
==== response to referee 1 ====


We thank the referee for their careful reading of our manuscript and their helpful remarks. We are 
glad that the referee appreciates both our findings and the way we present them. We will address 
the remarks of the referee point by point below, indicating the referee’s comments in red, and our 
responses in blue.


1)  
- this is a very well-written paper 
- the splitting into main text/appendices is appropriate, and the latter provide many useful details 
on the authors' results 
- the results are general and apply in a model-independent way 
- I believe this work will lead to multiple follow-up theoretical and experimental investigations 
[..] 
- I really enjoyed reading this paper, it is very well written. Results are presented in a step-by-step 
pedagogical way, making the authors' discussion easy to follow also for non-specialists. I think this 
work is timely and of interest to the community working on topological systems, and it will 
motivate experimental studies on these kinds of interface states, possibly in various meta-material 
platforms. 

We thank the referee for these endorsements of our work.


2) 
- it would really help the readers to see one simple example Hamiltonian showing the behavior 
discussed in the paper. 
[..] 
- Please add an example. I understand that the work is general, and that the results apply in a 
model-independent way: this is one of the strengths of the paper. However, it would really help the 
readers to have something concrete to point to while going through these general results. With 
even a simple example in an appendix somewhere, I believe the quality of this paper would be 
greatly improved. 

We thank the referee for insisting on this point.

This same suggestion was also made by referee 2, and in an independent comment by Dr. Varjas. 
Although beyond the scope of the original work, we agree that an explicit example strengthens 
the presentation in the paper, and will help to clarify some of the formal results. We therefore 
constructed not one, but two explicit examples and include a detailed discussion of these in a 
new section added to the revised manuscript. 

One example is particularly intuitive, being a 2D extension of the well-known SSH model. The 
other, based on a 2D extension of 1D CDWs, is slightly less familiar, but conceptually cleaner as it 
does not include any chiral symmetries. Both examples give the same results in terms of interface 
states, in complete agreement with the predictions arising from the theory described in the earlier 
sections.

The new section also includes an analysis of the effect of impurities at the interface, which we 
discuss in more detail below.


3) 
Several times throughout the paper, but especially at the beginning of Section 4, the authors refer 
to interface states which should be present at the Fermi level. At the end of Section 5, the authors 
say that these interface states may sensitively depend on crystal terminations. This makes me 
confused with respect to the way in which the authors define "topological protection." 

My confusion is as follows: 

As far as I can understand (again, here an example would go a long way), the symmetry labels 
force interface-bound states to exist, but they don't force these states to continuously interpolate 



in energy between the valence and the conduction band. My naive guess (which could be wrong) 
is that these states exist at some particular energy, which is in general different from 0 since there 
is no chiral or particle-hole symmetry in class A. The interface between two inversion-symmetric 
bulks is in general not inversion-symmetric, so it might be possible to change the microscopic 
details of the interface without worrying about inversion breaking. In this case, isn't it possible for 
me to freely move these interface states in energy, simply by changing the microscopic details of 
the interface itself? For instance, could I add a chemical potential just to the interface, and push 
the interface states up in energy until they overlap with the bulk bands? 

We thank the referee for clearly formulating this issue. We agree that in hindsight, we did not 
sufficiently clearly define what we mean by "topological protection". This is clarified in the revised 
manuscript, both in the introduction and discussions sections, and (by explicit example) in the 
newly added section.


We believe there are two related issues to be clarified regarding this point. First of all, one may ask 
about the question of existence of interface states. Here, the prediction is clear: as long as the 
lattice symmetry is respected and the band gap does not close, topological states must exist in a 
gap between atomic insulators sharing the same sign of the logarithmic derivative. In the new 
section with examples, we indeed find all of the predicted interface states in both of the models 
we discuss. The existence of these states is guaranteed by the symmetry labels of the bands, and 
in that sense "protected" by lattice symmetry.

Then, there is the question of the energies at which topological interface modes appear, and how 
these may be influenced. Here, the referee is correct that there is no reason for the states to 
appear in the middle of the gap, and the states do not connect any bulk bands. This is expected 
for states arising from a weak invariant, and different from topological states associated with non-
zero net Berry curvature. It indeed also makes it possible for added potentials to alter the energies 
of the interface states.

In the new section we show the explicit example of a very strong impurity potential (exceeding the 
bulk bandwidth) being added at the interface. This can be clearly seen to create a local, non-
topological impurity state at high energy, and to suppress the weight of the topological interface 
states at the impurity site (figure 5 of the revised manuscript). The wavefunction of the topological 
interface state away from the impurity site is not affected, however, and the wave functions does 
in particular still span the entire interface. It is therefore not destroyed by the presence of even a 
very strong impurity and can be employed in practice even in the presence of (strong) impurities.


