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Bosonic and fermionic Gaussian states (also known as “squeezed coherent states”) can be uniquely
characterized by their linear complex structure J which is a linear map on the classical phase space.
This extends conventional Gaussian methods based on covariance matrices and provides a unified
framework to treat bosons and fermions simultaneously. Pure Gaussian states can be identified
with the triple (G,Ω, J) of compatible Kähler structures, consisting of a positive definite metric G, a
symplectic form Ω and a linear complex structure J with J2 = −1. Mixed Gaussian states can also be
identified with such a triple, but with J2 6= −1. We apply these methods to show how computations
involving Gaussian states can be reduced to algebraic operations of these objects, leading to many
known and some unknown identities. In particular we show how these methods apply to the study of
(A) entanglement and complexity, (B) dynamics of stable systems, (C) dynamics of driven systems.
From this, we compile a comprehensive list of mathematical structures and formulas to compare
bosonic and fermionic Gaussian states side-by-side.
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I. INTRODUCTION

Gaussian states play a distinguished role in quantum
theory: they appear under various names (squeezed co-
herent states, squeezed vacua, quasi-free states, gener-
alized Slater determinants, ground states of free Hamil-
tonians) and are used in vastly different research fields,
from quantum information [1–3] to quantum field theory
in curved spacetimes [4, 5]. They are often used as test-
ing ground, as many concepts can be studied analytically
when they are applied to Gaussian states (e.g., entangle-
ment entropy, logarithmic negativity, circuit complexity).
They also form the basis of many numerical or perturba-
tive methods to study physical systems approximately
(e.g., Feynman diagrams, Bardeen–Cooper–Schrieffer
theory, Hartree-Fock method, Bogoliubov theory) [6].

Gaussian states are completely characterized by the
2-point correlation functions of linear observables, from
which all higher n-point functions can be computed
via the famous Wick’s theorem. For a system of N
bosonic degrees of freedom, one can choose coordinates
qi, pi in phase space and express linear observables as

ξ̂a ≡ (q̂1, · · · , q̂N , p̂1, · · · , p̂N ). Similarly, for a system
with N fermionic degrees of freedom, one can choose Ma-
jorana modes qi, pi (often denoted γi, ηi) at the classical
level, and express linear observables again in a compact

form as ξ̂a. In both cases, given a state |ψ〉, the correla-
tion function takes the form1

〈ψ|ξ̂aξ̂b|ψ〉 =
1

2

(
Gab + i Ωab

)
. (1)

The symmetric and the antisymmetric part of the cor-
relation function define two mathematical structures: a
positive definite metric Gab and a symplectic form Ωab.
For bosons, the symplectic form Ωab is canonical and
determined by the classical Poisson brackets, while the
metric Gab depends on the state. On the other hand,
for fermions it is the metric Gab that is canonical and
fixed already at the classical level, while the symplectic
form Ωab characterizes the quantum state. Remarkably,
for a pure Gaussian state |ψ〉, the two structures Gab

and Ωab satisfy a compatibility condition that defines a
Kähler structure (G,Ω, J), (see figure II B). The third
object Jab is a complex structure and defines a notion
of creation and annihilation operators. Following [7], we
show how properties of Gaussian states for bosonic and
for fermionic systems can be described in a compact uni-
fied way in terms of Kähler structures, tailoring the lan-
guage and selecting aspects relevant for applications in
quantum information and out-equilibrium quantum sys-
tems. We highlight the fact that various expressions for
information-theoretic quantities (e.g., the entanglement
entropy) take the same form for bosons and fermions
when written in terms of the complex structure J .

1 We assume 〈ψ|ξ̂a|ψ〉 = 0 here, but see section III for the general
case.

Due to their versatility, many properties of Gaussian
states have been independently discovered in different
research communities ranging from quantum optics
and condensed matter physics to high energy theory
and quantum gravity. Historically, Gaussian states
were mostly used as a calculational tool which is only
described indirectly in terms of correlations, Bogoliubov
transformations, creation and annihilation operators or
free Hamiltonians, but more recently they were recog-
nized in quantum information theory and condensed
matter theory as important families of pure and mixed
quantum states with distinct properties. Consequently,
there exist many reviews [1–3, 7–9] focusing on specific
applications of Gaussian states relevant for these re-
search fields. Kähler structure were first used to describe
Gaussian states in the context of quantum fields in
curved spacetimes [10–15].

The goal of the present manuscript is the system-
atic application of Kähler structures to (A) entanglement
and circuit complexity, (B) dynamics of stable quantum
systems and (C) dynamics of driven quantum systems,
while previous work on Kähler structures for Gaussian
states [7–9] has largely focused on quantization and the
definition of free quantum fields. We further emphasize
how Kähler structures can be used to unify the descrip-
tion of bosonic and fermionic systems by providing ex-
plicit formulas for both systems. We carefully distin-
guish the involved geometric structures (metric, symplec-
tic form and complex structures) and treat them as inde-
pendent of their matrix representation in a given basis.
This allows us to re-derive existing results (such as the in-
ner product between Gaussian states) in a simplified and
often basis-independent way, but also enabled us to find
some—to our knowledge—new formulas (such as some
of the covariant Baker-Campbell-Hausdorff relations to
combine squeezing and displacement). Several results
and techniques of this manuscript have been implicitly
used in some of our earlier works [16–25] and we are con-
fident that other researchers can benefit from a thorough
exposition of Gaussian states from Kähler structures.

The content of this manuscript is complemented by
two other recent papers that adopt the same formalism:
First, the geometry of variational methods is studied
in [24], where Gaussian states appear as a prime
example of so-called Kähler manifolds, whose geometric
properties are closely related to the Kähler structures on
the classical phase space. Second, the geometry of pure
Gaussian state manifolds is used in [25] to find local
extrema of differentiable functions on these manifolds,
for which a large number of different parametrizations
is reviewed. The present manuscript provides a self-
contained, yet rigorous derivation of many results that
are used in the other two papers.

This manuscript is structured as follows: In section II,
we review the classical theory of bosonic and fermionic
phase spaces, discuss the properties of Kähler structures,
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and review the quantization of the bosonic and fermionic
theories. In section III, we define Gaussian states in a
unified framework based on Kähler structures and we use
this framework to derive compact formulas for properties
of Gaussian state for bosons and fermions. In section IV
we discuss applications to entanglement and dynamics.
Each of the previous sections contains a large summary
table (namely, table I, IV and V) that summarizes the
main results and compares bosons and fermions side-by-
side. We conclude in section V by summarizing our re-
sults and discussing further applications of our formal-
ism.

II. BOSONS AND FERMIONS FROM KÄHLER
STRUCTURES

We review the quantization of bosonic and fermionic
quantum systems based on Kähler structures. We
present this material in a condensed way with a unified
notation in mind, which is particularly suitable for later
applications in physics. More detailed treatments of this
material can be found in the mathematical physics liter-
ature [7–9, 26].

A. Classical theory

Quantization can be understood as a deformation of
the algebra of observables on the classical phase space.
We therefore begin by constructing the respective classi-
cal theories.

1. Phase space

For both, bosonic and fermionic systems, we begin our
construction with a classical phase space V ' R2N given
by a 2N -dimensional real vector space for systems with
N degrees of freedom. We denote a phase space vec-
tor by va. We have a canonical notion of linear observ-
ables given by linear forms wa in the dual phase space
V ∗. More generally, we use upper Latin indices to denote
phase space vectors and lower ones to denote linear forms,
i.e., dual vectors. Please see appendix A 1 for a brief re-
view of this formalism inspired by Einstein’s summation
convention and Penrose’s abstract index notation.

So far, we have not assumed any additional structure
on phase space or its dual.

Definition 1. A 2N -dimensional real vector space V is

• a bosonic phase space if it is equipped with a
symplectic form ωab, i.e., an antisymmetric and
non-degenerate bilinear form, or

• a fermionic phase space if it is equipped with a
metric gab, i.e., a symmetric positive-definite bi-
linear form.

We further define their inverses as the dual symplectic
form Ωab and the dual metric Gab, which are uniquely
determined by the conditions

Gacgcb = δab and Ωacωcb = δab . (2)

2. Linear observables

The key difference in the definition of bosonic and
fermionic systems lies in the different background struc-
ture that we equip the space of linear observables with.
For bosons, we equip V ∗ with the symplectic form Ωab

and V with the dual structure ωab satisfying Ωacωcb =
δab. For fermions, we choose a positive metric Gab on V
instead, which comes with the dual metric gab satisfying
Gacgcb = δab. In both cases, our choice provides a natu-
ral isomorphism between V and V ∗, i.e., we can identify
the vector va ∈ V either with the dual vector wa = ωabv

b

for bosons or wa = gabv
b for fermions.

3. Algebra of classical observables

General observables form an associative algebraA with
identity that is generated by V ∗. For bosons, we re-
quire that this algebra is symmetric (commutative) lead-
ing to the unique symmetric algebra Sym(V ∗).2 For
fermions, we require that the algebra is antisymmetric
(anti-commutative) leading to the unique Grassmann al-
gebra Grass(V ∗). While the bosonic algebra is infinite
dimensional, as we can take arbitrary powers of linear
observables, we have that the fermionic algebra is finite
dimensional, dim Grass(V ∗) = 2N due to anti-symmetry.

A general classical observable can be written as a power
series of the form

f(ξ) = f0 + (f1)aξ
a + (f2)abξ

aξb + · · · , (3)

where for bosons only the completely symmetric part and
for fermions only the completely antisymmetric part of
(fn)a1...an will matter, as powers of ξa are symmetric or
anti-symmetric, respectively, in the algebra.

The background structures Ω and G equip the algebra
of observables with the additional structure of a Poisson
bracket. This operation {·, ·}± : A×A → A satisfies

{f, g}− = (∂af)(∂bg)Ωab (bosons) , (4)

{f, g}+ = (∂af)(∂bg)Gab (fermions) (5)

with ∂a = ∂
∂ξa . Here, {·, ·}− are the regular Poisson

brackets known from classical mechanics, while {·, ·}+
are their analogue for fermions.

2 Technically, we then complete this algebra to allow for infinite
power series leading to the space of smooth phase space func-
tions that physicists usually use to describe observables. Such
considerations are not necessary for fermions, where the Grass-
mann algebra stays finite dimensional for finitely many degrees
of freedom.
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Jab = −Gacωcb
(compatibility)

Ωab Gab

Jab

Symplectic form:
Antisymmetric
non-degenerate
bilinear form

Metric:
Symmetric
positive-definite
bilinear form

Linear complex structure:
Squares to minus identity: J2 = −1

Inverse ωab with
Ωacωcb = δab

Inverse gab with
Gacgcb = δab

FIG. 1. Triangle of Kähler structures. This sketch was repro-
duced from [24] and illustrates the triangle of Kähler struc-
tures, consisting of a symplectic form Ω, a positive definite
metric G and a linear complex structure J . We also define
the inverse symplectic form ω and the inverse metric g.

B. Kähler structures

We will now review the underlying mathematical struc-
tures that provide a unified description of bosonic and
fermionic Gaussian states. It is based on the notion of
Kähler structures and in particular on a so-called linear
complex structure. These structures are well-studied in
the context of Kähler manifolds, but for our purposes it
suffices to study them on a single linear space, namely
the classical phase space V of the bosonic or fermionic
theory. Gaussian states were, to our knowledge, first
parametrized by linear complex structures in the con-
text of quantum fields in curved spacetime [4, 10]. Here,
linear complex structures naturally arise to distinguish
unitarily inequivalent representations of the observable
algebra. The role of linear complex structures has also
been recognized in the mathematical physics literature
on quantization [9] and to some extent in the field of
quantum information [27].

Definition 2. A real vector space is called Kähler space
if it is equipped with the following three structures

• Metric3 Gab, which is symmetric and positive-
definite with inverse gab, such that Gacgcb = δab,

• Symplectic form Ωab, which is antisymmetric
and non-degenerate4 with inverse ωab, such that

3 Here, “metric” refers to a metric tensor, i.e., an inner product
on a vector space. It should not be confused with the notion of
metric spaces in analysis and topology.

4 A bilinear form bab is called non-degenerate, if it is invertible.
For this, we can check det(b) 6= 0 in any basis of our choice.

Ωacωcb = δab,

• Complex structure Jab, which satisfies
Jac J

c
b = −δab,

such that they are related via the compatibility equations

Jab = −Gacωcb ⇔ Jab = Ωacgcb . (6)

We refer to (G,Ω, J) as Kähler structures.

Note that (6) together with the requirements on met-
ric, symplectic form and complex structure also implies

JacΩ
cd(Jᵀ)d

b = Ωab and JacG
cd(Jᵀ)d

b = Gab , (7)

which is often required separately. In practice, it is there-
fore sufficient to choose any two out of the three Kähler
structures, solve equation (6) for the third and then re-
quire that this third Kähler structure satisfies the respec-
tive conditions.

1. Groups and algebras

Each structure defines a subgroup of the real general
linear group GL(2N,R) of invertible linear maps Ma

b

on V that preserves this specific structure. We have the
orthogonal, the symplectic and the general linear groups
given by

O(2N) =
{
M ∈ GL(2N,R)

∣∣MGMᵀ = G
}
,

Sp(2N,R) =
{
M ∈ GL(2N,R)

∣∣MΩMᵀ = Ω
}
,

GL(N,C) =
{
M ∈ GL(2N,R)

∣∣MJ = JM
}
,

(8)

respectively, where (Mᵀ)d
b = M b

d and (MGMᵀ)ab =
Ma

cG
cd (Mᵀ)d

b as explained in appendix A 1. Note that
each subgroup depends on the respective Kähler struc-
ture, i.e., G, Ω and J , respectively. Provided that two
structures are compatible, the respective groups will in-
tersect in a new subgroup isomorphic to U(N). We re-
call that compatibility between two Kähler structures is
equivalent to requiring that the third structure defined
via equation (6) satisfies the respective properties. Con-
sequently, the subgroup associated to the third structure
will necessarily intersect with the other structures exactly
where those structures already overlap. This is known
as the 2-out-of-3 property, because any two compatible
Kähler structures already define the third. We visualize
this in figure 2.

We can also represent the Lie algebras as linear maps
on the classical phase space. They are the orthogonal,
the symplectic and the general linear algebra given by

so(2N) = {K ∈ gl(2N,R)
∣∣KG+GKᵀ = 0} , (9)

sp(2N) = {K ∈ gl(2N,R)
∣∣KΩ + ΩKᵀ = 0} , (10)

gl(N,C) = {K ∈ gl(2N,R)
∣∣KJ = JK} , (11)

respectively, where we used that the Lie algebra of O(2N)
is the same as for SO(2N). There is an important isomor-
phism that identifies the symplectic and the orthogonal



5

Sp(2N
,R

) SO
(2
N
,R

)
O

(2
N
,R

)
O
− (2
N
,R

)

GL(N,C)

U(N)

FIG. 2. Illustration of 2-out-of-3 property. We show how the
three groups O(2N,R), Sp(2N,R) and GL(N,C) intersect to
form the unitary group U(N). In particular, we see that in-
tersecting all three groups is equivalent to intersecting any
two out of the three groups. Moreover, we see that only the
component SO(2N,R) ⊂ O(2N,R) connected to the identity
matters, while O−(2N,R) ⊂ O(2N,R) is the subset (not sub-
group) of group elements not connected to the identity.

algebra with symmetric and antisymmetric forms on V ,
respectively. More precisely, we can identify the Lie al-
gebra element Ka

b with the bilinear form hab via

Ka
b = Ωachcb ⇔ hab = ωacK

c
b (bosons) ,

Ka
b = Gachcb ⇔ hab = gacK

c
b (fermions) .

(12)

The conditions (9) and (10) imply hab = hba for bosons
(symplectic Lie algebra) and hab = −hba for fermions
(orthogonal Lie algebra).

In the context of bosonic or fermionic Gaussian states,
we are given either a symplectic form Ωab for bosons or a
metricGab for fermions, so that the respective groups and
algebras will play a special role as being there without
defining further structures. We will therefore refer to
them simply as G and g given by

G = Sp(2N,R) , g = sp(2N,R) , (bosons)

G = O(2N,R) , g = so(2N,R) , (fermions)
(13)

The symplectic and orthogonal Lie algebras can be
equipped with the non-degenerate Killing form given by

K(K1,K2) =

{
2(N + 1) Tr(K1K2)

2(N − 1) Tr(K1K2)
, (14)

where we represent algebra elements as linear maps on
the phase space V as introduced in section II A 1. The
Killing form is negative definite for fermions, while for
bosons it has the signature (N(N+1), N2), i.e., N(N+1)
positive and N2 negative directions.

2. 2-out-of-3 property

By choosing the right basis, we can bring all three
structures simultaneously into their standard form. In

fact, bringing two structures into the standard form is
sufficient, because relation (6) ensures that also the third
structure will be in its standard form. Moreover, all
transformations that preserve two of the three struc-
tures will actually preserve all three structures. First,
we can always choose an orthonormal basis with respect
to G, such that G ≡ 1. Second, due to (6), J and Ω
will have the same matrix representations and thus J is
represented by an antisymmetric matrix. Third, due to
J2 = −1, we can always apply an orthogonal transfor-
mation to bring J into block diagonal form, such that

G ≡
(

1 0
0 1

)
, Ω ≡

(
0 1

−1 0

)
, J ≡

(
0 1

−1 0

)
. (15)

These standard forms are preserved by the intersection

U(N) = O(2N) ∩ Sp(2N,R) ∩GL(N,C) , (16)

where the RHS satisfies the 2-out-of-3 property, meaning
that the intersection of any two out of the three groups
is sufficient.

If we are given the group G,i.e., Sp(2N,R) for bosons
or O(2N,R) for fermions, it suffices for a group element
M ∈ G to preserve J with MJM−1 = J to lie in the
unitary group U(N), i.e.,

U(N) =
{
M ∈ G

∣∣ [M,J ] = 0
}
. (17)

The same condition can also be used to restrict the Lie
algebra g of the group G to its unitary subalgebra

u(N) =
{
K ∈ g

∣∣ [K,J ] = 0
)
. (18)

We can define u⊥(N) as the orthogonal complement of
u(N) in g with respect to the Killing form K, i.e.,

u⊥(N) =
{
K ∈ g

∣∣K(K, K̃)∀ K̃ ∈ u(N)
}
. (19)

While this definition via the Killing form is rather in-
direct, we can find a much simpler characterization of
u⊥(N) as the following proposition states.

Proposition 1. The orthogonal complement u⊥(N) is

u⊥(N) =
{
K ∈ g

∣∣ {K,J} = 0
}
, (20)

where we use the Killing form K as in (19).

Proof. We first prove that any element K with {K,J} =

0 is in u⊥(N). For this, we note that any K̃ ∈ u(N)

satisfies [K̃, J ] = 0 and thus K̃ = 1
2 (K̃ − JK̃J). We can

therefore compute the Killing form as

K(K, K̃) ∝ TrK(K̃ − JK̃J) . (21)

Clearly, if K anti-commutes with J , we find K(K, K̃) ∝
Tr(KK̃ + JKK̃J) = Tr(KK̃ −KK̃) = 0, where we used
cyclicity of the trace and J2 = −1.
Second, we prove vice versa that for K satisfying
K(K, K̃) = 0 for all K̃ ∈ u(N), we have {J,K} = 0.
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For this, we define K̃ = (K − JKJ), which clearly satis-

fies [K̃, J ] = 0 and thus K̃ ∈ u(N). We can now evaluate

K(K, K̃) ∝ TrK(K − JKJ) =
1

2
Tr(K − JKJ)2

∝ K(K̃, K̃) ,
(22)

which only vanishes if K̃ = 0 implying {K,J} = 0, as
claimed.

