This short note is a response to the following referee comment and shows that the capacity of entanglement *does* vanish even if the groundstate is degenerate:

After (3.49) the authors say that if " $\beta_2 \to \infty$, ρ_2 reduces to the ground state, and the relative entropy variance vanishes (along with $C(\beta_2) \to 0$)" This is only true if the ground state of the Hamiltonian is non-degenerate.

1 Thermal state capacity for degenerate ground states

Consider a quantum system with Hilbert space dimension D and with energy eigenvalues E_n whose Hamiltonian takes the form

$$H = \sum_{n=0}^{N} E_n P_n \tag{1.1}$$

where P_n is the orthogonal projector onto the eigensubspace of eigenvalue E_n with $E_0 < E_1 < \ldots < E_N$. They satisfy

$$P_n P_m = \delta_{nm}, \quad P_n^{\dagger} = P_n. \tag{1.2}$$

Notice that the groundstate E_0 is degenerate. We denote the orthogonal set of eigenvectors corresponding to the eigenvalue E_n by $\vec{v}_{n,i}$ with $i = 1, \ldots, d_n$. (Note that $\sum_{i=1}^N d_i = D$). Let A_n be the $D \times d_n$ matrix with each column being an eigenvector:

$$A_n = \begin{pmatrix} \vec{v}_{n,1} & \cdots & \vec{v}_{n,d_n} \end{pmatrix}. \tag{1.3}$$

Then the projectors can be written as

$$P_n = A_n A_n^{\dagger}. \tag{1.4}$$

Consider now a thermal state

$$o = \frac{e^{-\beta H}}{\operatorname{Tr} e^{-\beta H}} \tag{1.5}$$

and the corresponding capacity of entanglement

$$C(\rho) = \langle (\log \rho)^2 \rangle_{\rho} - \langle \log \rho \rangle_{\rho}^2$$
(1.6)

which can be written as thermal heat capacity

$$C(\rho) = \beta^2 \left[\operatorname{Tr} \left(\rho H^2 \right) - \left(\operatorname{Tr} \left(\rho H \right) \right)^2 \right].$$
(1.7)

We can write

$$\rho = \frac{1}{Z} \sum_{n=0}^{N} P_n e^{-\beta E_n}, \quad Z = \sum_{n=0}^{N} d_n e^{-\beta E_n}$$
(1.8)

where we used $\operatorname{Tr} P_n = \operatorname{rank} A_n = d_n$. Substituting gives

$$C(\rho) = \beta^2 \left[\frac{\sum_{n=0}^{\infty} E_n^2 \, d_n \, e^{-\beta E_n}}{\sum_{n=0}^N d_n \, e^{-\beta E_n}} - \left(\frac{\sum_{n=0}^{\infty} E_n \, d_n \, e^{-\beta E_n}}{\sum_{n=0}^N d_n \, e^{-\beta E_n}} \right)^2 \right]$$
(1.9)

which can be written as

$$C(\rho) = \beta^2 \left[\frac{E_0^2 + \sum_{n=1}^N E_n^2 \left(d_n/d_0 \right) e^{-\beta(E_n - E_0)}}{1 + \sum_{n=1}^N \left(d_n/d_0 \right) e^{-\beta(E_n - E_0)}} - \left(\frac{E_0 + \sum_{n=1}^N E_n \left(d_n/d_0 \right) e^{-\beta(E_n - E_0)}}{1 + \sum_{n=1}^N \left(d_n/d_0 \right) e^{-\beta(E_n - E_0)}} \right)^2 \right].$$
(1.10)

In the zero temperature limit $\beta \to \infty$, we can expand it as

$$C(\rho) = \beta^2 \left[E_0^2 + \mathcal{O}(e^{-\beta(E_1 - E_0)}) - \left(E_0 + \mathcal{O}(e^{-\beta(E_1 - E_0)}) \right)^2 \right]$$
(1.11)

which becomes

$$C(\rho) = \beta^2 (E_0^2 - E_0^2) + \mathcal{O}(\beta^2 e^{-\beta(E_1 - E_0)}).$$
(1.12)

Since $\lim_{\beta\to\infty}\beta^2 e^{-\beta x} = 0$ for x > 0, we get

$$\lim_{\beta \to \infty} C(\rho) = 0. \tag{1.13}$$

Intuitively capacity measures the variation of energy due to thermal fluctuations, but at zero temperature, all such fluctuations vanish (even if the ground state is degenerate).