Moreover, we also studied the case of adding a strong impurity potential (with a strength 
comparable to the bulk band width) across the entire interface. These results are not included in 
the revised manuscript, both because this situation is unrealistic and because the results are 
somewhat counter-intuitive. However, we do present them in the figure below. 

Upon adding a potential across the entire interface, the band of interface states can be moved 
arbitrarily close towards the bulk band, as the referee suggested. For very high impurity potential 
a band of states localised at the impurity (i.e. at the interface) appears on top of the entire 
spectrum — these are the red states in the spectrum of the second panel below, which should be 
compared to the red interface state in figure 5 of the revised manuscript. However, these impurity 
states are not the topological interface states, which can still be discerned within the bulk gap, 
but arbitrarily close to the bulk band. In the figure below, these are the green and brown states 
localised at the edges of the band gap. Plotting their real-space wave functions (rightmost panels) 



clearly shows these states to be the interface states, split into two parts and displaced away from 
the impurity potential, but still exponentially localised at the interface.


The topological interface states thus do enjoy some form of topological protection, in the sense 
that they must exist in the gap and cannot be destroyed or brought into the bulk. But the energy 
at which they occur can in principle (with unrealistic impurity potentials) be brought arbitrarily 
close to the gap edges.


4) 
Note that this would be very different from the "topological protection" of strong TIs (e.g. quantum 
spin-Hall effect) and what people used to call weak TIs (e.g. 3D stack of 2D QSHE). In those 
systems, the boundaries are invariant under the symmetries (time reversal, translation) and the 
boundary states exist at the Fermi level no matter how one changes the microscopic details of the 
interface, provided its symmetries are left intact. 

As also discussed above, we agree with this difference in the nature of the topological protection 
for strong and weak topological modes, and we comment on this in the revised manuscript. 


The comment of the referee also brings to light the fact that we did not clearly define our use of 
the terms "strong" and "weak" topological insulators in the original manuscript. We intended for 
them to follow the standard nomenclature in the classification of topological insulators on the 
basis of K-theory (which was central to the identification of the symmetry-label-based invariants 
discussed in this paper). We thank the referee for highlighting this omission, and we added an 
explicit definition of these terms in the introduction of the revised manuscript.


5) 
Are the states discussed in this paper and their amount of topological protection different from 
Shockley states? Does this paper discuss the conditions for which Shockley states exist in p2, p3, 
and pmm? 

We thank the referee for these questions, which help to clarify the message of our paper. 
First of all, we understand "Shockley states" to refer to the edge states of a one-dimensional 
tight-binding model introduced by Shockley in 1939 (our reference 36 in the revised manuscript). 
These edge states were generalised by Zak in 1985 (reference 42), using a more universally 
applicable formalism culminating in a symmetry criterion for the existence of edge states. Both 
authors considered a clean edge at a high-symmetry point in a one-dimensional chain, and they 
both considered an interface between the chain and the vacuum, rather than between two 
crystalline insulators. 

In the present work, we extend Zak’s symmetry criterion to higher dimensions and to interfaces 
between crystalline insulators. Moreover, we show the resulting generalised symmetry criterion for 
the existence of edge states to coincide with the topological criterion established in our Ref. 19. 
Within the framework of symmetry-label based topology, an interface between crystalline 
insulators is both more natural and more general than an interface with the vacuum. Our results 
confirm the topological nature of occupation numbers for bands of a given symmetry, and 
establishes a bulk-boundary correspondence for them.

Rather than saying that the interface states presented here are merely generalised versions of 
Shockley states, we thus suggest that rather, Shockley states should be re-interpreted as the 
simplest possible incarnation of the topological interface states we introduce and examine in the 
present manuscript.




==== response to referee 2 ====


We thank the referee for their careful reading of our manuscript and their helpful remarks. We are 
glad that the referee appreciates strength and counterintuitive nature of our findings. We will 
address the remarks of the referee point by point below, indicating the referee’s comments in red, 
and our responses in blue.


1)  
The authors claim that a group of weak topological invariants, which depend only by the 
symmetries of the atomic lattice, induces a bulk-boundary correspondence. 
In particular, it is claimed that (i) these weak topological invariants predict the presence or absence 
of states localised at the interface between two inversion-symmetric band insulators with trivial 
values for their strong invariants, and (ii) the interface modes are protected by the combination of 
band topology and symmetry of the interface. 

We thank the referee for the clear summary of our results.


2)  
These statements are strong and counterintuitive, and I don’t find the supporting arguments in the 
manuscript convincing. The essential counterargument opposing these statements that it seems 
likely that it is possible to introduce a perturbation which obeys the symmetries but moves the 
interface states in energy to the conduction or valence band on either side of the interface. Thus, 
the interface states hybridise with the bulk states and are no longer localised at the interface. 
(Notice that the energy gap can be very small on one side of the interface, and therefore intuitively 
it seems that it would be very easy to hybridize the interface states with the bulk bands on that 
side of the interface.) This would mean that the interface states are not protected by the 
combination of the band topology and symmetry of the interface, and therefore also the weak 
topological invariants would not always predict the presence or absence of localised states at the 
interface. 