3. Relation to complex vector spaces

Every finite-dimensional Kähler space is automatically
a complex Hilbert space and vice versa. For a complex
number z = x + iy with x, y ∈ R, complex scalar multi-
plication � : C× V → V of a vector va ∈ V is

(z � v)a = (x1 + yJ)abv
b , (23)

where we have (i2) � v = J2v = −v, i.e., J plays the
role of multiplication by the imaginary unit on the vector
space. Moreover, we have the inner product

〈u, v〉 = ua(gab − iωab)v
b = u(g − iω)v , (24)

which we can verify to be anti-linear in the first and linear
in the second component, i.e.,

〈z � u, v〉 = u(x+ yJᵀ)(g − iω)v = z∗ 〈u, v〉 ,
〈u, z � v〉 = u(g + iω)(x+ yJ)v = z 〈u, v〉 ,

(25)

where we used Jᵀ(g+iω) = ig+ω and (g+iω)J = ig−ω
following from (6).

Instead of treating V as a N -dimensional complex vec-
tor space, where J represents the imaginary unit i, we
could also complexify V to find the 2N -dimensional com-
plex vector space VC, where we allow complex linear com-
binations of our original phase space vectors and on which
J represents a complex-linear map with eigenvalues ±i.
Consequently, we can decompose this complexified space
VC and its dual into the eigenspaces of J and its adjoint
Jᵀ, such that

VC = V + ⊕ V − and V ∗C = (V ∗)+ ⊕ (V ∗)− , (26)

where V ± and (V ∗)± refers to the right and left
eigenspaces of J with eigenvalue ±i, respectively. We
can define the respective projectors

P± =
1

2
(1∓ iJ) , (27)

which project onto V ±. When applied to the real sub-
space V , P± actually provides an isomorphism between
V and V ± as 2N -dimensional real vector spaces. Ap-
plying complex conjugation (of VC) to an element of V +

maps it to a respective element in V − and vice versa,
which is the same as identifying V + and V − via V
through P±. All of these structures naturally appear

when constructing so-called creation and annihilation op-
erators in the quantum theory, as will be discussed in
Sec. II C.

In the case of an infinite dimensional vector space V ,
we can use the same construction to get a complex vec-
tor space with inner product, but typically we will need
to complete the space using the induced norm to get a
Hilbert space. Different Kähler structures induce poten-
tially inequivalent norms leading to different completions,
which is related to unitarily inequivalent representations
of the algebra of observables. This is discussed in more
detail in section II C 7 on field theories.

A linear map K on V is complex-linear if it commutes
with J , i.e., [K,J ] = 0 and it is complex anti-linear if
it anti-commutes with J , i.e., {K,J} = 0. We can de-
compose any linear map K uniquely into its linear and
anti-linear parts K± given by

K± =
1

2
(K ± JKJ) with K = K+ +K− , (28)

such that {K+, J} = 0 and [K−, J ] = 0. We find

Tr(K−K+) = 1
4Tr(K2 + JK2J +KJKJ − JKJK) = 0 ,

(29)

which is proportional to the Killing form K(K+,K−) on
g, which we defined in (14). Therefore, the decomposi-
tion splits K over u(N) and its orthogonal complement
u⊥(N), which corresponds exactly to this decomposition
into complex linear algebra elements K− forming u(N)
and complex anti-linear algebra elements K+ forming
u⊥(N).

If we choose a basis, in which the Kähler structures
take the standard form (15), we can identify real 2N -
dimensional vectors v with N -dimensional complex vec-
tors ṽ via

v ≡ (v2, v1) ∈ R2N ⇔ ṽ = v1 + iv2 ∈ CN . (30)

In this basis, the inner product defined in (25) is given
by 〈u, v〉 = ũ†ṽ.

For a general linear map K : V → V , we have the
matrix representations

K ≡
(
A B
C D

)
, K± ≡

(
∓A± B±
±B± A±

)
, (31)

where we have A± = 1
2 (A∓D) and B± = 1

2 (B±C). We
can then define the complex N -by-N matrices

K̃± ≡ A± + iB± , (32)

where K̃+ is complex anti-linear and K̃− is complex lin-
ear, as explained previously. We therefore find the follow-
ing matrix representation of complex N -by-N matrices
and N -dimensional complex vectors:

K̃v ≡ K̃+ṽ
∗ + K̃−ṽ , (33)
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i.e., when converting the 2N -dimensional real vector Kv

into an N -dimensional complex vector K̃v under the
above identification, it is the same as acting according

to (33) with K̃± on ṽ and its complex conjugate ṽ∗.
In summary, every 2N -dimensional Kähler space is

equivalent to an N -dimensional complex Hilbert space.
Under this identification, the Kähler structures (G,Ω, J)
correspond to the Hilbert space inner product and mul-
tiplication by i. With this, it also becomes apparent
how our definitions of the groups GL(N,C) and U(N)
from (8) are related to the standard definitions as com-
plex N -by-N matrices. There are several reasons why
we describe Kähler spaces as 2N -dimensional real vec-
tor spaces rather than using the complex formulation.
First, the classical phase space considered for bosonic or
fermionic systems does not start out as a Kähler space,
but as a real vector space, where only one of the required
structures (Ω for bosons, G for fermions) is given. Sec-
ond, we will consider various real linear maps K, which

would need to be decomposed into K̃+ and K̃− in the
complex language. Third, we will later complexify phase
space V and its dual V ∗ leading to 2N -dimensional com-
plex vector spaces VC and V ∗C , which only make sense
when V and V ∗ are treated as real vector spaces.

4. Non-Kähler subspaces

Given a real subspace A ⊂ V of a Kähler space V
equipped with (G,Ω, J), we can restrict the bilinear
forms g and ω onto A. We will denote these restric-
tions by gA and ωA. Due to the fact that g is positive
definite, also the restriction gA is positive definite and
has an inverse GA. Using this, we define the restricted
linear complex structure as JA = −GAωA. At this stage,
we can ask what conditions on A result in (GA,ΩA, JA)
being a Kähler space.

Proposition 2. Given a Kähler space V with structures
(G,Ω, J), a real subspace A ⊂ V with restricted struc-
tures (GA,ΩA, JA = −GAωA) is a Kähler space if and
only if J2

A = −1A.

Proof. We need to check the condition for each structure
and need to ensure that the three structures are related
by (6). The latter is ensured by construction. The re-
striction gA continues to be positive definite and has an
inverse GA. The restriction ωA continues to be antisym-
metric, but may not be non-degenerate. However, if ωA
is non-degenerate, then the linear map JA could not have
full rank. Therefore, J2

A = −1A guarantees not only that
JA satisfies the conditions to be a linear complex struc-
ture, but it also ensures that ωA is non-degenerate, has
an inverse ΩA and thus satisfies the conditions of a sym-
plectic form.

There are several ways how a subspace can fail to be
a Kähler space. For example, any odd dimensional real
subspace will not be a Kähler space. For our purpose, we

will be interested in specific classes of subspaces which
define bosonic and fermionic subsystems.

Definition 3. Given a Kähler space V with structure
(g, ω, J), we refer to a subspace A ∈ V as

• bosonic subsystem if ωA on A is non-degenerate,

• fermionic subsystem if dim(A) is even.

We also define the complementary subsystem B as

B =

{
{v ∈ V | vaωabub = 0∀u ∈ A} (bosons)
{v ∈ V | vagabub = 0∀u ∈ A} (fermions)

, (34)

which are commonly referred to as the symplectic and
orthogonal complement of A in V , respectively. The re-
sulting decomposition V = A ⊕ B induces an equivalent
dual decomposition V ∗ = A∗ ⊕B∗.

In essence, this definition ensures that the restrictions
GA and ΩA are a proper positive definite metric and a
proper symplectic form, respectively. Therefore, bosonic
or fermionic subsystems A fail to be Kähler spaces if and
only if these two structures are incompatible in the sense
of definition 2, i.e., they fail to give rise to proper linear
complex structure JA = GAωA, such that J2

A = −1A.

5. Cartan decomposition

For a Kähler space V , the Cartan decomposition pro-
vides a unique decomposition M = Tu of every group
element M ∈ G into a piece u ∈ U(N) that pre-
serves the Kähler structures and another piece T with
{T, J} = TJ + JT = 0.

We begin by fixing compatible Kähler structures
(G,Ω, J) on V . For every group element M ∈ G, which
is either the symplectic group Sp(2N,R) preserving Ω
or the orthogonal group O(2N,R) preserving G, we find
new Kähler structures

(GM ,ΩM , JM ) := (MGMᵀ,MΩMᵀ,MJM−1) , (35)

of which ΩM = Ω for bosons and GM = G for fermions.
We can multiply M by an element u ∈ U(N), that pre-
serves (G,Ω, J), without changing (GM ,ΩM , JM ), i.e.,

(GMu,ΩMu, JMu) = (GM ,ΩM , JM ) . (36)

It defines an equivalence relation on the group G, namely

M ∼ M̃ ⇔ ∃u ∈ U(N) : M̃ = Mu , (37)

where JM is the same for all M ∈ [M ] within a given
equivalence class.

The Cartan decomposition attempts to fix a unique
representative T ∈ [M ] in the equivalence class of M .
This is always possible for bosons and almost always for
fermions, namely if M ∈ SO(2N,R), i.e., if M is con-
nected to the identity. The basic idea is to search for
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T = eK+ , where K+ ∈ u⊥(N) defined in (19). This en-
sures that K+ anti-commutes with J , so that we find
eK+J = Je−K+ . With this, we can compute

TJT−1 = T 2J = JM ⇒ T 2 = −JMJ , (38)

where we used J−1 = −J . It is useful to define the so-
called relative complex structure

∆ = −JMJ , (39)

which encodes exactly the relative information between
J and JM and is thus independent of the representative
M ∈ [M ]. Based on the above calculation, we would

like to set T =
√

∆, but the question is under which
conditions this square root is well-defined and unique.

Proposition 3. Given Kähler structures (G,Ω, J) and a
group element M ∈ G being either symplectic or orthogo-
nal, the relative complex structure ∆ = −MJM−1J has
the following properties:

• Bosons. All eigenvalues of ∆ are positive and
come in pairs of the form (eρ, e−ρ) with ρ ∈ [0,∞),

such that its square root T =
√

∆ is unique, satis-
fies TJ = JT−1 and has eigenvalues (eρ/2, e−ρ/2).

• Fermions. Eigenvalues either come in quadru-
ples (eiθ, eiθ, e−iθ, e−iθ) with θ ∈ (0, π) or in
pairs (1, 1) or (−1,−1). If −1 is not an eigen-

value, we can define T =
√

∆ uniquely, such
that it satisifes TJ = JT−1 and has eigenvalues
(eiθ/2, eiθ/2, e−iθ/2, e−iθ/2). If the eigenvalue pair
(−1,−1) appears an even number of times, we can
still define an appropriate T , but it will not be
unique. If the pair (−1,−1) appears an odd num-
ber of times, there is no T , such that T 2 = ∆ and
TJ = JT−1 hold at the same time.

Proof. Using J−1 = −J , we find ∆−1 = J∆J−1, which
implies that ∆ and ∆−1 have the same spectrum, i.e., all
eigenvalues appear in pairs (λ, λ−1).
Bosons. For bosons, we can use MΩMᵀ = Ω from (8)
and J = −Gω from (6) to show that ∆ = MGMᵀg.
The matrix representations of MGMᵀ and g are both
symmetric and positive-definite. Consequently, ∆ is di-
agonalizable with positive eigenvalues. Therefore, the
spectrum of ∆ must consist of pairs (eρ, e−ρ), such that

T =
√

∆ with eigenvalues (eρ/2, e−ρ/2) is well-defined
and unique. We can therefore choose a basis, where
(G,Ω, J) decompose into 2-by-2 blocks in the standard
form of (15), such that ∆ ≡ ⊕i∆(i) and T ≡ ⊕iT (i) are
given by

∆(i) =

(
eρi 0
0 e−ρi

)
, T (i) =

(
eρi/2 0

0 e−ρi/2

)
. (40)

It also follows that we have TJ = JT−1.
Fermions. For fermions, we can use MGMᵀ = G from
and J = Ωg from (6) to show that ∆ = MΩMᵀω. The

matrix representations of MΩMᵀ and ω are both anti-
symmetric and non-degenerate, so the spectrum of ∆ has
the same properties as the product of two anti-symmetric
matrices. As proven in [28], such products satisfy the
Stenzel condition, which ensures that every eigenvalue
appears an even number of times. Moreover, we have
∆ ∈ O(2N, ), whose group elements are known to be di-
agonalizable with eigenvalues of modulus 1. Therefore,
the eigenvalues of ∆ split into quadruples of the form
(eiθ, eiθ, e−iθ, e−iθ) and possible pairs of the form (1, 1)
and (−1,−1). Similar to the bosonic, we can decompose
(G,Ω, J) into 4-by-4 and some 2-by-2 blocks of the stan-
dard form (15), such that ∆ = ⊕i∆(i) and T = ⊕iT (i).
The respective 4-by-4 blocks then take the form

∆(i) ≡

 cos θi sin θi 0 0
− sin θi cos θi 0 0

0 0 cos θi − sin θi
0 0 sin θi cos θi

 , (41)

whose eigenvalues are (eiθi , eiθi , e−iθi , e−iθi), such that

T (i) ≡


cos θi2 sin θi

2 0 0

− sin θi
2 cos θi2 0 0

0 0 cos θi2 − sin θi
2

0 0 sin θi
2 cos θi2

 (42)

and we have TJ = JT−1. Consequently, T is unique if all
θi ∈ [0, π). For θi = π associated to a (−1,−1,−1,−1)
eigenvalue quadruple, we have ∆(i) ≡ −1, for which there
is no unique square root T (i), but a whole family

T (i) ≡

 0 cosφ 0 sinφ
− cosφ 0 − sinφ 0

0 sinφ 0 − cosφ
− sinφ 0 cosφ 0

 (43)

parametrized by an angle φ ∈ [0, π]. If there is a re-
maining eigenvalue pair (−1,−1) that cannot be paired
up with another one, we find that the candidates for T (i)

satisfying (T (i))2 ≡ −12 are given by

T (i) ≡
(

a b

− 1+a2

b −a

)
, (44)

of which none satisfies T (i)J (i)T (i) = J (i). Therefore,
such T does not exist. A single eigenvalue block (−1,−1)
in ∆ can be created by the group element

M (i) ≡
(

1 0
0 −1

)
⇒ ∆(i) ≡ −MJM−1J ≡ −12 , (45)

which lies in the part of O(2,R) that is not connected
to the identity with detM (i) = −1. If we have an odd
number of such blocks, the resulting matrix M will also
have detM = −1 and thus lies in the part O−(2N,R)
not connected to the identity. We therefore see that
T =

√
∆ with TJ = JT−1 does not exist if and only

if M ∈ O−(2N,R), in which case ∆ has an odd number
of eigenvalue pairs (−1,−1).
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TABLE I. Classical theory and Kähler structures. This table summarizes and compares our methods to describe bosonic and
fermionic Gaussian states using Kähler structures covered in section II.

structure bosons fermions

classical phase space ξa ∈ V ' R2N

dual phase space wa ∈ V ∗ ' R2N

defining structure symplectic form Ωab positive definite metric Gab

dual structure ωab with Ωacωcb = δab gab with Gacgcb = δab

Poisson bracket {fa, gb}− = fagb Ωab {fa, gb}+ = fagbG
ab

classical algebra Symmetric algebra Sym(V ∗) generated by V ∗ Grassmann algebra Grass(V ∗) generated by V ∗

Kähler structures (G,Ω, J) with J2 = −1 and J = −Gω = Ωg

Complex multiplication (z � v) = (x 1 + y J)v for z = x+ iy

Complex inner product 〈u, v〉 = ua(gab − iωab)v
b

structure group G Sp(2N,R) = {M ∈ GL(2N,R)|MΩMᵀ = Ω} O(2N,R) = {M ∈ GL(2N,R)|MGMᵀ = G}

structure algebra g sp(2N,R) = {K ∈ gl(2N,R)|KΩ + ΩKᵀ = 0} so(2N,R) = {K ∈ gl(2N,R)|KG+GKᵀ = 0}

dimension N(2N + 1) N(2N − 1)

intersecting group U(N) = Sp(2N,R) ∩O(2N,R) = {M ∈ G|[M,J ] = 0}

intersecting algebra u(N) = sp(2N,R) ∩ so(2N,R) = {M ∈ g|[K, J ] = 0}

dimension N2

orthogonal complement u⊥(N) = {K ∈ g|{K, J} = 0}

algebra decomposition g = u(N)⊕ u⊥(N)

element decomposition K± = 1
2

(K ± JKJ) with K+ ∈ u⊥(N) and K− ∈ u(N)

dimension of u⊥ N(N + 1) N(N − 1)

Subsystems A ⊂ V ωA non-degenerate dim(A) even

Cartan decomposition M = Tu T =
√

∆ with u = MT−1

relative complex structure ∆ ∆ = −JMJ for JM = MJM−1

spectrum of ∆ (eρi , e−ρi ) (eϑi , eϑi , e−ϑi , e−ϑi ), (1, 1) or (−1,−1)

Space of J Mb =
{
J ∈ Sp(2N,R)

∣∣ J2 = −1, JΩ > 0
}

Mf =
{
J ∈ O(2N,R)

∣∣ J2 = −1
}

Symmetric space type DIII: Mb ' Sp(2N,R)/U(N) type CI: Mf ' O(2N,R)/U(N)

Manifold dimension N(N + 1) N(N − 1)

quantization procedure Sym(V ∗) −→ Weyl(V ∗,Ω) Grass(V ∗) −→ Cliff(V ∗, G)

linear observables ξ̂a
q,p
≡ (q1, · · · , qN , p1, · · · , pN )

a,a†
≡ (â1, . . . , âN , â

†
1, . . . , â

†
N ) ∈ V ' R2N

algebra representation K̂ − i
2
ωacKc

bξ̂
aξ̂b 1

2
gacKc

bξ̂
aξ̂b

group representation U(M, z) U†(M, z)ξ̂aU(M, z) = Ma
bξ̂
b + za

total number operator N̂J = 1
2

(gab − iωab)ξ̂
aξ̂b

unitary equivalence 〈J̃ |N̂J |J̃〉 = 1
4

(gab − iωab)(G̃
ab + i Ω̃ab) <∞

of F(G,Ω,J) and F(G̃,Ω̃,J̃) 〈J̃ |N̂J |J̃〉 = − 1
4

tr(1−∆) 〈J̃ |N̂J |J̃〉 = 1
4

tr(1−∆)

This allows us to define the Cartan decomposition of
most group elements M ∈ G.

Definition 4. Given a Kähler space V with structures
(G,Ω, J) and a group element M connected to the iden-

tity (i.e., M ∈ SO(2N,R) for fermions), we define the
Cartan decomposition as

M = Tu with u ∈ U(N) and TJT = J . (46)

This decomposition is unique for bosons and almost



10

unique for fermions, as discussed in proposition 3. It
further follows that T can always be written as T =
eK+ with K+ ∈ u⊥(N). In summary, the Cartan
decomposition M = Tu is unique for all group ele-
ments M ∈ Sp(2N,R) and almost all group elements
M ∈ SO(2N,R). Only in the special case, where ∆ =
−MJM−1J has eigenvalue quadruples (−1,−1,−1,−1),
the square root is not unique. Finally, the Cartan de-
composition does not exist if ∆ = −MJM−1J has an
odd number of eigenvalue pairs (−1,−1).

