the leading and constant terms in all QCD
splitting functions, but want to measure possible deviations. This corresponds to varying
and then extracting the explicitly pT -suppressed parameters

{Cqq, Cqg, Cgg} (rest terms varied) (24)

from the full Sherpa shower. Unlike for the other parameters, the rest terms are defined
around zero, with an explicit pT -suppression. This way we can argue that we do not
expect any of the Cij to be significantly larger than one. If that should be the case,
our expansion is not correct and the perturbative QCD description of the respective jet
sample has a problem. Just looking at σ(Cqq), where the error is roughly a factor two larger
than for the toy shower in Fig. 5, this task is clearly in reach, even for our conservative
setup. The two other rest terms are essentially invisible. Some of this can likely be cured
by combining a quark-dominated and a gluon-dominated sample, where the latter will
provide a measurement of Cgg.

In Tab. 2 we collect all numerical results from this paper. We test three hypotheses, (i)
all terms in the gluon radiation off a quark, (ii) the leading terms of the quark and gluon
splitting, corresponding for instance to the color Casimirs CF and CA, and (iii) the pT -
suppressed rest terms of the three splitting kernels. The results for the toy shower indicate
that the information on the QCD splitting kernels is indeed included in the low-level
observables. Obviously, it is easier to extract the leading, regularized pole terms than the
finite terms. The rest terms are expected to be zero for the perturbative prediction, so we
expect them to be at most of order one. One of the interesting results from the toy shower is
that the multi-dimensional posteriors show hardly any correlations, except for the two rest
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Figure 10: Posterior probabilities for the Sherpa shower, soft-collinear leading terms
for all QCD splittings, {Dqq, Dgg}. We assume SM-like jets and show results without
Delphes detector simulation (left) and including detector effects (right).

terms Cgq and Cgg. This correlation could be cured by adding gluon-dominated showers
in our analysis. Moving to the Sherpa shower we first notice that hadronization has a
much more degrading effect than detector effects. While it is still possible to determine
the splitting function for gluon emission off a quark and the regularized soft-collinear
divergences, we do not have enough sensitivity to constrain all three rest terms. However,
Cqq is within reach, and Cgg should be testable if we include a gluon-dominated jet sample.

Setup & Parameter Toy shower Sherpa
Truth-sorted kT -sorted HLO Hadronized Detector-level

{Dqq, Fqq, Cqq}
σ(Dqq) 0.012 (0.013) 0.019 (0.013) 0.024 (0.015) 0.054 (0.025) 0.060 (0.03)
σ(Fqq) 0.05 (0.04) 0.16 (0.07) 0.19 (0.08) 0.18 (0.09) 0.20 (0.1)
σ(Cqq) 0.97 (0.8) 1.04 (0.8) 1.7 (1.0) 2.0 (1.2) 2.3 (1.4)

{Dqq, Dgg}
σ(Dqq) 0.013 (0.013) 0.013 (0.013) 0.013 (0.013) 0.047 (0.025) 0.047 (0.025)
σ(Dgg) 0.034 (0.034) 0.033 (0.033) 0.035 (0.035) 0.41 (0.23) 0.50 (0.25)

{Cqq, Cgg, Cgq}
σ(Cqq) 0.86 (0.8) 0.90 (0.8) 1.0 (1.0) 1.5 (1.0) 1.4 (0.9)
σ(Cgg) 3.4 (1.4) 5.6 (1.7) 5.4∗ (1.7) ∗ ∗ ∗ ∗
σ(Cgq) 2.7 (1.1) 4.9 (1.4) 5.2∗ (1.4) ∗ ∗ ∗ ∗

Table 2: Error on the extracted QCD splitting kernels from 10k events in the different
setups: gluon radiation only, soft-collinear leading contributions, and pT -suppressed rest
terms. The truth-sorting includes an information backdoor through the ordering of the
inputs. The asterisk denotes a non-Gaussian posterior. The error in parentheses assumes
one variable splitting parameter at a time.
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Figure 11: Posterior probabilities for the Sherpa shower, pT -suppressed rest terms for
all QCD splittings, {Cqq, Cgg, Cgq}. We assume SM-like jets and show results without
Delphes detector simulation (left) and including detector effects (right).

5 Outlook

The gold standard of LHC physics is our ability to understand all aspects of the recorded
events in terms of fundamental physics. Parton showers, or parton splittings, are part
of every LHC analysis. In spite of an active subjet physics program and in spite of
significant theoretical progress, we do not have a systematic set of measurements of their
simple underlying QCD predictions

:
,
:::::
even

:::::::
though

:::::::
similar

:::::::::
analyses

::::::
based

:::
on

:::
jet

:::::
and

:::::
event

::::::
shapes

:::
do

::::::
exist

:::::
from

:::::
LEP.

In this paper we have proposed a systematic approach to measuring QCD splittings,
including an appropriate technique based on modern machine learning. First

:::
To

::::::
define

:
a
:::::::
viable

::::
and

:::::::::::
consistent

:::::::
theory

:::::::::::
hypothesis, we have parameterized the known splitting

kernels into the leading, logarithmically enhanced term, the finite term known in pertur-
bative QCD, and a rest term.

:::::::::::::
Traditionally,

::::
the

:::::::
leading

:::::
term

::::::
could

:::
be

::::::::::
identified

:::::
with

:::
the

:::::::::::::
measurement

::
of

:::::
QCD

:::::
color

::::::::
factors.

:::::
The

:::::
finite

:::::
term

:::::::
reflects

::::
the

::::::
simple

:::::::::::
description

:::
of

::::::
parton

:::::::::
splittings

:::
as

::
a

::::::::
Markov

::::::::
process,

::::::
while

::::
the

:::::
rest

:::::
term

:::::::
would

::::::
allow

:::
us

:::
to

:::::::::::::
parameterize

:::
for

::::::::
instance

:::::::::
quantum

::::::
effects

:::
or

::::::
higher

::::::::::
splittings.

:::::::::::
Expanding

::::
the

::::::
theory

:::::::::::
hypothesis

:::::::::::
accordingly

::::::
would

:::
be

:
a
::::::::
natural

:::::
step

::
in

::::::::
refining

::::
any

:::::::::::::::::
simulation-based

:::::::::
analysis.

:

We have then shown that for a toy shower, modelled after Sherpa, we can measure
all these contributions from low-level observables of a jet sample. For a realistic version
we saw that hadronization has the biggest effect on our measurement, bigger than the
expected detector effects for relatively soft jets. The challenge will be to extract the rest
terms beyond the standard QCD predictions, to test the quality of the perturbative QCD
prediction.

Our analysis method is based on machine learning, specifically an invertible network
conditioned on a small summary network. After training, we can use the invertible network
to sample the model parameter space and construct a posterior probability based on a set
of jets. While we study SM-like jets throughout our analysis, the network produces the
correct posterior for all jets covered by the original parameter scan.
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Our analysis is not meant to be the final word on ML-measurements of fundamental
QCD properties from LHC jets. Natural next steps, aside from testing our methodology
on actual data would be a second, gluon-initiated jet sample and an additional harder
jet sample. While the former will get rid of the remaining correlations in the model
parameters, the latter should allow us to optimize the interplay of the energy range covered
by the shower and the calorimeter resolution. Our current setup is also not efficient in
analyzing millions of jets, because unlike standard likelihood methods it does not scale well
with additional data. This is the downside of directly extracting the posterior distribution.
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