We thank the referee for raising this issue. Part of the confusion about the protection of the edge 
states may be due us not sufficiently clearly defining what we mean by "topological protection" in 
the original submission. This is clarified in the revised manuscript, both in the introduction and 
discussions sections, and (by explicit example) in the newly added section.

Besides the issue of definition, we believe there are two related issues at play, which were also 
raised by referee 1. We repeat our arguments from the reply to referee 1 here.


First of all, one may ask about the question of existence of interface states. Here, the prediction is 
clear: as long as the lattice symmetry is respected and the band gap does not close, topological 
states must exist in a gap between atomic insulators sharing the same sign of the logarithmic 
derivative. In the new section with examples, we indeed find all of the predicted interface states in 
both of the models we discuss. The existence of these states is guaranteed by the symmetry 
labels of the bands, and in that sense "protected" by lattice symmetry.

Then, there is the question of the energies at which topological interface modes appear, and how 
these may be influenced. Here, the referee is correct that there is no reason for the states to 
appear in the middle of the gap, and the states do not connect any bulk bands. This is expected 
for states arising from a weak invariant, and different from topological states associated with non-
zero net Berry curvature. It indeed also makes it possible for added potentials to alter the energies 
of the interface states.

In the new section we show the explicit example of a very strong impurity potential (exceeding the 
bulk bandwidth) being added at the interface. This can be clearly seen to create a local, non-
topological impurity state at high energy, and to suppress the weight of the topological interface 
states at the impurity site (figure 5 of the revised manuscript). The wavefunction of the topological 
interface state away from the impurity site is not affected, however, and the wave functions does 
in particular still span the entire interface. It is therefore not destroyed by the presence of even a 
very strong impurity and can be employed in practice even in the presence of (strong) impurities.




Moreover, we also studied the case of adding a strong impurity potential (with a strength 
comparable to the bulk band width) across the entire interface. These results are not included in 
the revised manuscript, both because this situation is unrealistic and because the results are 
somewhat counter-intuitive. However, we do present them in the figure below. 

Upon adding a potential across the entire interface, the band of interface states can be moved 
arbitrarily close towards the bulk band, as the referee suggested. For very high impurity potential 
a band of states localised at the impurity (i.e. at the interface) appears on top of the entire 
spectrum — these are the red states in the spectrum of the second panel below, which should be 
compared to the red interface state in figure 5 of the revised manuscript. However, these impurity 
states are not the topological interface states, which can still be discerned within the bulk gap, 
but arbitrarily close to the bulk band. In the figure below, these are the green and brown states 
localised at the edges of the band gap. Plotting their real-space wave functions (rightmost panels) 
clearly shows these states to be the interface states, split into two parts and displaced away from 
the impurity potential, but still exponentially localised at the interface.


The topological interface states thus do enjoy some form of topological protection, in the sense 
that they must exist in the gap and cannot be destroyed or brought into the bulk. But the energy 
at which they occur can in principle (with unrealistic impurity potentials) be brought arbitrarily 
close to the gap edges.


3) 
It is probably possible to formulate a weaker statement, which is related to statement (i). Namely, I 
expect that quite generically these weak topological invariants are related to the presence or 
absence of localised states at the interface. The appearance of such interface states can be 
understood by first considering a smooth interface with slowly varying parameters connecting the 
two Hamiltonians, and then realising that one needs quite large perturbation to remove the 
resulting localised interface states appearing inside the bulk gap. Thus, the interface states will 
often survive in specific models even in the case of a sharp interface. Nevertheless, I want to 
emphasise that these localised interface states are not protected just by symmetry and topology; 
Their appearance requires additional assumptions about the model Hamiltonian. 

We appreciate the attempt by the referee to give an alternative interpretation for the results in our 
manuscript. Although te arguments brought forward by the referee indeed seem intuitive, they do 
not capture all of the involved physics. In particular, we believe the explicit example discussed 
above clearly establishes the topological nature of the interface states, in direct agreement with 
the K-theory-based suggestion in Ref. 19 of the revised manuscript that the occupation numbers 
of states in given representations at high-symmetry points in the Brillouin zone are, by 
themselves, bona fide (weak) topological invariants.




4) 
I am willing to reconsider the paper for publication if the authors have additional arguments to 
support their statements that the interface states are indeed protected by the combination of band 
topology and symmetry of the interface. For this purpose I suggest that the authors construct an 
explicit example (as suggested also both by Daniel Varjas and the first referee), and study the 
robustness of the interface states with respect to introducing all possible symmetry-preserving 
perturbations which do not change the band topology. 

We thank the referee for their suggestion, which we follow and report on in the new section of the 
revised manuscript and in our response above.