6. Symmetric spaces

We will see in section III A 1 that the manifolds of pure
bosonic or fermionic Gaussian states are isomorphic to
the inequivalent ways a bosonic or fermionic phase space
can be turned into a Kähler space. In this section, we will
construct the respective manifolds in purely geometric
terms without making an explicit reference to Gaussian
states or Hilbert spaces and show that they are so-called
symmetric spaces.

Given a symplectic form Ω for bosons or a positive
definite metricG for fermions, we define the submanifolds

Mb =
{
J ∈ Sp(2N,R)

∣∣ J2 = −1, JΩ > 0
}
, (47)

Mf =
{
J ∈ O(2N,R)

∣∣ J2 = −1
}

(48)

of G. This definition ensures that for every J ∈ M, we
have a triple of compatible Kähler structures (G,Ω, J),
where Ω for bosons or G for fermions is fixed a priori.
We will now show that these manifolds are isomorphic to
the quotient G/U(N) and satisfy the conditions of what
is known in mathematics as symmetric spaces.

Proposition 4. Given a single element J0 ∈M, we can
generate the full manifold M as

M =
{
MJ0M

−1
∣∣M ∈ G} . (49)

For every element J ∈ M, there exists a whole equiva-
lence class of group elements {M ∈ G | J = MJ0M

−1}
that map J0 to J . Therefore, the manifold M is isomor-
phic to the G/U(N) with

U(N) = {u ∈ G |uJ0u
−1 = J0} . (50)

Proof. Given J0, let us show that for every J ∈ M,
there exists a group element M with J = MJ0M

−1.
We define ∆ = −JJ0 and use the same arguments as
in proposition 3 to show that there exists a respective
T =

√
∆, such that J = TJ0T

−1 and we can just choose
M = T . Only if ∆ has an odd number of eigenvalue pairs
(−1,−1), we construct M from blocks just like we would
construct T , but in the last block associated to (−1,−1),
we choose M (i) as in (45), which does the job.
Having shown that for any J ∈M, there exists an M ∈ G
with J = MJ0M

−1, let us ask how many there are.
Given two M,M̃ with J = MJ0M

−1 = M̃J0M̃
−1, this

relation implies that u := M̃−1M satisfies uJ0u
−1 = J0

and thus M ∼ M̃ in the sense of (37). This also shows
that the set M is isomorphic to G/∼= G/U(N).

In mathematics, the quotients M ' G/U(N) are
known as symmetric spaces of type DIII (bosons: Mb)
and type5 CI (fermions: Mf ). The fact that they are
symmetric spaces follows from the following proposition.

Proposition 5. The manifold of Gaussian states is a
symmetric space M = G/U(N).

Proof. A quotient manifold G/H constructed from a sub-
group H ⊂ G is a symmetric space if and only if we can
decompose the Lie algebra as g = h⊕ h⊥, such that

[h, h] ⊂ h , [h, h⊥] ⊂ h⊥ , [h⊥, h⊥] ⊂ h . (51)

In the case of Gaussian states, we have h = u(N) and
h⊥ = u⊥(N) as defined in (19). This follows directly
from the defining conditions [K,J ] = 0 for K ∈ u(N)
and {K,J} = 0 for K ∈ u⊥(N).

In summary, we considered a bosonic or fermionic
phase space, i.e., the vector space V with either a sym-
plectic form Ω or a metric G, and asked: How many in-
equivalent ways are there to turn this vector space (with
given Ω or G) into a Kähler space with compatible struc-
tures (G,Ω, J)? The answer turned out to be the man-
ifolds Mb/f which could either be embedded into G or
written as quotient G/U(N).

C. Quantum theory

We have seen that the classical bosonic and fermionic
phase space is already equipped with one of the three
structures that form a Kähler space, namely a symplectic
form or a positive definite metric, respectively. We will
use these structures to construct the quantum theory in
two steps. First, we deform the classical algebra of ob-
servables to obtain a Weyl or Clifford algebra, promoting
Poisson brackets to commutators and anti-commutators.
Second, we build a representation of these algebras as
Hermitian operators acting on a Hilbert space, defined
in terms of Kähler structures.

1. Abstract algebra of observables

Using the ingredients introduced in the previous sec-
tion, in particular the algebra of classical observables and
the Poisson bracket, we can construct the abstract alge-
bra of quantum observables. This is the first step of the
quantization procedure, as at this point we have not yet

5 Note that a symmetric space CI is SO(2N)/U(N), so Mf tech-
nically consists of two copies of CI.
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Real basis Complex basis

Bosons Quadratures (q̂j , p̂k)
Also: (x̂j , p̂k)

CCR operators (b̂j , b̂
†
k)

Also: (âj , â
†
k)

Fermions Majorana modes m̂a

Also: γa, ca, (cj , c̃k)
CAR operators (f̂j , f̂

†
k)

Also: (ĉj , ĉ
†
k)

Unified ξ̂a
q,p
≡ (q̂j , p̂k) ξ̂a

a,a†
≡ (âj , â

†
k)

TABLE II. Overview of notations for operator bases. When
treating bosonic or fermionic systems, there are two types of
standard bases, namely the real one (bosonic quadrature op-
erators, fermionic Majorana operators) and the complex one
(creation/annihilation operators). In our unified notation, we

use ξ̂ independent of any basis, but will present many exam-

ples in both the real basis (indicated by
q,p
≡) and the complex

basis (indicated by
a,a†
≡).

chosen a representation of algebra elements as operators
acting on some Hilbert space. We promote the Pois-
son brackets to canonical commutation relations (CCR)
for bosons and to canonical anticommutation relations
(CAR) for fermions, i.e.,

[ξ̂a, ξ̂b] = i Ωab 1 , (bosons)

{ξ̂a, ξ̂b} = Gab 1 , (fermions)
(52)

where 1 is the identity element in the algebra and we
adopt units ~ = 1. The commutator and the anticom-

mutator are defined as usual: [ξ̂a, ξ̂b] = ξ̂aξ̂b − ξ̂bξ̂a and

{ξ̂a, ξ̂b} = ξ̂aξ̂b+ ξ̂bξ̂a. This turns the symmetric algebra
of bosonic observables into the Weyl algebra Weyl(V ∗,Ω)
and the Grassmann algebra of fermionic observables into
the Clifford algebra Cliff(V ∗, G):

Sym(V ∗) −→ Weyl(V ∗,Ω) , (bosons)

Grass(V ∗) −→ Cliff(V ∗, G) . (fermions)
(53)

Throughout this manuscript, we will consistently
present examples with respect to the two standard bases

ξ̂a
q,p≡ (q̂1, · · · , q̂N , p̂1, · · · , p̂N ) , (54)
a,a†≡ (â1, · · · , âN , â†1, · · · , â

†
N ) . (55)

The first basis consists of Hermitian operators that are
typically referred to as quadrature operators (bosons)
and Majorana operators (fermions), while the second ba-
sis consists of bosonic or fermionic creation and annihila-
tion operators, as summarized in table II. The two bases
are characterized by the property that the symplectic
form (for bosons) and the metric (for fermions) takes the
following real standard forms

Ωab
q,p≡
(

0 1

−1 0

)
a,a†≡
(

0 −i1
i1 0

)
, (bosons)

Gab
q,p≡
(
1 0
0 1

)
a,a†≡
(

0 1

1 0

)
, (fermions)

(56)

where
q,p≡ and

a,a†≡ indicate that the RHS corresponds to the
matrix representation with respect to one of the two stan-
dard bases (55) or (54). Note that these standard bases
are only determined up to an overall group transforma-
tion in G that will preserve the respective structures.

2. Hilbert space and Fock basis

A Hilbert space representation of the algebra of observ-
ables is obtained via the Fock basis construction. Con-
sider N dual vectors via ∈ V ∗C , (i = 1, . . . , N) and define
the associated annihilation and creation operators

âi = via ξ̂
a , â†i = v∗ia ξ̂

a . (57)

We impose canonical commutation and anticommutation
relations for bosonic and for fermionic operators:

[ âi, âj ] = 0 , [ âi, â
†
j ] = δij 1 , (bosons)

{âi, âj} = 0 , {âi, â†j} = δij 1 . (fermions)
(58)

Due to (52), the dual vectors via satisfy the conditions

Ωab viavjb = 0 , Ωab v∗iavjb = i δij , (bosons)

Gab viavjb = 0 , Gab v∗iavjb = δij . (fermions)
(59)

We can then define a state |0, . . . , 0; v〉 as the vacuum
with respect to v annihilated by âi,

âi |0, . . . , 0; v〉 = 0 i = 1, . . . , N. (60)

A unitary representation is constructed by defining the
orthonormal Fock basis given by{

|n1 . . . nN ; v〉
∣∣ni ∈ N

}
, (bosons){

|n1 . . . nN ; v〉
∣∣ni = 0, 1

}
, (fermions)

(61)

such that the action of the operators âi and â†j onto this
basis satisfies

âi |. . . ni . . . ; v〉 =
√
ni |. . . ni−1 . . . ; v〉 ,

â†i |. . . ni . . . ; v〉 =
√
ni+1 |. . . ni+1 . . . ; v〉 .

(62)

Basis vectors can be obtained from the vacuum state
|0, · · · , 0; v〉 via

|n1, . . . , nN ; v〉 =

N∏
i=1

(
(â†i )

ni

√
ni!

)
|0, · · · , 0; v〉 , (63)

where we have ni ∈ N for bosons and ni ∈ {0, 1} for
fermions. We denote H the Hilbert space of the system.

3. Algebra representation

Elements of the symplectic algebra sp(2N,R) and of
the orthogonal algebra so(2N) can be represented as
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quadratic operators on the Hilbert space H. We can rep-

resent a Lie algebra element K as an operator K̂ via the
identification

Ka
b ⇔ K̂ =

{
− i

2ωacK
c
bξ̂
aξ̂b (bosons)

1
2gacK

c
bξ̂
aξ̂b (fermions)

, (64)

Using the canonical commutation or anticommutation re-
lations, one can verify that this is indeed a Lie algebra
representation satisfying

[K̂1, K̂2] = [K1,K2 ]̂

=

{
− i

2ωac[K1,K2]cbξ̂
aξ̂b (bosons)

1
2gac[K1,K2]cbξ̂

aξ̂b (fermions)
.

(65)

Next, we will see that exponentiating operators K̂ gives
rise to a projective representation of the respective Lie
group.

4. Projective group representations

The bosonic and fermionic Fock spaces come naturally
equipped with projective representations of the sym-
plectic group Sp(2N,R) and of the orthogonal group
O(2N). For bosons, we also have the (Abelian) group
of phase space displacements given by V with its vec-
tor addition as group operation, which leads to the ex-
tension of Sp(2N,R) as inhomogeneous symplectic group
ISp(2N,R).

The projective representation S : G → Lin(H) of the
squeezing group G can be constructed by exponentiating

quadratic operators K̂. Given a Lie algebra element K ∈
g, we represent the group element M = eK as

S(eK) = ±eK̂ , (66)

which is only defined up to an overall sign. This definition
can be consistently extended to all M ∈ G, i.e., also those
which cannot be written as eK , by multiplication such
that

S(M1)S(M2) = ±S(M1M2) (67)

holds, as proven in [26, 29]. Using the Baker-Campbell-
Hausdorff formula, we can verify the relation

S†(M)ξ̂aS(M) = Ma
bξ̂
b . (68)

For fermions6, we also need to include the representation
of a group element with det(M) = −1, which defines the

6 While the group G = Sp(2N,R) for bosons is connected and com-
pletely generated by (66), the group G = O(2N,R) for fermions
consists of two disconnected components, of which only the sub-
set SO(2N,R) connected to the identity is generated by (66).
By including the operators (69), we can reach group elements
Ma

b = vcGcavb − δab with det(M) = −1. To give some intu-
ition, let us note that M ≡ diag(1,−1, · · · ,−1) with respect to
an orthonormal basis, in which v ≡ (

√
2, 0, · · · , 0).

operator

S(Mw) = waξ̂
a , (fermions) (69)

where (Mw)ab = wcG
cawb− δab and wa ∈ V a is assumed

to satisfy waG
abwb = 2.

Furthermore, the set of all operators ±S(M) can be
understood as a faithful representation of the double
cover of G, called the metaplectic group Mp(2N,R) for
bosons and the pin group Pin(2N) for fermions, where
Pin(2N) relates to Spin(2N) just as O(2N) to SO(2N).

The group of phase space translations V is represented
as displacement operators D : V → Lin(H) satisfying

D(z) =

{
e−izaωabξ̂

b

(bosons)

e−z
agabξ̂

b

(fermions)
, (70)

which satisfies the relations

D(z1)D(z2) =

{
e−

i
2 z
a
1ωabz

b
2 D(z1 + z2) (bosons)

e−
1
2 z
a
1 gabz

b
2 D(z1 + z2) (fermions)

,

(71)

and thus forms a projective representation. Note that for
fermions, the phase space vector za is Grassmann valued
and thus not physical. Consequently, we will be mostly
interested in the bosonic case, but fermionic displace-
ments can still be used as a calculational tool, as we will
see.

We can extend the group G to its inhomogeneous ver-
sion IG, whose elements are pairs (M, z) with M ∈ G and
za ∈ V with the group action

(M1, z1) · (M2, z2) = (M1 ·M2, z1 +M1z2) . (72)

We can define U : IG → Lin(H) by

U(M, z) = D(z)S(M) , (73)

which satisfies the relations

U(M1, z1)U(M2, z2) ' U(M1 ·M2, z1 +M1z2) (74)

of a projective representation. Again, we will be mostly
interested in the bosonic case, where IG = ISp(2N,R)
is the inhomogeneous symplectic group. We can use the
Baker-Campbell-Hausdorff formula to show that the so
constructed projective representation satisfies

U†(M, z)ξ̂aU(M, z) = Ma
b ξ̂
b + za . (75)

The following proposition shows the importance of this
relation.

Proposition 6. Condition (75) determines the unitary
operator U uniquely up to its complex phase.

Proof. First, let us note that any operator O : H → H
can be formally written as a function O = f(ξ̂a) sat-
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isfying7 U†f(ξ̂a)U = f(U†ξ̂aU). Second, if we take
O = |ψ〉 〈ψ|, our previous observation shows that

U† |ψ〉 〈ψ| U = Ũ† |ψ〉 〈ψ| Ũ for all |ψ〉 ∈ H implies

U |ψ〉 = eiϕŨ |ψ〉 and thus U†ξ̂aU = Ũ†ξ̂aŨ . Third, we

observe that Ũ = eiϕU satisfies (75), which is thus both
necessary and sufficient to characterize U up to a complex
phase.

5. Mode functions

Mode functions uai are defined by the expansion8

ξ̂a = za +

N∑
i=1

(
uai âi + u∗ai â†i

)
, (76)

with za = 0 for fermions. The requirement that ξ̂a and
âi satisfy the defining relations for bosons (CCR) and for
fermions (CAR), results in the following conditions:

ωab u
a
i u
b
j = 0 , ωab u

∗a
i u

b
j = i δij , (bosons)

gab u
a
i u
b
j = 0 , gab u

∗a
i u

b
j = δij . (fermions)

(77)

In section II C 2, we introduced vectors via ∈ V ∗C to define
annihilation operators (57). We have

âi = via (ξ̂a − za) (78)

with via ∈ V ∗C . The two dual basis via and uai satisfy the
relations

via u
∗a
j = 0 , via u

a
j = δij , (79)

which allow us to express one basis in terms of the other
using the canonical structures Ωab for bosons and Gab for
fermions,

uai = i Ωabv∗ib , (bosons)

uai = Gabv∗ib . (fermions)
(80)

Given the Fock vacuum |v〉 annihilated by âi, we can
compute the correlation functions in terms of mode func-
tions

〈v|ξ̂aξ̂b|v〉 =

N∑
i=1

uai u
∗b
i =

1

2
(Gab + i Ωab) (81)

7 For a bosonic or fermionic system with annihilation operators
âi and associated vacuum |0〉, we have the formal function

|0〉 〈0| = f(ξ̂a) = limβ→∞ e−β
∑
i â
†
i â( e

β−1
eβ

)N from which we
can construct any other linear operator by applying creation op-
erators from the left and annihilation operators from the right.
Clearly, such functions satisfy U†f(ξ̂a)U = f(U†ξ̂aU).

8 We use the conventions based on [4], while other authors switch
the role of u and u∗.

where the metric Gab is

Gab =

N∑
i=1

(
uai u

∗b
i + u∗ai u

b
i

)
(82)

and the symplectic structure Ωab is

Ωab = −i

N∑
i=1

(
uai u

∗b
i − u∗ai ubi

)
. (83)

We can also express the complex structure Jab as

Jab = −i

N∑
i=1

(
uai vib − u∗ai v∗ib

)
. (84)

Together with the expression of the identity,

δab =

N∑
i=1

(
uai vib + u∗ai v

∗
ib

)
, (85)

we find that a phase-space covariant version ξ̂a− of the
annihilation operator âi can be introduced:

ξ̂a− ≡
1

2
(δab + iJab)(ξ̂

b − zb) =
∑
i

uai âi , (86)

ξ̂a+ ≡
1

2
(δab − iJab)(ξ̂

b − zb) =
∑
i

ua∗i â†i . (87)

Therefore we conclude that, up to a phase, the Gaussian
state defined in (113) in terms of the complex structure
J and the Fock vacuum associated to the mode function
u coincide, |v〉 = |J, z〉. A different choice ũai of mode
functions is associated to a different set of creation and
annihilation operators b̂†i , b̂i,

ξ̂a = za +

N∑
i=1

(
ũai b̂i + ũ∗ai b̂†i

)
. (88)

The linear relation between the two sets of operators
can be expressed in terms of Bogoliubov coefficients αij
and βij ,

b̂i =

N∑
j=1

(αij âj + βij â
†
j) (89)

where

αij = −iωab ũ
a
i u
b
j , βij = −iωab ũ

∗a
i u

b
j , (bosons)

αij = gab ũ
a
i u
b
j , βij = gab ũ

∗a
i u

b
j . (fermions)

(90)

These expressions are equivalent to the relation (49) be-
tween two complex structures J and MJM−1.
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6. Total number operator

As discussed in (II B), the linear complex structure J
as linear map J : V → V on the classical phase space
satisfies the conditions

JΩJᵀ = Ω and JΩ = −ΩJᵀ , (bosons) (91)

JGJᵀ = G and JG = −GJᵀ . (fermions) (92)

This implies that J represents both a group and an alge-
bra element, so we can formally write J ∈ G and J ∈ g.
The latter also implies that we can uniquely identify J

with the anti-Hermitian operator Ĵ using (64). If we
multiply by i, we can define

N̂J =
1

2
(gab − iωab)ξ̂

aξ̂b =

{
iĴ − N

2 (bosons)

iĴ + N
2 (fermions)

(93)

which turns out to be a positive-definite Hermitian oper-
ator with integer spectrum and ground state 〈J |N̂J |J〉 =
0. If we choose creation/annihilation operators âi and

number operators n̂i = â†i âi associated to |J〉, we have

N̂J =

N∑
i=1

n̂i , (94)

i.e., we recognize N̂J as the total number operator of
the system, which is in one-to-one correspondence to J .
While the choice of a Gaussian state |J〉 does not fix
the individual creation/annihilation or number operators
due to the allowed U(N) transformations that would mix

them among themselves, the total number operator N̂J
is uniquely defined as the quadratic operator (up to a
constant) with integer spectrum that has |J〉 as ground
state.

