
Dear Prof. Jiang,

Thank you for your interest in our work. We are happy to see you find our
work to be “an elegant theory that connects two realms of topological physics”.
Bellow we provide answers to your remarks.

Sincerely,

Selma Franca, Fabian Hassler, and Ion Cosma Fulga

Remark: I am wondering how such a connection depends microscopic details:
for instance, the size of the HOTI, the couplings between the waveguides and
the HOTI, the band gap of the HOTI.

Our response: We start with the question on how the size of the HOTI
impacts the observation of the Floquet topological phases simulated by r. We
consider a 2D scattering region of length L and width W to which leads are
attached as in Fig. 1 of our manuscript. Just like the topological end-modes of
first-order topological phases [Phys. Rev. B 100, 075415], the spatial profile of
topological corner states has an exponential decay with the distance from the
respective corners [Nature Physics 14, p. 925–929(2018), Nature Materials 18,
p. 113–120(2019)]. This implies that the splitting in their energies due to the
overlap of their wavefunctions decreases exponentially with the system size.

Whether the reflected phase is quantized to π or not depends on this splitting
in energies. Under assumption that L is large enough (later we discuss what
this means), reducing W will continuously change the phase difference between
the incoming and the reflected modes of the lead away from π, to values of
φ related to reflections from the bulk of the y edge. Finally, the estimate of
the minimal value of W required for the detection of quantized π modes of r
depends also on how much are the hoppings of the 2D HOTI dimerized. The
smaller the ratio of γy/λy, the smaller W is needed. On the other side, the
length L of the system has a different impact on the topology of the reflection
matrix. The probability for the particle to be transmitted through a gapped
region of finite length decays exponentially with this length. For this reason,
longer 2D HOTIs have reflection matrices that are closer to the unitary limit
rr† − 1 = 0. For γx = γy = 0.1 and λx = λy = 1, our numerical simulations
reveal that size L = 10 and W = 10 (5×5 unit cells) is sufficient to get a unitary
r with π-modes. Here, the deviation from unitarity of r is of the order 10−10,
while boundary modes differ from φ = π by less than 10−3.

Next, we answer the question of the band gap of HOTIs. For our discussion,
it is important to distinguish between bulk, x edge and y edge band gaps in
these systems. First, the vanishing bulk band gap of a 2D system will lead
to a subunitary reflection matrix that cannot then be interpreted as a Floquet
operator. This is because some incoming modes of one lead will get transmitted
to the other lead. If the bulk is gapped but the x edge is gapless, the reflection
matrix will again be subunitary (det r = 0) due to the nonzero edge conductance
between the leads. Finally, closing the band gap along the y edge keeps the
unitarity of the reflection matrix, see our Appendix E.

In fact, the question of the band gap is very much related to the system size for
the following reason. The two-terminal electrical conductance can be written as
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G = G0tr[tt†], where G0 = 2e2/~. In an insulator, tr[tt†] ∝ exp [−L/ξ], where
ξ is the localization length. This length scales with the bandgap ∆ as ξ ∝
~vF /∆ [B. A. Bernevig, Topological insulators and topological superconductors,
Princeton University Press, 2013]. At the phase transition point where ∆→ 0,
the localization length diverges i.e., tr[tt†] → 1. This implies a subunitary r
according to the relation rr† = 1− tt†, obtained from the unitary constraint on
the scattering matrix. Therefore, both the bulk band gap and the length L of
the HOTI contribute to producing a unitary reflection matrix.

Finally, we comment on the importance of the system-lead coupling strength
tls. In our numerical simulations, we find that the size of the topological gaps
decrease with reducing tls. This however does not influence the stability of
topological π-modes and 0-modes (provided that tls 6= 0, because otherwise the
lead is not attached to the system). The reason is that their localization length
depends only on the parameters of the scattering region. That this is case can be
seen from Fig. 2 of our manuscript, where π-modes and 0-modes have the same
spatial profile no matter what is the size of the topological gap that protects
them.

Remark: In addition, there are various 2D HOTIs, how do they map to 1D
Floquet topological insulators in various phases?

Our response: In Appendix C of our manuscript we explain the dimensional
reduction map between HOTIs and Floquet topological phases in more detail.
We show that the connection between these two types of topology is universal,
since it applies to HOTIs in any dimension and symmetry class, provided that
their corner states are robust against lattice symmetry breaking.
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