7. Unitary equivalence

In the definition of the Fock representation we choose a
basis vai, (57). If we had chosen a different basis ṽ, it will
be related to v by some linear map M that is symplectic
or orthogonal, i.e., satisfies MΩMᵀ = Ω for bosons or
MGMᵀ = G for fermions. We can relate the Fock basis
|{ni}; ṽ〉 with the original one |{ni}; v〉 using the unitary
representation S(M). This leads to the identification

|{ni}; ṽ〉 ∼= S(M) |{ni}; v〉 , (95)

where we still have the choice of a complex phase. We can
verify that this identification preserves all commutation
relations. The vacuum state |J̃〉 = |0, · · · , 0; ṽ〉 can be
identified with the squeezed vacuum

|J̃〉 = eiϕ S(M) |J〉 . (96)

In the case of infinitely many degrees of freedom, N →
∞, the Fock construction of the Hilbert space of states

requires additional care as unitarily inequivalent repre-
sentations arise. The phenomenon has a classical origin
and can be described in terms of Kähler structures.

In quantum field theory, the Fock vacuum of free fields
is often defined in terms of mode functions. Different
Fock vacua are then related by Bogoliubov transforma-
tions [4–6]. We illustrate the relation between the formu-
lation in terms of mode functions and the formulation in
terms of Kähler structures discussed here and used in the
context of quantum fields in curved spacetimes [10–15].

In the finite-dimensional case, defining symplectic
transformations on a bosonic phase space simply requires
the notion of a symplectic structure Ω; similarly, defin-
ing orthogonal transformations on a finite-dimensional
fermionic phase space simply requires the notion of a
metric G. In the infinite-dimensional case however this
is not enough: it is useful to introduce a Kähler struc-
ture (G,Ω, J) already at the classical level. First, we
turn phase space in a real Hilbert space via Cauchy com-
pletion with respect to the metric G. This allows us to
restrict linear observable f(ξ) = waξ

a to the ones with
normalizable wa ∈ V ∗, i.e., Gabwawb < ∞. Second, we
restrict the class of symplectic and orthogonal transfor-
mations. Given a linear map L : V → V , the adjoint with
respect to the metric G is L† = GLᵀg and the Hilbert-
Schmidt norm is ‖L‖2G = tr(LL†). Restricted symplectic
transformations M ∈ SpJ(V ) and restricted orthogonal
transformations M ∈ OJ(V ) are defined as linear trans-
formations in SpJ(V ) and in O(V ) that satisfy the con-
dition9

‖MJ − JM‖2G <∞ , (97)

with respect to the Kähler structure (G,Ω, J). These
restricted transformations play a central role in the Shale
[30] and Shale-Stinespring theorems [31].

In the quantum theory, a Fock space F(G,Ω,J) asso-
ciated to the Kähler structure (G,Ω, J) is constructed
starting from a vacuum given by the Gaussian state |J〉.
The two-point correlation function is

〈J |ξ̂aξ̂b|J〉 =
1

2
(Gab + i Ωab) , (98)

and linear observables waξ̂
a with normalizable wa have

finite dispersion in the state |J〉. Moreover, in the Fock
space F(G,Ω,J) we have a notion of total number operator

N̂J =
1

2
(gab − iωab) ξ̂

aξ̂b . (99)

Given a Gaussian state |J̃〉, we can express the expecta-
tion value of the total number operator in terms of the

9 This expression is equivalent to the condition ‖J − JM‖2G < ∞
with JM = MJM−1 and M bounded, as shown in [7].
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relative complex structure ∆ = −J̃J introduced in (39).
In the case of bosons and of fermions, we find

〈J̃ |N̂J |J̃〉 =
1

4
(gab − iωab)(G̃

ab + i Ω̃ab) (100)

=

{
− 1

4 tr(1−∆) (bosons)

+ 1
4 tr(1−∆) (fermions).

(101)

Two Fock representations F(G,Ω,J) and F(G̃,Ω̃,J̃) are

unitarily equivalent if and only if the expectation value
of the number operator N̂J in the vacuum |J̃〉 is finite
[32],

〈J̃ |N̂J |J̃〉 <∞ . (102)

This condition coincides with the notion of restricted
symplectic transformations and of restricted orthogonal
transformations as we have the equality

〈J̃ |N̂J |J̃〉 =
1

8
‖MJ − JM‖2G , (103)

with J̃ = MJM−1. The condition of unitary equivalence
between Fock space representations (102) can then be
expressed in terms of Bogoliubov coefficients as

〈J̃ |N̂J |J̃〉 =
∑
ij

|βij |2 <∞ . (104)

In the bosonic case we can also consider Gaussian
states with non-vanishing expectation value of linear ob-
servables, |J, z〉. In this case the number operator is

N̂J,z =
1

2
(gab − iωab)(ξ̂

a − za)(ξ̂b − zb) , (105)

and the expectation value on the state |J̃ , z̃〉 is

〈J̃ , z̃|N̂J,z|J̃ , z̃〉 = − 1

4
tr(1−∆) (106)

+
1

2
gab(z

a − z̃a)(zb − z̃b) . (107)

Unitary equivalence of representations then results in the
additional requirement that the shift z−z̃ has finite norm
in the metric Gab.

III. GAUSSIAN STATES

We introduce Gaussian states in a unified formalism
to describe bosons and fermions using Kähler structures.
While the relationship between Kähler structures and
Gaussian states (under the name of quasi-free states) is
well known in the mathematical physics literature [7, 9],
the goal of the following section is to make these tools
available to the broader physics community with par-
ticular emphasis on quantum information (entanglement
theory) and non-equilibrium physics (quantum dynam-
ics).

A. Pure Gaussian states

Having introduced bosonic and fermionic quantum sys-
tems and the mathematical notion of Kähler structures,
we can now introduce a unified formalism to describe
pure bosonic and fermionic Gaussian states in terms
of Kähler structures on the classical phase space. We
will then extend our formalism to also describe mixed
Gaussian states by violating the Kähler condition in
a controlled way. While we characterize bosonic and
fermionic Gaussian states through their Kähler struc-
tures (G,Ω, J), there exists a large zoo of different rep-
resentations ranging from characteristic functions and
quasi-probability distributions to Bogoliubov transfor-
mations and wave functions. A comprehensive dictionary
between different representations and conventions can be
found in [25].

1. Definition

We consider a normalized state vector |ψ〉 ∈ H, for
which we define the one- and two-point functions

za = 〈ψ|ξ̂a|ψ〉 ,
Cab2 = 〈ψ|(ξ̂ − z)a(ξ̂ − z)b|ψ〉 ,

(Requirement: za = 0 for (fermions)).

(108)

While there certainly exist fermionic states with za 6= 0,
we only restrict to those |ψ〉 with za = 0, as we will
later show that there are no physical fermionic Gaussian
states with z 6= 0, i.e., states are either non-Gaussian or
only make sense if one takes z to be Grassmann-valued
in which case the Gaussian state does not live in the
physical Hilbert space.10

We can decompose the two-point function Cab2 as

Cab2 =
1

2
(Gab + iΩab) , (109)

where Gab and Ωab are the symmetric or anti-symmetric
parts, respectively, such that

Gab = Cab2 + Cba2 = 〈ψ|ξ̂aξ̂b + ξ̂bξ̂a|ψ〉 − zazb

iΩab = Cab2 − Cba2 = 〈ψ|ξ̂aξ̂b − ξ̂bξ̂a|ψ〉
(110)

The properties of the Hermitian inner product im-
ply that G is symmetric and positive definite, while Ω

10 One can make sense of za 6= 0 for fermionic Gaussian states, but
it requires to extend Hilbert space by allowing the multiplication
with Grassmann numbers. In this case, fermionic Gaussian states
can have Grassmann valued displacements za. We will consider
Grassmann displacements only as a calculational tool, but our
formalism can be seamlessly extended to also include them for
fermionic Gaussian states and we will comment on this in the
following sections. See [33] for more details.
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must be antisymmetric. Note that this does not imply
that G and Ω are compatible Kähler structures. Further
note, that for bosons Ω is already fixed by the canoni-

cal commutation relations of ξ̂a, while for fermions G is
fixed by the canonical anticommutation relations, such
that our decomposition is compatible with our definition
from (52). We will also see in footnote 11 that fermionic
Gaussian states will require za = 0.

In summary, only one of the two structures will depend
on the state, which we therefore define as the bosonic or
fermionic covariance matrix

Γab =

{
Gab (bosons)
Ωab (fermions)

. (111)

With this in hand, we can now present two equivalent
definitions of Gaussian states:

Definition 5. A normalized state vector |ψ〉 is Gaussian

(a) if Jab = Ωacgcb computed from (109) satisfies

J2 = −1 , (112)

or equivalently,

(b) if |ψ〉 is a solution to the equation

1

2
(δab + iJab)(ξ̂ − z)b |ψ〉 = 0 , (113)

for some za ∈ V and a linear map Jab : V → V ,
which turns out to imply Jab = Ωacgcb.

We denote |ψ〉 by |J, z〉, which is unique up to a complex
phase. Note that za = 0 for fermions.

Proof. In order to prove the equivalence of the two defi-
nitions and za = 0 for fermions, it is useful to introduce

ξ̂a± = 1
2 (δab∓iJab)(ξ̂

b−zb), which satisfy ξ̂a = ξ̂a++ξ̂a−+za

and ξ̂†± = ξ̂∓. To relate (112) and (113), we compute

〈J, z|ξ̂a+ξ̂b−|J, z〉 =
1

4
(1− iJ)acC

cd
2 (1 + iJᵀ)d

b , (114)

whose real and imaginary parts are given by

Re 〈J, z|ξ̂a+ξ̂b−|J, z〉 = G+ JGJᵀ + JΩ− ΩJᵀ ,

Im 〈J, z|ξ̂a+ξ̂b−|J, z〉 = Ω + JΩJᵀ +GJᵀ − JG .
(115)

With this in hand, we can now show both directions:

⇒ The conditions of (a) imply J(G+ iΩ)Jᵀ = G+ iΩ,
JΩ = −ΩJᵀ = −G and GJᵀ = −JG = −Ω, which
together imply (115) to vanish and thus (b).

⇐ The conditions of (b) imply that (115) vanishes,
which we can solve for ΩJᵀ = G + JGJᵀ + JΩ.
Plugging this into Im 〈J, z|ξ̂a+ξ̂b−|J, z〉 = 0 gives

(1 + J2)(Ω +GJᵀ) = 0 . (116)

Clearly, we either have J2 = −1 or Ω = −GJᵀ. In
the latter case, we can simplify the second equation
from (115) to Ω = JΩJᵀ and multiply by Jᵀ to find
G = −J2G, which finally implies J2 = −1, as G is
non-degenerate. We thus conclude J2 = −1.
In a second step, we can now compute

Cab2 =

{
(1 + iJ)acΩ

cd(1− iJᵀ)d
b (bosons)

(1 + iJ)acG
cd(1− iJᵀ)d

b (fermions)

(117)

implying Ω = JΩJᵀ and ΩJᵀ−JΩ = 2G for bosons
and G = JGJᵀ and JG−GJᵀ = 2Ω for fermions.
Together with J2 = −1, this leads in either case to
Ω = JG, which implies (a).

This proves the equivalence.

It is remarkable how (113) together with the canonical

commutation or anticommutation relations of ξ̂a suffices
to prove (a). We already introduced

ξ̂a± =
1

2
(δab ∓ iJab)(ξ̂

b − zb) (118)

as first step in the above proof and in (86), but they turn
out to be rather useful in general calculations. They can
be defined with respect to any pure Gaussian state |J, z〉
and (117) implies the relations11

[ξ̂a±, ξ̂
b
±] = 0 , [ξ̂a−, ξ̂

b
+] = Cab2 , (bosons)

{ξ̂a±, ξ̂b±} = 0 , {ξ̂a−, ξ̂b+} = Cab2 . (fermions)
(119)

Here, ξ̂a± represents the appropriately by za shifted eigen-
vectors of J , i.e., we have

Jabξ̂
b
± = ±iξ̂a± . (120)

Let us give some intuition on what the linear complex

structure J and the respective ξ̂± actually do. As already
discussed around (26), we can decompose the (complex-
ified) classical phase space into the eigenspaces

VC = V + ⊕ V − and V ∗C = (V ∗)+ ⊕ (V ∗)− . (121)

From the perspective of operators, the term P± = 1
2 (1∓

iJ) in (113) is a projector VC → V ±, which projects the

operator-valued vector (ξ̂−z)a onto the space of creation

and annihilation operators ξ̂a±, respectively. Put differ-
ently, the eigenspaces (V ∗)± represent theN -dimensional
complex spaces of creation or annihilation operators.
While za describes the displacement, J encodes precisely

11 Note that (113) and (119) for fermions together imply

ξ̂a+ξ̂
b
+ |J, z〉 = zazb |J, z〉 = −zbza |J, z〉 = ξ̂a−ξ̂

b
− |J, z〉

and thus za = 0, unless za is a Grassmann variable.
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which (complex) linear combinations of observables ξ̂a

form creation and annihilation operators. For a given

state vector |J〉 = |J, 0〉, it is illuminating to express ξ̂a±
in a basis, in which both Ω and G simultaneously take
the standard forms (56), such that12

ξ̂−
q,p≡
(
â1√

2
, . . . , âN√

2
, −iâ1√

2
, . . . , −iâN√

2

)
a,a†≡ (â1, . . . , âN , 0, . . . , 0) ,

ξ̂+
q,p≡
(
â
†
1√
2
, . . . ,

â
†
N√
2
,

iâ
†
1√
2
, . . . ,

iâ
†
N√
2

)
a,a†≡ (0, . . . , 0, â†1, . . . , â

†
N) ,

(122)

where we see explicitly that ξ̂a± is spanned by creation
or annihilation operators, respectively. If we had taken
|J, z〉 instead, each component had been appropriately
displaced by (P±z)

a.
In summary, a normalized pure Gaussian state |J, z〉

is (up to a complex phase) uniquely characterized by its
displacement vector za ∈ V and either its complex struc-
ture J or equivalently its covariance matrix

Γab =

{
−JacΩcb (bosons)
JacG

cb (fermions)
, (123)

where Ω and G are fixed background structures for
bosons or fermions, respectively.

The choice of a Fock space vacuum is equivalent to

selecting a Gaussian state with 〈ξ̂a〉 = 0. In the case of
infinitely many degrees of freedom, two Gaussian states
|J〉 and |J̃〉 give rise to unitarily equivalent Fock space

representations if the Hilbert-Schmidt norm of J − J̃ is
finite.13

Example 1 (Single mode pure Gaussian bosonic states).

We consider a single bosonic mode with ξ̂
q,p≡ (q̂, p̂)

a,a†≡
(â, â†). With respect to the number eigenvectors |n〉, the
most general Gaussian state vector with za = 0 is

|J〉 =
1√

cosh ρ
2

∞∑
n=0

√
(2n)!

2nn!

(
−eiφ tanh ρ

2

)n |2n〉 , (124)

where φ ∈ [0, 2π] and ρ ∈ [0,∞). With respect to above

12 Complex conjugation of the basis ξ̂a satisfies ξ̂†a = Cabξ̂b imply-

ing ξ̂†a± = Cabξ̂b∓. We have the conjugation matrix

C
q,p
≡
(
1 0
0 1

)
a,a†
≡
(

0 1

1 0

)
.

13 Note that the definition of Hilbert-Schmidt norm requires an
inner product on the classical phase space. For fermions, we
can use the one induced by the background structure G, while
for bosons we can equivalently use Gab = JacΩcb induced by J
or G̃ab = J̃acΩcb induced by J̃ . See section II C 7 for further
details.

bases, one finds

G
q,p≡
(

cosh ρ+ cosφ sinh ρ sinφ sinh ρ
sinφ sinh ρ cosh ρ− cosφ sinh ρ

)
,

a,a†≡
(
eiφ sinh ρ cosh ρ

cosh ρ −e−iφ sinh ρ

)
,

(125)

J
q,p≡
(

− sinφ sinh ρ cosφ sinh ρ+ cosh ρ
cosφ sinh ρ− cosh ρ sinφ sinh ρ

)
,

a,a†≡
(
−i cosh ρ ieiφ sinh ρ
−ie−iφ sinh ρ i cosh ρ

)
.

(126)

In summary, Gaussian states of a single bosonic mode
form a two-dimensional plane parametrized by polar co-
ordinates (ρ, φ).

Example 2 (Single and two mode pure Gaussian
fermionic states). We consider a single fermionic mode

with ξ̂
q,p≡ (q̂, p̂)

a,a†≡ (â, â†). There are only two distinct pure
Gaussian states, which are characterized by the state vec-
tors { |J+〉 = |0〉

|J−〉 = |1〉

}
, (127)

whose covariance matrix and complex structures

Ω±
q,p≡
(

0 ±1
∓1 0

)
a,a†≡
(

0 ∓i
±i 0

)
, (128)

J±
q,p≡
(

0 ±1
∓1 0

)
a,a†≡
(
∓i 0
0 ±i

)
. (129)

In summary, there are only two distinct Gaussian
pure states for a single fermionic mode. We consider

also two fermionic modes with ξ̂
q,p≡ (q̂1, q̂2, p̂1, p̂2)

a,a†≡
(â1, â2, â

†
1, â
†
2), where the most general Gaussian state

vectors are{
|J+〉 = cos θ2 |0, 0〉+ eiφ sin θ

2 |1, 1〉
|J−〉 = cos θ2 |1, 0〉+ eiφ sin θ

2 |0, 1〉

}
(130)

with θ ∈ [0, π] and φ ∈ [0, 2π]. Their covariance matrix
and complex structure are

Ω±
q,p≡

 0 ∓ sin θ sinφ ± cos θ ± sin θ cosφ
± sin θ sinφ 0 − sin θ cosφ cos θ
∓ cos θ sin θ cosφ 0 sin θ sinφ

∓ sin θ cosφ − cos θ − sin θ sinφ 0


a,a†≡

 0 ieiφ sin θ −i cos θ 0
−ieiφ sin θ 0 0 −i cos θ

i cos θ 0 0 −ie−iφ sin θ
0 i cos θ ie−iφ sin θ 0

 ,

(131)

J±
q,p≡

 0 ∓ sin θ sinφ ± cos θ ± sin θ cosφ
± sin θ sinφ 0 − sin θ cosφ cos θ
∓ cos θ sin θ cosφ 0 sin θ sinφ

∓ sin θ cosφ − cos θ − sin θ sinφ 0


a,a†≡

(
∓i cos θ iδ∓e

−iφ sin θ 0 iδ±e
iφ sin θ

iδ∓e
iφ sin θ −i cos θ −iδ±e

iφ sin θ 0

0 −iδ±e
−iφ sin θ ±i cos θ −iδ∓e

−iφ sin θ

iδ±e
−iφ sin θ 0 −iδ∓e

iφ sin θ i cos θ

)
(132)
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with δ± = 1±1
2 , i.e., δ+ = 1 and δ− = 0. In summary,

Gaussian states of two fermionic modes form two discon-
nected unit spheres parametrized by angles (θ, φ), where
we further distinguish the Gaussian state vectors of type
|J+〉 and |J−〉. The two sets are distinguished by the par-

ity operator P̂ = exp(iπN̂), as the total number operator

N̂ =
∑
i â
†
i âi is even for |J+〉 and odd for |J−〉

The projective representations U(M, z) of group ele-
ments M ∈ G are called Gaussian transformations, be-
cause they map Gaussian states into Gaussian states, as
we will prove next. They are also known as Bogoliubov
transformations, where they are often written in terms
of creation and annihilation operators. Any two Gaus-
sian states are related by Gaussian transformations, from
which we will uniquely identify a canonical one. This
will also enable us to relate the manifold of pure Gaus-
sian states with symmetric spaces, as introduced in sec-
tion II B 6.

Proposition 7. The unitary transformation U(M, z)
defined section II C 4 applied to a Gaussian state
|J0, z0〉 will map to another Gaussian state |J1, z1〉 =
U(M, z) |J0, z0〉 = |MJ0M

−1,Mz0 + z1〉, i.e., Gaussian
transformations map Gaussian states to Gaussian states.

Proof. Using (75), we compute the 1- and 2-point func-
tions of the resulting state |ψ〉 = U(M, z) |J0, z0〉 as

za = 〈ψ|ξ̂a|ψ〉 = Ma
bz
b
0 + za , (133)

Cab2 = 〈ψ|ξ̂aξ̂b|ψ〉 − zazb = Ma
cC

cd
2 (Mᵀ)d

b . (134)

Decomposing C2 = 1
2 (G + iΩ) and computing J = −Ωg

as in section III A 1 yields

J = −MΩ0M
ᵀ(M−1)ᵀgM−1 = MJ0M

−1 . (135)

From this, it is easy to compute J2 = M(−J2
0 )M−1 =

−1, which proves that the resulting state |ψ〉 ∼= |J, z〉 is
Gaussian and thus implies that U(M, z) maps Gaussian
states onto Gaussian states.

We can now reverse the argument and ask how to
find the Gaussian transformation U(M, z) that trans-
forms a fixed reference state |J0, z0〉 into an arbitrary
Gaussian state |J1, z1〉 of our choice, i.e., |J1, z1〉 ∼=
U(M, z) |J0, z0〉. It is easy to see for the displacement
as z = z1− z0, which is unique. For M ∈M, we find the
requirement

J1 = MJ0M
−1 , (136)

which does not determine M uniquely, as we can recall
from section II B 5. Instead, we find that there is an
equivalence class [M ] ⊂ G of group elements that trans-
form J0 into J . Applying U(M, z) |J0, z0〉 for different
M ∈ [M ] will only differ in its complex phase, so that
the manifold M of pure Gaussian states is given by

M =

{
Mb × V (bosons)

Mf (fermions)
, (137)

where we also include displacements for bosons. The di-
mensions of these manifold can be deduced from the re-
spective symmetric spaces Mf/b and V , i.e.,

dimM =

{
N(N + 1) + 2N (bosons)

N(N − 1) (fermions)
. (138)

We further recall that Mb is diffeomorphic to RN(N+1),
which implies M ' RN(N+3) for bosons. For fermions,
we have M = Mf ' O(2N,R)/U(N), which is a non-
contractible and generally topologically non-trivial man-
ifold consisting of two disconnected components (associ-
ated to the two parity sectors).

Example 3 (Bosonic Gaussian single-mode pure states
revisited). We reconsider Example 1 and choose the ref-
erence state vector |J0〉 with

G0
q,p≡
(

1 0
0 1

)
a,a†≡
(

0 1
1 0

)
, J0

q,p≡
(

0 1
−1 0

)
a,a†≡
(

i 0
0 −i

)
. (139)

A general symplectic transformation G = Sp(2,R) is

M
q,p≡
(

cos τ cosh ρ
2
− sin θ sinh ρ

2
− sin τ cosh ρ

2
+ cos θ sinh ρ

2

sin τ cosh ρ
2

+ cos θ sinh ρ
2

cos τ cosh ρ
2

+ sin θ sinh ρ
2

)
a,a†≡
(

eiτ cosh ρ
2

ieiθ sinh ρ
2

−ie−iθ sinh ρ
2
e−iτ cosh ρ

2

)
,

for which we have |J〉 ∼= S(M) |J0〉 with Γ from (125),
where φ = τ − θ. The stabilizer group of |J0〉 consists of

u
q,p≡
(

cosϕ sinϕ
− sinϕ cosϕ

)
a,a†≡
(
eiϕ 0
0 e−iϕ

)
. (140)

From the relative complex structure ∆ = T 2 = −JJ0, we
compute the generator

K = log T
q,p≡ ρ

2

(
sinφ cosφ
cosφ − sinφ

)
a,a†≡ ρ

2

(
0 ie−iφ

−ieiφ 0

)
, (141)

such that |J〉 ∼= eK̂ |J0〉. We can always change the basis
to reach a standard forms φ = π

2 , where we can read off
the eigenvalues (eρ, e−ρ) of ∆.

Example 4 (Fermions revisited). We reconsider Exam-
ple 2. For a single fermionic mode, we choose the refer-
ence state vector |J0〉 with

Ω0
q,p≡
(

0 1
−1 0

)
a,a†≡
(

0 −i
i 0

)
, J0

q,p≡
(

0 1
−1 0

)
a,a†≡
(
−i 0
0 i

)
. (142)

The stabilizer subgroup U(1) consists of the same el-
ements as in (17), which coincides with the group
SO(2,R). Consequently, the only group elements that
transform |J0〉 = |J+〉 into |J−〉 lie in the disconnected
component. We also reconsider two fermionic modes with
reference state vector |J0〉 given by

Ω0
q,p≡
(

0 1

−1 0

)
a,a†≡
(

0 −i1
i1 0

)
, J0

q,p≡
(

0 1

−1 0

)
a,a†≡
(
−i1 0
0 i1

)
.

(143)
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There is a 4-dimensional subspace of these generators
also satisfying [K,J0], which generates U(2) ⊂ O(4,R).
We can reach the most general complex structure J+ by
a continuous path generated by

K =
1

2
log ∆

q,p≡ θ

2

 0 cosφ 0 sinφ
− cosφ 0 − sinφ 0

0 sinφ 0 − cosφ
− sinφ 0 cosφ 0

 (144)

for ∆ = −J+J0. To reach state vectors of the form
|J−〉, we must also apply an additional transformation

S(Mv) with v
q,p≡ (
√

2, 0, 0, 0)
a,a†≡ (1, 0, 1, 0) to find |J−〉 =

S(Mv) |J+〉. We can always change basis to reach a stan-
dard forms φ = 0, where we can read off the eigenvalues
(eiθ, eiθ, e−iθ, e−iθ) of ∆.

The manifolds of bosonic and fermionic Gaussian
states can be embedded into projective Hilbert space
P(H), from which it inherits the structures to make M
itself a so-called Kähler manifold. Such manifolds have
various desirable properties, but for our purpose it is
sufficient to know that each tangent space T(J,z)M is
a Kähler space equipped with compatible Kähler struc-
tures (G,Ω,J) which are distinct from the ones (G,Ω, J)
on the classical phase space V . A detailed review can
be found in the application section of [24], where it is
also derived how the two types of Kähler structures, i.e.,
(G,Ω,J) and (G,Ω, J) are related. Treating the fam-
ily of Gaussian states as a Kähler manifold is particu-
larly useful when one tries to approximate non-Gaussian
states, such as ground states of interacting Hamiltonians
or the time evolution under such Hamiltonians. This is
known as the Gaussian time-dependent variational prin-
ciple [34], which is a special case of more general varia-
tional methods [24, 35]. Gaussian states can also be un-
derstood as group theoretic coherent states [36–38] with
respect to the symplectic or orthogonal group. This con-
cept recently led to generalizations [39, 40] relevant for
variational calculations.

At this stage, we have introduced pure Gaussian states
in terms of Kähler structures and in particular, by only
specifying the complex structure J (and z in the case
of bosons). This specifies the quantum state uniquely,
but leaves the complex phase of the state vector |J, z〉
undetermined, as this phase is not physical. Next, we
will discuss how all relevant properties of pure bosonic
and fermionic Gaussian states can be expressed in terms
of J (and potentially z for bosons). In particular, we will
see that many expressions are almost identical for bosons
and fermions, leading to a unified description.

2. Wick’s theorem

One of the most important properties of Gaussian
states is that we can compute the expectation values of

arbitrary operators (written in powers of ξ̂a) from the
one- and two-point functions za and Cab2 , which them-

selves are fixed by commutation or anti-commutation re-
lations as well as J and z. Consequently, the evaluation
of expectation values can be performed efficiently using
tensors on the classical phase space, instead of represent-
ing operators and states on Hilbert space H. This is
particularly advantageous for bosonic systems, where H
is infinite dimensional, but also for fermions the Hilbert
space dimension grows exponentially with the number
of degrees of freedom, which makes numerics on Hilbert
space unfeasible.

We define the n-point correlation function of a state

|ψ〉 with za = 〈ψ|ξ̂a|ψ〉 (requiring za = 0 for fermions) as

Ca1···an
n = 〈ψ|(ξ̂ − z)a1 · · · (ξ̂ − z)an |ψ〉 , (145)

which can be efficiently computed as explained below.

Proposition 8 (Wick’s theorem). For a Gaussian state
|ψ〉 = |J, z〉, the n-point correlation function can be com-
putes according to:

(a) Odd correlation functions vanish, i.e., C2n+1 = 0.

(b) Even correlation functions are given by the sum
over all two-contractions

Ca1···a2n
2n =

∑
σ

|σ|
n!
C
aσ(1)aσ(2)

2 . . . C
aσ(2n−1)aσ(2n)

2 , (146)

where the permutations σ satisfy σ(2i− 1) < σ(2i)
and |σ| = 1 for bosons and |σ| = sgn(σ), called
parity, for fermions.

Proof. A covariant proof of Wick’s theorem is based on

the previously introduced operators ξ̂a± from (118), such
that

Ca1···an
n = 〈J, z|(ξ̂+ + ξ̂−)a1 · · · (ξ̂+ + ξ̂−)an |J, z〉 . (147)

We now use their commutation and anticommutation re-
lations (117) to normal-order the ξ̂ai± , i.e., to bring all

ξ̂ai− to the right and all ξ̂ai+ to the left. In doing so, we

generate sums of products of Cab2 . For odd n, every nor-

malordered term contains at least one ξ̂ai± , which annihi-
lates |J, z〉 or 〈J, z| and Cn = 0. For even n, we find all
possible pairings of the ai, but for fermions we will pick
up a minus sign for every anti-commutation, we perform
in a given term. This gives an overall sign determined by
the number of necessary adjacent transpositions, which
is known as the parity of the permutation σ. Note that
every commutation or anticommutation keeps the order
of the ai, i.e., we will never find C

aiaj
2 with i > j.

Note that this is a phase space covariant formulation of

Wick’s theorem, as it does not require to write ξ̂a in any
basis or expressing it in terms of creation and annihilation
operators.
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3. Baker-Campbell-Hausdorff

The philosophy of the present paper is formulate most
results in a covariant manner, that are independent from
any chosen basis of phase space. However, in order to
prove these results, it is typically best to bring opera-
tors and matrices in certain standard forms, from which
one can read off invariant information, such as eigenval-
ues and their generalization. For example, we saw in
section III A 1 that any two Gaussian states |J0, z0〉 and
|J, z〉 define a relative complex structure ∆ whose eigen-
values give rise to invariant squeezing parameters ri. In
the following, we will present certain key formulas based
on the famous Baker-Campbell-Hausdorff relations which
will lay the foundations for deriving such covariant for-
mulas.

We consider a system with N bosonic or fermionic de-
grees of freedom. We have a Gaussian state |J, 0〉 and an
algebra element K ∈ g. We can decompose any such K
uniquely with respect to J into the sum

K = K+ +K− with K± = 1
2 (K ± JKJ) (148)

as explained in the context of (28). Recall that we have

K̂ =

{
− i

2kabξ̂
aξ̂b (bosons)

1
2kabξ̂

aξ̂b (fermions)
, (149)

where we have the definition kab = ωacK
c
b for bosons

and kab = gacK
c
b for fermions from (64). Using the

definition of ξ̂a± with respect to |J, 0〉 and some effort, we
can compute

K̂+ =

{
− i

2kab(ξ̂
a
+ξ̂

b
+ + ξ̂a−ξ̂

b
−) (bosons)

1
2kab(ξ̂

a
+ξ̂

b
+ + ξ̂a−ξ̂

b
−) (fermions)

, (150)

K̂− =

{
− i

2kab(ξ̂
a
+ξ̂

b
− + ξ̂a−ξ̂

b
+) (bosons)

1
2kab(ξ̂

a
+ξ̂

b
− + ξ̂a−ξ̂

b
+) (fermions)

, (151)

We therefore see that K̂+ is a pure squeezing operator,

while |J, 0〉 is eigenstate of K̂− with eigenvalue

〈J, 0|K̂−|J, 0〉 =

{
− i

4 Tr(JK−) (bosons)

+ i
4 Tr(JK−) (fermions)

. (152)

Technically, we can apply the same strategy to a bosonic
Gaussian states |J, z〉 with displacement, in which case
we will

Normal-ordered squeezing. As discussed previ-
ously, the simplest non-trivial example of squeezing re-
quires one bosonic and two fermionic degrees of free-
dom. In both cases, we have two parameters to describe
the precise squeezing operation, which correspond to po-
lar coordinate (r, θ) for bosons (parametrizing a plane)
and spherical angles (r, θ) for fermions (parametrizing a
sphere). The following formulas are well-known in the
literature [41, 42] for bosons and can be analogously de-

rived for fermions

exp [ r2 (eiθ(â†)2 − e−iθâ2)]
= exp [ 1

2e
iθ(tanh r)(â†)2]

× exp[−(ln cosh r)(n̂+ 1
2 )]

× exp [− 1
2 (e−iθ tanh r)â2] ,

(bosons) (153)

exp [r(eiθâ†1â
†
2 + e−iθâ1â2)]

= exp [eiθ tan r â†1â
†
2]

× exp[−(ln cos r)(n̂1 + n̂2 − 1)]
× exp [e−iθ tan r â1â2] .

(fermions) (154)

Such formulas are needed to compute expectation values

of the form 〈J, 0|eK̂+ |J, 0〉. We can use (153) and (154)
to derive their covariant normal-ordered counter parts,

where we express everything in terms of ξ̂a±, namely

eK̂+ = e−
i
2ωacL

c
bξ̂
a
+ξ̂

b
+

×e− i
2ωac log(1−L2)cb(ξ̂

a
+ξ̂

b
−+ i

4 Ωab)

×e− i
2ωacL

c
bξ̂
a
−ξ̂

b
− ,

(bosons) (155)

eK̂+ = e
1
2 gacL

c
bξ̂
a
+ξ̂

b
+

×e 1
2 gac log(1−L2)cb(ξ̂

a
+ξ̂

b
−− 1

4G
ab)

×e 1
2 gacL

c
bξ̂
a
−ξ̂

b
− ,

(fermions) (156)

where we defined the linear map

L = tanhK+ = tanh( 1
2 log ∆) = 1− 2

1+∆ . (157)

The fastest way to verify these relations is based on block-
diagonalizing K+ with eigenvalues ±r for bosons and ±ir
for fermions. Using (157), we can conclude that L has
eigenvalues ± tanh ri for bosons and i tan ri for fermions.

Normal-ordered displacement. We have

eαâ
†+βâ = eαâ

†
eαβ/2eβâ , (158)

which applies to both bosons and fermions (with α and
β being Grassman variables in the latter case). Relation
(158) follows from eX+Y = eXeY e−[X,Y ]/2, which is valid

if X and Y commute with [X,Y ]. We consider ξ̂a± asso-
ciated to a state |J, 0〉, i.e., there is no displacement in

ξ̂a±, to derive the covariant form of (158) as

evaξ̂
a
++wbξ̂

b
− = evaξ̂

a
+e

1
2 va(Cᵀ

2 )abwbeξ̂
b
−wb . (159)

We can use this to normal-order the bosonic or fermionic
displacement operator defined in (70) as

D(z) =

{
e−izaωabξ̂

b
+ e−

1
4 z
agabz

b

e−izaωabξ̂
b
− (bosons)

e−z
agabξ̂

b
+ e

i
4 z
aωabz

b

e−z
agabξ̂

b
− (fermions)

.

(160)

which will be crucial for many calculations related to
displaced Gaussian states.

Normal-ordered displacement and squeezing.
When we consider the interplay between displacement



21

and squeezing, we need to normal-order combinations of
them. This is based on

eαâeβ(â†)2

= eβ(â†)2+2αβâ† eα
2β eαâ, (bosons)

eα1â1+α2â2eβâ
†
1â
†
2 = eβ(â†1â

†
2+α1â

†
2−α2â

†
1)

×eα1βα2eα1â1+α2â2 ,
(fermions)

(161)
which can be used to find the general covariant form

ewaξ̂
a
−evbcξ̂

b
+ξ̂

c
+ = evbcξ̂

b
+ξ̂

c
+ewaξ̂

a
−+2waC

ab
2 vbcξ̂

c
+

= evbcξ̂
b
+ξ̂

c
++2waC

ab
2 vbcξ̂

c
+

× ewaC
ab
2 vbc(C

ᵀ
2 )cdwdewaξ̂

a
−

(162)

where Cab2 represents the 2-point function defined
in (109). This allows us to normal-order the expression

D(z)eK̂+ . We need to combine (155) or (156) with (160)
and then apply (162) to the anti-normal ordered middle
term, which can be reordered as

e−izaωabξ̂
b
−e−

i
2ωacL

c
bξ̂
a
+ξ̂

b
+

= e−
i
2ωacL

c
bξ̂
a
+ξ̂

b
++yaξ̂

a
+eXe−izaωabξ̂

b
− ,

(bosons) (163)

e−z
agabξ̂

b
−e

1
2 gacL

c
bξ̂
a
+ξ̂

b
+

= e
1
2 gacL

c
bξ̂
a
+ξ̂

b
+−yaξ̂

a
+eXe−z

agabξ̂
b
− ,

(fermions) (164)

where we find ya = 1
2z
b(g − iω)bcL

b
a based on (162).

When computing 〈J, 0|D(z)eK̂+ |J, 0〉, the most impor-
tant term is the complex number X = zaxabz

b, which
we compute separately for bosons and fermions. Us-
ing (157), (162), (162) and various Kähler relations as
summarized in appendix A 3, one finds that X is struc-
turally the same for bosons and fermions and given by

X = − 1
4

[
2

G+∆G − g + i
(
ω − 2

Ω+∆Ω

)]
ab
zazb

=

−
1
4

[
2

G+G̃
− g − 2i

Ω+∆Ω

]
ab
zazb (bosons)

− 1
4

[
2

G+∆G + i
(
ω − 2

Ω+Ω̃

)]
ab
zazb (fermions)

(165)

with 1
G+∆G = (G + ∆G)−1 and 1

Ω+∆Ω = (Ω + ∆Ω)−1.

Note that we have ∆G = G̃ for bosons and ∆Ω = Ω̃ for
fermions, where this refers to the covariance matrix that
is reached when applying the group transformation T =√

∆ = eK+ to the state with Kähler structures (G,Ω, J).
This calculation will play an important role, when we
want to evaluate the inner product between two Gaussian
states.

Combined squeezing and displacement. We fur-
ther require an important relation between linear and
quadratic operators. We consider

ŵ = −iwaξ̂
a , K̂ = −iωacK

c
bξ̂
aξ̂b , (bosons)

ŵ = −waξ̂a , K̂ = gacK
c
bξ̂
aξ̂b , (fermions)

(166)

where we assume wa to be Grassmann valued for
fermions, as discussed in the previous paragraph. Note
that we will allow for K ∈ gC and f ∈ V ∗C , i.e., the result-
ing operators may not be anti-Hermitian, such that their
exponentials may not be unitary. The famous Baker-
Campbell-Hausdorff relation allows us to find the opera-
tor expression

log(eK̂eŵ) = K̂ + η̂ + waB
abwb , (167)

where we have introduced the following objects

ηa = wb

(
K

eK − 1

)b
a

, (168)

Bab =

{
iF (K)acΩ

cb (bosons)

F (K)acG
cb (fermions)

, (169)

F (K) =
1

4

K − sinhK

1− coshK
. (170)

While these relations appear cumbersome at first, they
will be crucial to evaluate characteristic functions of
Gaussian states. We can prove (167) using the Dynkin
formula [43], which gives a formal series of (167)

in terms of nested commutators of K̂ and q̂. In
our case, only two types of terms survive, namely

[ŵ, [K̂, . . . , [K̂, [K̂, ŵ]] . . . ]] and [K̂, . . . , [K̂, [K̂, ŵ]] . . . ].

Using [K̂, ŵ] = ŵK with (wK)a = wbK
b
a, we can ex-

pand ηa and Bab as a power series in K to deduce above
functional expressions.

4. Scalar product

We can also use the linear complex structures to com-
pute the inner product | 〈J, z|J̃ , z̃〉 |2 between two nor-
malized Gaussian states. For this, we find again that the
relative complex structure introduced in (39) provides a
covariant way to encode this information.

Proposition 9. The absolute value of the scalar product
between two Gaussian states |J, z〉 and |J̃ , z̃〉 is given by

| 〈J, z|J̃ , z̃〉 |2 = e
−
∣∣∣log det

√
1+∆√

2∆1/4

∣∣∣− 1
2 (z−z̃)a(Γ+Γ̃)−1

ab (z−z̃)b
.

(171)

This expression simplifies for z = z̃ to

| 〈J, z|J̃ , z〉 |2 =

 det
√

2∆1/4
√
1+∆

(bosons)

det
√
1+∆√

2∆1/4
(fermions)

, (172)

Proof. There are many different ways to prove for-
mula (171), but we will rely on the decomposition already
introduced in section III A 3. The relevant information is
encoded in the squeezing parameters ri and the displace-
ment parameters zi for bosons.
We consider the expectation value

| 〈J, z|J̃ , z〉 | = | 〈J, 0|J̃ , 0〉 | = | 〈J, 0|eK̂+ |J, 0〉 | , (173)
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where K+ = log T = 1
2 log ∆ with ∆ = −J̃J , i.e., we use

the fact that |J̃ , 0〉 ∼= eK̂+ |J, 0〉 = |TJT−1, 0〉. Note that
we intentionally only refer to the absolute value of this in-
ner product, as we cannot determine the relative complex
phase by only writing |J, 0〉 and |J̃ , 0〉. We further write
K+ in reference to the decomposition K = K+ + K−
of (148), where our K+ satisfies {K+, J} = 0 and thus

represents pure squeezing from |J, 0〉 to |J̃ , 0〉. We can
use (155) and (156) to compute

〈J, 0|eK̂+ |J, 0〉 =

{
det

1
8 (1− L2) (bosons)

det−
1
8 (1− L2) (fermions)

,

(174)

where we used e±
1
8 tr log(1−L2) = det±

1
8 (1− L2). We can

now express everything in terms of ∆ via L = tanhK+ =
tanh log T = tanh( 1

2 log ∆) and simplify the resulting ex-
pression by using the identity

L = tanhK+ = 1− tanh2

(
log ∆

2

)
=

4∆

(1−∆2)
(175)

to find directly (172).
For bosons, we need to do a second step to also include
displacement to find (171). For this, we first compute

| 〈J, z|J̃ , z̃〉 | = | 〈J, z|D†(z)D(z̃)S(M)|J, 0〉 | (176)

= | 〈J, 0|D(z̃ − z)eK̂+ |J, 0〉 | , (177)

where we ignored complex phases due to only considering
the absolute value and where we have K+ = log T =
1
2 log ∆. At this stage, we normal order D(z̃− z) and eK̂

based on (160) and (155) to find

| 〈J, z|J̃ , z̃〉 | = e−
1
4 (z−z̃)agab(z−z̃)be

1
8 tr log(1−L2)

× | 〈J, 0|e−i(z−z̃)aωabξ̂b−e−
i
2ωacL

c
bξ̂
a
+ξ̂

b
+ |J, 0〉 | ,

(178)

where we encounter in the second line exactly the term
discussed in (165), which we can normal-order to find

eRe(x)ab(z−z̃)a(z−z̃)b with xab from (165). This combines
with the middle term in (160), so that we find exactly14

| 〈J, z|J̃ , z̃〉 | = e−
1
4 (z−z̃)a(G+G̃)−1

ab (z−z̃)be
1
8 tr log(1−L2) ,

(179)

which leads to (171).

14 For completeness, let us mention that we could use (165) for
fermions to derive a similar expression for fermionic Gaussian
states with Grassmann displacement za and z̃b leading to

| 〈J, z|J̃ , z̃〉 | = e
i
4

(z−z̃)a(Ω+Ω̃)−1
ab

(z−z̃)be−
1
8

tr log(1−L2) ,

which is real in the Grassmann sense as | 〈J, z|J̃ , z̃〉 |∗ =
| 〈J, z|J̃ , z̃〉 |.

B. Mixed Gaussian states

In the previous sections, we focused on properties of
pure Gaussian states. However, many applications in
quantum theory also require the consideration of mixed
Gaussian states. Mixed Gaussian states can either be
considered as a larger class, which contains pure Gaussian
states, or they can be considered as the states that arise if
one restricts pure Gaussian states to smaller subsystems.

1. Definition

We recall that a mixed state ρ : H → H is a non-
negative Hermitian operator, i.e., ρ ≥ 0, with Tr ρ = 1.
Only if the state is pure, we have Tr ρ2 = 1, in which case
ρ = |ψ〉 〈ψ| for some normalized |ψ〉 ∈ H with a single
non-zero eigenvalue equal to 1.

Given a mixed state ρ, we define its 1- and 2-point
function in analogy to (108) as

za = Tr(ρξ̂a) ,

Cab2 = Tr
(
ρ(ξ̂ − z)a(ξ̂ − z)b

)
,

(Requirement: za = 0 for (fermions)),

(180)

where we restrict once again to those states with za = 0
for fermions, as there are no physical fermionic Gaussian
states with za 6= 0. We decompose Cab2 = 1

2 (Gab + iΩab)
as in (110) to define the linear map

J =

{
−Gω (bosons)

+Ωg (fermions)
, (181)

which in general will not satisfy J2 = −1. Technically, J
is therefore not a complex structure, but we may abuse
the language and call it a restricted complex structure (as
any such J can arise from restricting a complex structure
to a subspace), while keeping to use the letter J .

We found in definition 5 that it suffices to compute Cab2

of an arbitrary pure state |ψ〉 and check if the resulting
J satisfies J2 = −1 to check if |ψ〉 is Gaussian. While
we can still compute a J via Cab2 for a mixed state ρ,
In contrast there is no direct way to read off J if the
associated mixed state ρ is Gaussian or not. Instead,
we define mixed Gaussian states by the requirement that
log ρ is a quadratic operator, as specified next.

Definition 6. A mixed state ρ is called Gaussian if and
only if there exists a Hermitian quadratic operator15

Q̂ =

{
qab(ξ̂ − z)a(ξ̂ − z)b + c (bosons)

iqabξ̂
aξ̂b + c (fermions)

, (182)

15 We could extend the fermionic definition to include Grassmann
displacements za by having Q̂ = iqab(ξ̂ − z)a(ξ̂ − z)b + c0.
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Bosons Fermions

ρ

NA⊗
i=1

(
e−2n̂i ln coth ri

cosh ri sinh ri

) NA⊗
i=1

(
cos ri sin rie

−2n̂i ln tan ri
)

J
q,p
≡

NA⊕
i=1

(
0 cosh 2ri

− cosh 2ri 0

) NA⊕
i=1

(
0 cos 2ri

− cos 2ri 0

)

J
a,a†
≡

NA⊕
i=1

(
−i cosh 2ri 0

0 i cosh 2ri

) NA⊕
i=1

(
−i cos 2ri 0

0 i cos 2ri

)

G
q,p
≡

NA⊕
i=1

(
cosh 2ri 0

0 cosh 2ri

) NA⊕
i=1

(
1 0

0 1

)

G
a,a†
≡

NA⊕
i=1

(
0 cosh 2ri

cosh 2ri 0

) NA⊕
i=1

(
0 1

1 0

)

Ω
q,p
≡

NA⊕
i=1

(
0 1

−1 0

) NA⊕
i=1

(
0 cos 2ri

− cos 2ri 0

)

Ω
a,a†
≡

NA⊕
i=1

(
0 −i

i 0

) NA⊕
i=1

(
0 −i cos 2ri

i cos 2ri 0

)

q
q,p
≡

NA⊕
i=1

(
ln coth ri 0

0 ln coth ri

) NA⊕
i=1

(
0 ln tan ri

− ln tan ri 0

)

q
a,a†
≡

NA⊕
i=1

(
0 ln coth ri

ln coth ri 0

) NA⊕
i=1

(
0 i ln tan ri

−i ln tan ri 0

)

c
N∑
i=1

log (cosh ri sinh ri) −
N∑
i=1

log (cos ri sin ri)

TABLE III. Mixed Gaussian states. We list the standard
forms of J , G, Ω, q and c for a mixed Gaussian state ρ(J,z) =

e−c−qab(ξ̂A−zA)a(ξ̂A−zA)b . This table matches the one in [25].

such that ρ = e−Q̂. In this case, we denote ρ by ρ(J,z),
where z and J are computed from (180).

To derive properties of mixed Gaussian states, it is
useful to bring qab into block diagonal form, which can
always be achieved by an appropriate group transforma-
tion M ∈ G. Put differently, there always exist a basis,
such that

q
q,p≡



⊕N
i=1

(
βi 0

0 βi

)
(bosons)

⊕N
i=1

(
0 βi
−βi 0

)
(fermions)

, (183)

which follows for bosons from the well-known
Williamson’s theorem [44] and for fermions from
the block-diagonalization of anti-symmetric matrices
under orthogonal transformations. This allows us to

write

ρ(J,z) ≡
e−2

∑N
i=1 βin̂i

Tr exp(−2
∑N
i=1 βin̂i)

, (184)

where the 2 in the exponent is convention. From (184),
we can read off the spectrum as the diagonal form of ρ is

ρ(J,z) ≡
∑

n1...nN

λn1
. . . λnN |n1, . . . , nN ; v〉 〈n1, . . . , nN ; v|

(185)

where we can read off the eigenvalues from (184) as

λni =

{
(1− e−2βi)e−2βini (bosons)

(1 + e−2βi)−1e−2βini (fermions)
. (186)

This equation implies that mixed Gaussian states ρ(J,z)

have a very particular spectrum constructed from pow-
ers of e−βi . This type of spectrum is called Gaus-
sian spectrum and if we find a mixed state ρ with such
spectrum for appropriately chosen βi, we can always
find a Gaussian state ρ(J,z) and a unitary U , such that

ρ = U†ρ(J,z)U .
For bosons, we compute the 1-point correlation func-

tion to be

za = Tr(ρ(J,z)ξ̂
a) , (187)

i.e., the za appearing in the definition ρ is indeed its 1-
point function. For both bosons and fermions, we can
compute the 2-point correlation function

Cab2 = Tr
(
ρ(J,z)(ξ̂ − z)a(ξ̂ − z)b

)
=

1

2
(Gab + iΩab) ,

(188)

i.e., we perform just the same decomposition as for pure
Gaussian states. Using the explicit form (184) for ρ, we
can compute the respective bosonic and fermionic covari-
ance matrix to be

G
q,p≡

N⊕
i=1

(
cothβ 0

0 cothβ

)
, (bosons)

Ω
q,p≡

N⊕
i=1

(
0 tanhβ

− tanhβ

)
. (fermions)

(189)

Recall our definition (181), which only is the same for
fermions and bosons if the Gaussian state is pure, i.e.,
J2 = −1. We can use the explicit forms of q from (183)
and of the covariance matrices in (189) to deduce the
covariant relation

J =

{
− cot Ωq = −i coth iΩq (bosons)

+ tanGq = −i tanh iGq (fermions)
, (190)

where the respective functions are applied as matrix func-
tions, as explained in appendix A 2.
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We see that the complex structure J of the mixed
Gaussian state characterized by qab is computed from
the Lie algebra generator

K =

{
Ωq (bosons)

Gq (fermions)
. (191)

The mixed Gaussian state ρ(J,z) becomes pure in the limit
where the eigenvalues of Kq diverge, such that the eigen-
values of J approach ±i. It is this limit, in which the den-
sity operator ρ(J,z) becomes a projector onto the ground

state |J, z〉 of Q̂.
A mixed state complex structure J is characterized

by the property that its eigenvalues appear in conjugate
pairs ±iλi with λi ∈ [0,∞) for bosons and λi ∈ [0, 1] for
fermions. The choice of a mixed Gaussian state therefore
corresponds to equipping the classical phase space with
a metric G and a symplectic form Ω that potentially vi-
olate the Kähler condition (6), i.e., they do not give rise
to a proper linear complex structure J with J2 = −1.
Instead, the more the eigenvalues of J defined in (181)
depart from ±i, the more mixed will the corresponding
state ρ(J,z) be. From a geometric perspective, we can
therefore think of mixed Gaussian states as equipping
the classical phase space with specifically incompatible
Kähler structures (G,Ω, J), where we have −J2 ≥ 1 for
bosons and −J2 ≤ 1 for fermions. It is exactly the inter-
section of these two sectors that describes pure Gaussian
states. Compatible Kähler structures (G,Ω, J) in this set
can describe both, a bosonic or fermionic Gaussian state.
Interestingly, the two sectors (mixed bosonic Gaussian
states vs. mixed fermionic Gaussian states) are related
under the duality transformation

J ⇔ −J−1 , (192)

which maps mixed bosonic complex structures onto
fermionic ones and vice versa16. This relation can be used
to relate the spectrum of bosonic and fermionic mixed
states (and thus their entanglement) in supersymmetric
systems [45].

Example 5. We consider a single bosonic mode, for
which the most general positive-definite quadratic Hamil-
tonian is characterized by

q
q,p≡ β

(
cosh ρ− cosφ sinh ρ − sinφ sinh ρ
− sinφ sinh ρ cosh ρ+ cosφ sinh ρ

)
(193)

a,a†≡ β
(
−eiφ sinh ρ cosh ρ

cosh ρ e−iφ sinh ρ

)
. (194)

16 For fermions, there exist complex structures J with vanishing
eigenvalues that are mapped to infinity under this duality. This
relates a maximally mixed fermionic mode to a maximally mixed
bosonic mode, which only makes sense in the limit, as the bosonic
Hilbert space is infinite dimensional.

Using formula (190), we can deduce the respective mixed
state complex structure J and the associated covariance
matrix G to be given by

J
q,p≡ cothβ

(
− sinφ sinh ρ cosφ sinh ρ+ cosh ρ

cosφ sinh ρ− cosh ρ sinφ sinh ρ

)
a,a†≡ cothβ

(
−i cosh ρ ieiφ sinh ρ
−ie−iφ sinh ρ i cosh ρ

)
, (195)

G
q,p≡ cothβ

(
cosh ρ+ cosφ sinh ρ sinφ sinh ρ

sinφ sinh ρ cosh ρ− cosφ sinh ρ

)
a,a†≡ cothβ

(
eiφ sinh ρ cosh ρ

cosh ρ −e−iφ sinh ρ

)
, (196)

For a single mode, covariance matrix and complex struc-
ture are proportional to the ones of a pure state, but
rescaled with cothβ, which approaches 1 for β → ∞.
For mixed states of several modes, each eigenvalue pair
in J is appropriately rescaled by a factor cothβi. Re-
quiring that Q̂ must be bounded from below implies that
β ∈ (0,∞), such that the mixed Gaussian state becomes
more and more mixed in the limit β → 0, but there is
no maximally mixed state in an infinite Hilbert space.
The manifold of mixed bosonic Gaussian states of a sin-
gle mode (assuming za = 0 here) is diffeomorphic to a
three-dimensional half-space, i.e., R2 × R≥0, where the
boundary plane represents pure states with β →∞.

Example 6. We consider a single fermionic mode. The
most general quadratic Hamiltonian is here given by

q ≡
(

0 β
−β 0

)
. (197)

The resulting mixed Gaussian state ρ = eQ̂ is character-
ized by the following complex structure J and covariance
matrix Ω:

J
q,p≡ tanhβ

(
0 1
−1 0

)
a,a†≡ tanhβ

(
−i 0
0 i

)
, (198)

Ω±
q,p≡ tanhβ

(
0 1
−1 0

)
a,a†≡ tanhβ

(
0 −i
i 0

)
. (199)

In contrast to bosons, we can choose the parameter β ∈
R, as the respective Q̂ will always be bounded from be-
low. Choosing β = 0 corresponds to the maximally mixed
state in the fermionic Hilbert space with J = 0. This
shows that the family of mixed Gaussian states connects
the two parity sectors of pure Gaussian states, as every
mixed Gaussian state can be connected to the maximally
mixed state by rescaling J → 0. The manifold of mixed
fermionic Gaussian states of a single bosonic mode is dif-
feomorphic to an interval, i.e., [−1, 1], where the bound-
ary points represent the two fermionic Gaussian states of
different parity.

The geometry of mixed Gaussian state is more intricate
than the one of pure Gaussian states. Generically, all
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eigenvalue pairs ±iλi of J will be different, such that the
subgroup

StaJ = {M ∈ G |MJM−1 = J} (200)

is isomorphic to U(1)⊗N . More specifically, if we have s
distinct eigenvalue pairs ±iλi with degeneracies di, the
stabilizer subgroup of J is isomorphic to

StaJ =

s⊕
i=1

U(di) , (201)

such that
∑s
i=1 di = N . One can repeat the same argu-

ments as in section II B 6 to find that Mb/f = G/StaJ ,
which consists of all mixed Gaussian states characterized
by the respective spectrum of λi and their degeneracies.
The full manifold can be foliated by Mb/f to form the
manifold Mmixed of mixed Gaussian states with

dimMmixed =

{
N(2N + 1) + 2N (bosons)

N(2N − 1) (fermions)
.

(202)

This manifold has a complicated boundary consisting of
various lower dimensional surfaces, corners etc. In par-
ticular, pure Gaussian states form a small corner of this
manifold, just like pure quantum states form a small cor-
ner of the convex set of mixed states.

2. Characteristic function

We introduce the characteristic function of an operator
O given by

χ(w) =

{
Tr(Oe−iwaξ̂

a

) (bosons)

Tr(Oe−waξ̂a) (fermions)
(203)

which is defined for both bosonic and fermionic sys-
tems. For fermionic systems, wa is Grassmann valued,
which anti-commutes with itself and with linear opera-

tors ξ̂a, i.e., we have {wa, wb} = {wa, ξ̂b} = 0. Note that

e−waξ̂
a

behaves similar to a fermionic displacement op-

erator from (70), such that ewaξ̂
a

ξ̂ae−waξ̂
a

= ξ̂a +Gabwb
with wa being Grassmann-valued.

Let us further discuss an important subtlety about

traces of eK̂ for fermions. If we consider the fermionic
operator eŵ satisfying e−ŵ ξ̂aeŵ = ξ̂a +Gabwb, we find

Tr(e−ŵeK̂eŵ) = Tr(eK̂)ewa(tanh K
2 )

a
bG

bcwc , (fermions)
(204)

which can be derived by block-diagonalizing K and then
expanding e±ŵ for individual degrees of freedom.

With this in hand, we can compute the characteristic
function χ(w) of general mixed Gaussian states.

Proposition 10. The characteristic function of a mixed
Gaussian state ρ(J,z) is given by

χ(w) =

{
e−

1
4waG

abwb−iwaz
a

(bosons)

e−
i
4waΩabwb (fermions)

, (205)

where G and Ω are the respective covariance matrices.

Proof. We consider bosons and fermions separately.
Bosons. We have

χ(w) = Tr( e
−(ξ̂−z)aqab(ξ̂−z)

b

Z e−iwaξ̂
a

)

= Tr( e
−ξ̂aqabξ̂

b

Z e−iwa(ξ̂+z)a) ,
(206)

where we used the displacement operators satisfying

D†(z)ξ̂aD(z) = (ξ̂ + z)a to apply a shift to the whole
expression without changing its trace. We can define

K = −2iΩq, such that K̂ = −qabξ̂aξ̂b which is Hermitian
and thus represents a complexified algebra element. This
allows us to write

χ(w) = e−iwaz
a

Z Tr(eK̂eŵ)

= e−iwaz
a

Z Tr(eK̂+η̂+waB
abwb)

(207)

where we applied (167). The exponent reads

−qabξ̂aξ̂b − iηaξ̂
a + waB

abwb , (208)

where we can complete the square to rewrite it as

−qab(ξ̂ − y)a(ξ̂ − y)b + qaby
ayb + waB

abwb︸ ︷︷ ︸
=:waB̃abwb

, (209)

where we have ya = i
2Q

abηb with Qab = (q−1)ab, which is
invertible for a mixed Gaussian state. Using the explicit
form (168) of η in terms of w, we find

χ(w) = e−iwaz
a+waB̃

abwb Tr( e
−qab(ξ̂−y)a(ξ̂−y)b

Z )

= e−iwaz
a+waB̃

abwb ,
(210)

where we used that the shift in ya does not change the
trace. More precisely, we argue that

Tr( e
−qab(ξ̂−y)a(ξ̂−y)b

Z ) = Tr(D−1 e−qab(ξ̂−y)a(ξ̂−y)b

Z D)

= Tr( e
−qab(ξ̂)

a(ξ̂)b

Z )

= Tr ρ = 1 ,

(211)

where we used that the operator D = e−iyaωabξ̂
b

with

D−1ξ̂aD = ξ̂a + ya does not change the trace17 (which

17 Note that ya is a vector in VC, such that D is not a unitary
displacement operator satisfying D† = D−1. However, our argu-
ment does not require this.
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will turn out to be not true for fermions!). The new

bilinear form B̃ from (210) is

B̃ab = −1

4

(
K

eK−1Q
Kᵀ

eK
ᵀ−1 − iK−sinhK

1−coshK Ω
)ab

= − i

4

(
2K

(eK−1)(e−K−1)
− K−sinhK

1−coshK

)a
c

Ωcb ,

=
i

4
coth(−iΩq)acΩ

cb = 1
4 (JΩ)ab = − 1

4G
ab

(212)

where we used KQ = −2iΩ and ΩKᵀ = −KΩ in the
second step, combined the functions to find coth(K/2)
and then used the expressions (190) to express everything
in terms of J and eventually G.
Fermions. The derivation for fermions follows the one
for bosons closely with K̂ = −iqabξ̂

aξ̂b, but we now have
za = 0 and wa is a Grassmann number. We can largely
follow the same strategy, but need to replace iwa → wa,
qab → iqab and Qab → −iQab. With this, we arrive at the
analogue of (210) given by

χ(w) = ewaB̃
abwb Tr( e

−iqab(ξ̂−y)a(ξ̂−y)b

Z ) , (213)

where we use K = −2iGq and QKᵀ = 2iG to get

B̃ab =
1

4

(
K

eK−1 iQ Kᵀ

eK
ᵀ−1 + K−sinhK

1−coshK G
)ab

=
1

4

(
−2K

(eK−1)(e−K−1)
+ K−sinhK

1−coshK

)a
c
Gcb

=
1

4
coth(K2 )acG

b

(214)

As discussed around in the context of (204), we have

Tr( e
−iqab(ξ̂−y)a(ξ̂−y)b

Z ) = ey
agab(tanh K

2 )
b
cy
c

= e−
1
2wa sinh−1(K)acG

cbwb
(215)

where we used ya = 1
2Q

abηb = 1
2Q

ab
(

Kᵀ

eK
ᵀ−1

) c

b
wc.

Consequently, we can combine the different terms to find

χ(w) = ewa(B̃+C̃)abwb with

(B̃ + C̃)ab =
1

4
(coth K

2 − 2 sinh−1K)acG
cb

=
1

4
tanh(−iGq)acG

cb

= 1
4 (−iJG)ab = − i

4Ωab ,

(216)

where we followed the same strategy as for bosons to
finally arriv at χ(w) from (205).

Characteristic functions are closely related to quasi-
probability distribution on the classical phase space,
which can be used as an alternative description of the
quantum theory. Translation recipes to describe Gaus-
sian states with such quasi-probability distributions can
be found in [25]. However, phase space distributions can
also be used to describe general quantum states and allow
for more efficient calculations in certain settings [46, 47],
such as boson sampling.

3. Wick’s theorem

In the previous section, we derived the representation
of mixed Gaussian states as characteristic functions χ(w)
defined on the dual phase space. This will enable us to
prove Wick’s theorem for mixed Gaussian states.

Proposition 11. Given a mixed Gaussian state ρ(J,z),
a general n-point function Ca1...an

n is computed in the
same way as for pure Gaussian states, as explained in
proposition 8. The 2-point function Cab2 = 1

2 (Gab + iΩab)
is related to the mixed state complex structure J via

Gab = −JacΩcb (bosons)

Ωab = JacG
cb (fermions)

(217)

where Ω for bosons and G for fermions is fixed.

Proof. We recall the definition of the characteristic func-
tion (203), where wa is Grassmann-valued for fermions.
If we define the derivative operator

Fa1...an
w =


(

i∂
∂wa1

)
· · ·
(

i∂
∂wan

)
(bosons)(

∂
∂wa1

)
· · ·
(

∂
∂wan

)
(fermions)

, (218)

we find

Fa1...an
w χ(w)

∣∣
w=0

=

Tr
(
ρξ̂(a1 . . . ξ̂an)

)
(bosons)

Tr
(
ρξ̂[a1 . . . ξ̂an]

)
(fermions)

,

(219)

where ξ̂(a1 . . . ξ̂an) = SYM(ξ̂a1 . . . ξ̂an) represents the to-

tally symmetrized and ξ̂[a1 . . . ξ̂an] = ASYM(ξ̂a1 . . . ξ̂an)
represents the totally anti-symmetrized tensor, e.g.,

ξ̂(aξ̂b) = 1
2 (ξ̂aξ̂b + ξ̂bξ̂a) and ξ̂[aξ̂b] = 1

2 (ξ̂aξ̂b − ξ̂bξ̂a) etc.
When we apply (219) to the characteristic functions de-

rived in (205), we find that C
(a1...an)
n for bosons and

C
[a1...an]
n satisfy Wick’s theorem for C

(ab)
2 = 1

2G
ab and

C
[ab]
2 = i

2Ωab, respectively. Note that for bosons, the dis-

placement of za is automatically removed from C
(a1...an)
n

by the linear term −iwaz
a in the exponential. Finally,

if we are interested in computing the regular (i.e., nei-
ther symmetrized nor anti-symmetrized) n-point correla-
tion functions, we just need to commute or anti-commute

the respective terms of ξ̂ai in the symmetrized or anti-
symmetrized expressions, which will yield additional
commutators iΩab for bosons and anti-commutators Gab

for bosons, such that Ca1...an
n will satisfy Wick’s theo-

rem in the same way as pure states with 2-point function
C2 = 1

2 (Gab + iΩab).

We found that n-point correlation functions for mixed
Gaussian states are computed in the same way as for pure
Gaussian states via Wick’s theorem. The only difference
is that the respective J does not satisfy J2 = −1, which
can be used distinguish pure and mixed Gaussian states.
Next, we will see how this relation can be used to show
that mixed Gaussian states arise when we reduce pure
Gaussian states to subsystems.
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TABLE IV. Gaussian states. This table summarizes and compares our methods to describe bosonic and fermionic Gaussian
states using Kähler structures covered in section III.

structure bosons fermions

1-point function za = 〈ψ|ξ̂a|ψ〉 = Tr(ρξ̂a) Requirement: za = 〈ψ|ξ̂a|ψ〉 = Tr(ρξ̂a) = 0

2-point function
Cab2 = 〈ψ|(ξ̂ − z)a(ξ̂ − z)b|ψ〉

= Tr ρ(ξ̂ − z)a(ξ̂ − z)b
Cab2 = 〈ψ|ξ̂aξ̂b|ψ〉 = Tr(ρξ̂aξ̂b)

decomposition Cab2 = 1
2

(Gab + iΩab)

covariance matrix Γab Γab = Gab = 〈ψ|ξ̂aξ̂b + ξ̂bξ̂a|ψ〉 − 2zazb

= Tr ρ(ξ̂aξ̂b + ξ̂bξ̂a)− 2zazb
Γab = Ωab = 〈ψ|ξ̂aξ̂b − ξ̂bξ̂a|ψ〉

= Tr ρ(ξ̂aξ̂b − ξ̂bξ̂a)

relation to J Γab = −JacΩcb Γab = JacGcb

pure Gaussian |J, z〉 1
2

(δab − iJab)(ξ̂
b − zb) |J, z〉 = 0 with J2 = −1

dimension N(N + 1) plus 2N displacements N(N − 1)

covariant ladder operators ξ̂a± = 1
2

(δab ∓ iJab)(ξ̂
b − zb) with Jabξ̂

b
± = ±iξ̂a±

[ξ̂a±, ξ̂
b
±] = 0, [ξ̂a−, ξ̂

b
+] = Cab2 {ξ̂a±, ξ̂b±} = 0, {ξ̂a−, ξ̂b+} = Cab2

n-point function Ca1···an
n = 〈ψ|(ξ̂ − z)a1 · · · (ξ̂ − z)an |ψ〉

Wick’s theorem C2n+1 = 0 and Ca1···a2n
2n =

∑
σ
|σ|
n!
C
aσ(1)aσ(2)

2 . . . C
aσ(2n−1)aσ(2n)

2

normal-ordered
squeezing (explicit)

e
r
2

(eiθ(â†)2−e−iθ â2) = e
1
2
eiθ(tanh r)(â†)2

×e−(ln cosh r)(n̂+ 1
2

)e−
1
2

(e−iθ tanh r)â2

er(e
iθ â
†
1â
†
2+e−iθ â1â2) = ee

iθ tan r â
†
1â
†
2

×e−(ln cos r)(n̂1+n̂2−1)ee
−iθ tan r â1â2

normal-ordered
squeezing (covariant)

eK̂+ = e−
i
2
ωacL

c
bξ̂
a
+ξ̂
b
+

×e−
i
2
ωac log(1−L2)cb(ξ̂

a
+ξ̂
b
−+ i

4
Ωab)e−

i
2
ωacL

c
bξ̂
a
−ξ̂

b
−

eK̂+ = e
1
2
gacL

c
bξ̂
a
+ξ̂
b
+

×e
1
2
gac log(1−L2)cb(ξ̂

a
+ξ̂
b
−−

1
4
Gab)e

1
2
gacL

c
bξ̂
a
−ξ̂

b
−

normal-ordered
displacement (explicit)

eαâ
†+βâ = eαâ

†
eαβ/2eβâ

normal-ordered
displacement (covariant)

evaξ̂
a
++wbξ̂

b
− = evaξ̂

a
+e

1
2
va(C

ᵀ
2 )abwbeξ̂

b
−wb

normal-ordered
middle term (explicit)

eαâeβ(â†)2 = eβ(â†)2+2αβâ† eα
2β eαâ eα1â1+α2â2eβâ

†
1â
†
2 = eβ(â

†
1â
†
2+α1â

†
2−α2â

†
1)

×eα1βα2eα1â1+α2â2

normal-ordered
middle term (covariant)

ewaξ̂
a
−evbcξ̂

b
+ξ̂
c
+ = evbcξ̂

b
+ξ̂
c
++2waC

ab
2 vbcξ̂

c
+ ewaC

ab
2 vbc(C

ᵀ
2 )cdwdewaξ̂

a
−

combining squeezing
and displacement

log(eK̂eŵ) = K̂ + η̂ + waBabwb with ηa = wb

(
K

eK−1

)b
a
, F (K) = 1

4
K−sinhK
1−coshK

,

ŵ = −iwaξ̂a, K̂ = −iωacKc
bξ̂
aξ̂b and

Bab = iF (K)acΩcb
ŵ = −waξ̂a, K̂ = gacKc

bξ̂
aξ̂b and

Bab = F (K)acGcb

scalar product | 〈J, z|J̃ , z̃〉 |2 det

(√
2∆1/4

√
1 + ∆

)
e−

1
2

(z−z̃)a(Γ+Γ̃)−1
ab

(z−z̃)b det

(√
1 + ∆
√

2∆1/4

)

mixed Gaussian ρ(J,z) = e−Q̂ Q̂ = qab(ξ̂ − z)a(ξ̂ − z)b + c Q̂ = iqabξ̂
aξ̂b + c

dimension N(2N + 1) plus 2N displacements N(2N − 1)

finding q q = −ω arccot J = −iω arccoth iJ q = g arctan J = −ig arctanh iJ

finding J J = − cot Ωq = −i coth iΩq J = tanGq = −i tanh iGq

finding c c = 1
4

log det
(

1+J2

4

)
c = − 1

4
log det

(
1+J2

4

)
eigenvalues ±iλi of J λi ∈ [1,∞) λi ∈ [0, 1]

characteristic function χ(w) = e−
1
4
waG

abwb−iwaz
a

χ(w) = e−
i
4
waΩabwb

n-point function Ca1···an
n = Tr

(
ρ(ξ̂ − z)a1 · · · (ξ̂ − z)an

)
Wick’s theorem C2n+1 = 0 and Ca1···a2n

2n =
∑
σ
|σ|
n!
C
aσ(1)aσ(2)

2 . . . C
aσ(2n−1)aσ(2n)

2
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IV. APPLICATIONS

The goal of this section is to demonstrate how the for-
malism of Kähler structures can be used for applications
in quantum information and non-equilibrium physics.

A. Entanglement and complexity

We derive a number of compact formulas to describe
quantum-information properties, such as entanglement
and complexity, of Gaussian states in terms of their com-
plex structure J . While Gaussian states have been heav-
ily used in quantum information [3, 48, 49], so far Kähler
structures have been rarely used to describe their prop-
erties.

1. Algebraic definition of a subsystem

The observables of a quantum system form an alge-
bra A, given by the Weyl algebra Weyl(V ∗,Ω) in the
bosonic case and by the Clifford algebra Cliff(V ∗, G) in
the fermionic case.

A subalgebra AA ⊂ A defines a subsystem A in terms
of its observables. In general, the subsystem A and its
complement B share a set of observables, corresponding
to the fact that the subalgebra AA has a center in A. We
identify sufficient conditions for the absence of a center.

The set of observables that commute with all elements
of AA, i.e., its commutant, define a subsystem B with
algebra

AB =
{
b ∈ A

∣∣ [b, a] = 0∀ a ∈ AA
}
. (220)

In general, the subsystems A and B have a center

Z = AA ∩ AB . (221)

As a result, the Hilbert space of the system decomposes
as a direct sum of tensor products [50, 51],

H =
⊕

ζ

(
HA(ζ)⊗HB(ζ)

)
, (222)

where the sum is over the spectrum of Z.
Here, we consider subsystems defined by a Weyl al-

gebra AA = Weyl(V ∗A,ΩA) in the bosonic case and by
a Clifford algebra AA = Cliff(V ∗A, GA) in the fermionic
case. This restriction results in a trivial centerAA∩AB =
{1} and a tensor-product decomposition of the Hilbert
space of the system, H = HA ⊗HB .

2. Subsystem decomposition

Given a bosonic or fermionic system with N degrees
of freedom, we can always decompose the classical phase

space V into two complementary subsystems A and B
with V = A⊕B satisfying the conditions of section II B 4.
A decomposition V = A ⊕ B into symplectic or orthog-
onal complements for bosons or fermions, respectively,
induces a dual decomposition V ∗ = A∗ ⊕B∗. More pre-
cisely, we have

ωabξ
a
Aξ

b
B = 0 ∀ ξA ∈ A, ξB ∈ B , (bosons)

gabξ
a
Aξ

b
B = 0 ∀ ξA ∈ A, ξB ∈ B . (fermions)

(223)

We further have A∗ = {ωabξbA|ξ ∈ A} and B∗ =
{ωabξbA|ξ ∈ B} for bosons and A∗ = {gabξbA|ξ ∈ A} and
B∗ = {gabξbA|ξ ∈ B} for fermions.

Any phase space decomposition V = A⊕B, such that
A and B are either symplectic complements for bosonic
systems or orthogonal complements for fermionic sys-
tems, induces a tensor product decomposition

H = HA ⊗HB . (224)

It is induced by quantizing A and B (with the respective
restricted symplectic form Ω or metric G) individually
and then naturally identifying tensor products of states
with elements in H.

Of course, there are infinitely many other ways, one
can write an infinite dimensional Hilbert space as a tensor
product of two other infinite dimensional Hilbert spaces.
However, for physical applications, we typically use above
subsystem definition constructed from a subset A∗ ⊂ V ∗
of linear observables, which naturally gives rise to the
decomposition described above.

Proposition 12. Given a pure Gaussian state |J, z〉 and
a subsystem decomposition V = A⊕B according to defi-
nition 3, we can decompose J according to

J =

(
JA JAB
JBA JB

)
with

JA : A→ A : a 7→ PA(Ja) ,
JB : B → B : b 7→ PB(Jb) ,
JAB : B → A : b 7→ PA(Jb) ,
JBA : A→ B : a 7→ PB(Ja) ,

(225)

where PA and PB are the respective projections onto A
and B, respectively, such that 1 = PA+PB. We can then

always choose the bases ξ̂aA ≡ (q̂A1 , p̂
A
1 , . . . , q̂

A
NA
, p̂ANA) and

ξ̂aB ≡ (q̂B1 , p̂
B
1 , . . . , q̂

B
NA
, p̂ANB ), such that the linear complex

structure is
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J ≡



cosh(2r1)A2 · · · 0 sinh(2r1)S2 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · cosh(2rNA)A2 0 · · · sinh(2NA)S2 0 · · · 0
sinh(2r1)S2 · · · 0 cosh(2r1)A2 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · sinh(2rNA)S2 0 · · · cosh(2rNA)A2 0 · · · 0
0 · · · 0 0 · · · 0 A2 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · A2


(bosons)

J ≡



cos(2r1)A2 · · · 0 sin(2r1)S2 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · cos(2rNA)A2 0 · · · sin(2rNA)S2 0 · · · 0
− sin(2r1)S2 · · · 0 cos(2r1)A2 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · − sin(2rNA)S2 0 · · · cos(2rNA)A2 0 · · · 0
0 · · · 0 0 · · · 0 A2 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · A2


(fermions)

(226)

with matrices A2 and S2 written as

A2
q,p≡
(

0 1
−1 0

)
a,a†≡
(
−i 0
0 i

)
, S2

q,p≡
(

0 1
1 0

)
a,a†≡
(

0 i
−i 0

)
. (227)

In particular, we find that JA and JB have eigenvalues
±iλi with λi ∈ [1,∞) for bosons and λi ∈ [0, 1] for
fermions.

Proof. A detailed proof can be found in the appendices
of [23] split over propositions 2 to 10. Equivalent results
have been well-known in terms of the covariance matri-
ces [52].
The idea is to first show that J2

A and J2
B are diagonal-

izable and have the same spectrum except for eigenval-
ues −1 (corresponding to eigenvalues ±i of JA and JB).
In a second step, one then needs to distinguish between
bosonic and fermionic systems to show that JA and JB
are diagonalizable with eigenvalues ±iλi of JA and JB
satisfy λi ∈ [1,∞) for bosons and λi ∈ [0, 1] for fermions.
At this stage, the block forms of JA and JB follow from
the fact that any matrix with imaginary eigenvalues can
be brought into block-diagonal form. In the third and
last step, one then shows that JAB and JBA relate those
eigenvectors of JA and JB whose eigenvalues are not ±i
with a prescribed rescaling to ensure that J as a whole
only has eigenvalues ±i.

We can now show that the reduction of a pure Gaussian
state to such a subsystem gives rise to a mixed Gaussian
state.

Proposition 13. Given a pure Gaussian state |J, z〉 and
a system decomposition V = A ⊕ B inducing the tensor

product H = HA ⊗HB, the reduced state

ρA(J, z) = TrHB |J, z〉 〈J, z| (228)

is Gaussian and explicitly given by ρA(J, z) = ρ(JA,zA),
where JA was defined in proposition 12 and zA = PAz is
the projection of z onto A.

Proof. This result follows from the fact that ρ(JA,zA) and
ρA(J, z) satisfy the same Wick’s theorem, so that all their
n-point functions agree, so they must be equal.

The restricted covariance matrix satisfies

Tr
(
ρA(J, z) ξ̂rAξ̂

s
A

)
=

1

2
(GrsA + iΩrsA ) . (229)

The real bilinear form qrs is symmetric for bosons and
anti-symmetric for fermions. It can be compactly written
in terms of the restricted linear complex structure as

q =

{
−iωA arccoth (iJA) (bosons)

+igA arctanh (iJA) (fermions)

=

{
+ωA arccot (JA) (bosons)

−gA arctanh (JA) (fermions)

(230)

where ωA and gA are the restrictions of ω and g to A.
This follows from the respective structures discussed in
section III B.

We can use this basis to find an explicit representation
of the states with respect to the number operators n̂i
associated to this basis, namely



30

ρA =


∑∞
n1,··· ,nNA= 0

(∏NA
i=1

(tanh ri)
ni

cosh ri

)2

|n1, . . . , nNA〉 〈n1, . . . , nNA | (bosons)∑1
n1,··· ,nNA= 0

(∏NA
i=1

(tan ri)
ni

sec ri

)2

|n1, . . . , nNA〉 〈n1, . . . , nNA | (fermions)
. (231)

3. Entanglement entropy

Given a mixed Gaussian state ρ(J,z), we can compute
the von Neumann-entropy

S(ρ(J,z)) = −Tr(ρ(J,z) log ρ(J,z)) (232)

using the explicit representation of ρ(J,z) from (182) to
find

S(ρ) =
∣∣∣Tr(iJ argh iJ) + 1

4 log det
(

1+J2

4

)∣∣∣ , (233)

where we introduced the matrix function

argh(x) = 1
4 log

(
1+x
1−x

)2

=

{
arctanh(x) x ∈ [0, 1]

arccoth(x) x ∈ [1,∞)

(234)

applied to the restricted complex structure iJ . We can
read off the entanglement spectrum as eigenvalues of ρA
which allows the computation of entanglement entropy

SA and the Rényi entropy R
(α)
A of order α as

SA =

NA∑
i=1

(
cosh2 ri log cosh2 ri − sinh2 ri ln sinh2 ri

)
, R

(α)
A = 1

α−1

NA∑
i=1

log
(
cosh2α ri − sinh2α ri

)
(bosons)

SA = −
NA∑
i=1

(
cos2 ri log cos2 ri + sin2 ri log sin2 ri

)
, R

(α)
A = 1

1−α

NA∑
i=1

log
(
cos2α ri + sin2α ri

)
(fermions)

(235)

We can use the restricted complex structure JA to find a
particularly compact trace formula for the entanglement
entropy valid for both bosons and fermions, namely [53]

SA =

∣∣∣∣Tr

(
1A + iJA

2
log

∣∣∣∣1A + iJA
2

∣∣∣∣)∣∣∣∣ . (236)

Similarly, we can express the Rényi entropies of order 2
as simple determinants

R
(2)
A =

{
1
2 log |det iJA| (bosons)

− 1
2 log det

(
1A−J2

A

2

)
(fermions)

. (237)

The entanglement entropy is bounded from above for
fermions, due to the fact that the fermionic Hilbert space
is finite-dimensional. The maximally entangled state is
characterized by JA = 0, i.e., all eigenvalues λi vanish,
and we have SA = NA log 2 (assuming NA ≤ NB). For
bosons, the entanglement entropy is not bounded from
above and the maximally mixed state can only be reached
asymptotically, as it does not exist as a proper mixed
state. When we consider time-evolution, these proper-
ties are also reflected by the fact that fermionic Gaussian
states form a compact manifold, while bosonic Gaussian
states form a non-compact manifold. This leads to in-
teresting questions in the context of producing entangle-
ment through time evolution [17, 18, 53, 54].

The entanglement entropy of a non-Gaussian state will
in general also depend on higher n-point functions, so we
cannot use (236) anymore. Interestingly, if we perturb a
Gaussian state in a non-Gaussian way, the entanglement
entropy will at linear order only feel the Gaussian part of
the perturbation [55], so that we can use the linearization
of (236) to deduce the linear change

δSA = Tr

(
δSA(J)

δJ
δJ

)
(238)

via the first law of entanglement entropy [56–58].
For bosons, let us note that the entanglement entropy

does not depend on the displacement z of a state |J, z〉.
For fermions, we can expand formula (236) in JA to find
the power series

SA = NA log 2−
∞∑
n=1

Tr (iJA)2n

2n(2n− 1)
, (fermions) (239)

where we used that Tr(iJA)2n+1 = 0. This series con-
verges monotonously and absolutely. Moreover, any
truncation of this series provides both an upper and a
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lower bound given by

Sm+
A = NA log 2−

m∑
n=1

Tr (iJA)2n

2n(2n− 1)
,

Sm−A = NA

(
log 2−

∞∑
m+1

1
n(2n−1)

)
−

m∑
n=1

Tr (iJA)2n

2n(2n− 1)
,

which one deduces from the inequality 0 ≤ Tr[iJ ]2nA ≤
2NA. This inequality is a direct consquence from the fact
that the restricted complex structure [J ]A of a fermionic
state has purely imaginary eigenvalues ±iλ with 0 ≤ λ ≤
1, which we derived in [19].

The inequalities Sm−A ≤ SA ≤ Sm+
A have been used

in the context of typical entanglement of energy eigen-
states [19, 21, 22, 59–61], but are likely also useful in
other contexts.

4. Relative entropy

Given two mixed states ρ and σ, the relative entropy
S(ρ‖σ) is defined as

S(ρ‖σ) = Trρ(log ρ− log σ) . (240)

If both states are Gaussian states with respective com-
plex structures Jρ and Jσ, we can use (182) to find

S(ρ‖σ) =
∣∣∣Tr iJρ(argh iJσ − argh iJρ) + 1

4 log det
(

1+J2
σ

1+J2
ρ

)∣∣∣
(241)

where the ordering within the determinant does not mat-
ter, as the equation can be understood in terms of eigen-
values.

5. Circuit complexity

Circuit complexity is another quantum information-
theoretic quantity which has recently emerged as an in-
teresting field of research in the context of and hologra-
phy. Holography provides an approach to quantum grav-
ity where quantum field theory states on the boundary
of a spacetime can be related geometry inside the bulk of
the spacetime. This is also known as bulk-boundary cor-
respondence or AdS-CFT, as the spacetime is typically
assumed to be asymptotically anti-De Sitter (AdS) space
and the quantum field theory on the boundary is taken
to be a conformal field theory (CFT).

In this setting, it was noticed in [62–67] that cer-
tain geometric quantities computed in the bulk (such
as codimension-one boundary-anchored maximal vol-
umes and codimension-zero boundary-anchored causal
diamonds) behave similar as the difficulty of preparing
quantum states by applying a sequence of quantum op-
erations to a reference state [68]. So far, it has been an

open problem to make this observation concrete by iden-
tifying dual quantities on the boundary field theory that
match those computed in the bulk. However, there has
been some partial progress [69] by defining circuit com-
plexity for free quantum fields based on the number of

Gaussian transformations eεK̂i with Ki applied to a spa-
tially unentangled Gaussian reference state |JR〉 to reach
the entangled field theory vacuum

|JT〉 =

(
n∏
i=1

eεK̂i

)
|JR〉 (242)

as target state. The idea behind this definition is that
the circuit complexity (or circuit depth) is given by the

number of elementary gates eεK̂i applied to the reference
state. For this, it is important to require the normaliza-
tion condition

‖Ki‖2 =
1

2
Tr(KiGRK

ᵀ
i gR) = 1 , (243)

for the generators Ki, where GR and gR are the met-
ric associated to the reference state |JR〉. In the limit
ε → 0 and n → ∞, this becomes a path ordered expo-

nential S(M) = P exp
∫ 1

0
K̂(t)dt and we can approximate

nε ≈
∫ 1

0
‖K(t)‖dt by the length of the path. The circuit

complexity C(|JT〉 , |JR〉) is then defined as the minimum
over all paths, i.e., the geodesic distance between the
identity group element 1 and the closest point in the
equivalence class [M ] with JT = MJRM

−1.
As the above setup only describes the preparation of

Gaussian states, it can be understood as Gaussian circuit
complexity whose generalization to genuinely interacting
field theories has not been accomplished, so far. Above
minimization can be carried out analytically to find the
Gaussian circuit complexity to be given by

C(|JT〉 , |JR〉) =

√
|Tr log2(∆)|

8
(244)

in terms their relative complex structure ∆ = JTJ
−1
R , as

proven in [70] for fermions and in [71] for bosons. In-
terestingly, formula (244) also makes sense when defin-
ing circuit complexity for mixed Gaussian states using
the Fisher information geometry, as derived for bosons
in [72]. The geometry of Gaussian states was also used
to define the so-called complexity of purification (CoP),
where formula (244) is minimized over all Gaussian pu-
rifications of a given mixed Gaussian state [25, 73, 74].

B. Dynamics of stable quantum systems

We present compact equations for the full dynamics of
bosonic and fermionic Gaussian states under the evolu-
tion of time-independent quadratic Hamiltonians.
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1. Time-independent quadratic Hamiltonians

We consider the most general time-independent
quadratic Hamiltonian,

Ĥ =

{
1
2habξ̂

aξ̂b + faξ̂
a (bosons)

i
2habξ̂

aξ̂b (fermions)
. (245)

Due to commutation or anti-commutation relations, for
bosons and fermions respectively, only the symmetric or
antisymmetric part of hab will contribute to the physics,
while the other part only leads to a shift of the zero
point energy. We can define the Lie algebra generator
associated to the Hamiltonian as

Ka
b =

{
1
2Ωac(hcb + hbc) ∈ sp(2N,R) (bosons)

1
2G

ac(hcb − hbc) ∈ so(2N) (fermions)

(246)

In the bosonic case, the Hamiltonian is bounded from be-
low and the system is stable if hab is positive definite. In
the fermionic case, as the Hilbert space is finite dimen-
sional and the system is always stable.

In the stable case, the generator K can be put in stan-
dard form. One chooses a basis where Ω for bosons
and G for fermions is in its standard form (15) and
then use the group G, i.e., Sp(2N,R) for bosons and

O(2N,R) for fermions, to change to a new basis ξ̂a ≡
(q̂1, p̂1, · · · , q̂N , p̂N ) without modifying Ω or G to bring
K into the standard form

K
q,p≡

N⊕
i=1

(
0 εi
−εi 0

)
, (247)

where εi > 0. This is obviously possible for fermions,
because K ∈ so(2N,R) is antisymmetric with respect to
G, but it is also well-known that it can be done for bosons
if hab is positive definite as consequence of Williamson’s
theorem [44] (see App. B of [16] for a constructive proof).
The eigenvalues of K are thus ±iεi.

2. Dynamics of a Gaussian state

Under time evolution, quadratic Hamiltonians send
Gaussian states into Gaussian states (See Sec. III A).
Given an initial Gaussian state |J0, z0〉, the unitary time

evolution |J(t), z(t)〉 = U(t) |J0, z0〉 with U(t) = e−iĤt is
completely determined by the evolution of the two-point
correlation function,

〈J(t), z(t)| ξ̂aξ̂b |J(t), z(t)〉 =
1

2
(Gab(t) + i Ωab(t))+

+ za(t)zb(t) . (248)

Taking its time derivative, using the Schrödinger equa-
tion i ∂t |J(t), z(t)〉 = Ĥ |J(t), z(t)〉 and the relation be-

tween Kähler structures, one finds

J̇(t) = [K,J(t)] = KJ(t)− J(t)K ,

ża(t) = Ka
bz
b(t) + Ωabfb ,

(249)

which has solution

J(t) = M(t)J0M
−1(t) ,

z(t) = M(t)z0 +M(t)

∫ t

0

M−1(t′) Ωf dt′ ,
(250)

with M(t) = exp(Kt) the symplectic or orthogonal trans-
formation associated to the bosonic or fermionic dynam-
ics.

Time evolution is an example of the natural group ac-
tion of an element M ∈ G onto any Gaussian state |J〉
leading to |MJM−1〉. This forms a natural representa-
tion of the group G, but every Gaussian state |J〉 selects
an invariant subgroup

Sta|J〉 =
{
M ∈ G

∣∣MJM−1 = J
}

(251)

isomorphic to U(N). This group arises naturally as the
intersection

U(N) = SpΩ(2N,R) ∩OG(2N) ∩GLJ(N,C) (252)

for any triple (Ω, G, J) of Kähler structures. Technically,
this is only a proper representation on the space of Gaus-
sian quantum states ρ(J) = |J〉〈J |, while for Gaussian
state vectors |J〉 we need to take complex phases into ac-
count. The unitary subgroup generated by hermitian op-
erators Ĥ is in fact not given by G, but by its double cover
G which is given by metaplectic group Mp(2N,R) for
bosonic systems and the spin group Spin(N) for fermionic
systems.

The expressions (250), together with the results of
Sec. IV A, allow one to compute the time evolution of in-
formation theoretic quantities such as the entanglement
entropy.

3. Expectation value of the energy

The expectation value of the Hamiltonian on a Gaus-
sian state |J, z〉 can be easily computed using Wick’s the-
orem (See Sec. III A 2),

〈J, z|Ĥ|J, z〉 = c0 − 1
4Tr(KJ) + 1

2habz
azb + faz

a . (253)

The term c0 is independent of the state and is due to the
definition of the Hamiltonian (245),

c0 =

{
− 1

4habΩ
ab (bosons)

i
4habG

ab (fermions)
. (254)

The term Ecl = 1
2habz

azb + faz
a represents the energy

of a classical system with phase-space configuration za.
Lastly, the term EJ = 1

4Tr(KJ) has purely quantum
origin and depends on the complex structure defining the
Gaussian state.
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4. Ground state and vacuum correlations

Provided that hab is a positive definite bilinear form
on V for bosons and non-degenerate for fermions, the
system has a unique ground state |J0, z0〉. The complex
structure J0 and the shift z0 of the ground state can be
determined by minimizing the expectation value of the
energy (253) with respect to J and z. One finds

(J0)ab = |K−1|acKc
b and za0 = −(h−1)abfb , (255)

where |K|ab is the absolute value of K, which is best
defined in an eigenbasis18 Furthermore, we can plug this
into expression (253) to find the vacuum energy

E0 = c0 + 1
4Tr(|K|)− 1

2fa(h−1)abfb . (256)

As the eigenvalues of K are ±iεi and the ones of |K| are

εi appearing in pairs, such that 1
4Tr(|K|) = 1

2

∑N
i=1 εi.

It is immediate to check that the ground state |J0, z0〉
is an eigenstate of the Hamiltonian as it is stationary:
using (249) and (255) we see that J̇ = 0 as [K,J0] = 0
and ż = 0. Note that for fermionic systems, the condition
of stationarity is not sufficient to determine the ground
state as all energy eigenstates are Gaussian.

Having determined the vacuum associated to the stable
Hamiltonian (245), we can now express vacuum correla-
tions directly in terms of the Hamiltonian as

〈J0, z0| ξ̂aξ̂b |J0, z0〉 = (257)

=

{
1
2 (1 + i|K|−1K)ac iΩcb + za0z

b
0 (bosons)

1
2 (1 + i|K|−1K)acG

cb (fermions)

with K given in (246).

C. Dynamics of driven quantum systems

We extend our formalism to driven quantum systems
to describe the dynamics of bosonic and fermionic Gaus-
sian states for time-dependent quadratic Hamiltonians.
This also allows us to describe instantaneous and adia-
batic vacua, which play an important role in driven quan-
tum systems and quantum field theory in curved space-
time.

1. Quadratic time-dependent Hamiltonians

We consider the most general time-dependent
quadratic Hamiltonian,

Ĥ(t) =

{
1
2hab(t)ξ̂

aξ̂b + fa(t)ξ̂a (bosons)

i
2hab(t)ξ̂

aξ̂b (fermions)
(258)

18 As the eigenvalues of K are ±iεi, we have also |K|2 = −K2 > 0.

where both hab(t) and fa(t) depend on time. We as-
sume hab(t) to be symmetric for bosons and antisym-
metric for fermions, therefore dropping an unimportant
time-dependent function of time that can be added to the
Hamiltonian. We can then define the time-dependent Lie
algebra generator associated to the Hamiltonian as

Ka
b(t) =

{
Ωachcb(t) ∈ sp(2N,R) (bosons)

Gachcb(t) ∈ so(2N) (fermions)
(259)

We assume that the Hamiltonian is instantaneously sta-
ble, i.e., in the bosonic case hab(t) is positive definite for
all t. As a result the eigenvalues of Ka

b(t) come in pairs
±iεi(t). Note that in general both the eigenvalues and
the eigenvectors of Ka

b(t) have a non-trivial time de-
pendence and a transformation that puts Ka

b(t) in the
standard form (247) at a time, fails to do it at a different
time.

2. Dynamics of a Gaussian state

The unitary time evolution of an initial Gaussian state,

|J(t), z(t)〉 = U(t, t0) |J0, z0〉 , (260)

with

U(t, t0) = T e
−i
∫ t
t0
Ĥ(t′)dt′

, (261)

is completely determined by the evolution of the two-
point correlation function defined as in (248). Tak-
ing its time derivative, using the Schrödinger’s equation
i ∂t |J(t), z(t)〉 = Ĥ(t) |J(t), z(t)〉 and the relation be-
tween Kähler structures, one finds

J̇(t) = [K(t), J(t)] ,

ża(t) = Ka
b(t)z

b(t) + Ωabfb(t) ,
(262)

which has solution

J(t) = M(t, t0)J(t0)M−1(t, t0) , (263)

z(t) = M(t, t0)z(t0) +M(t, t0)

∫ t

t0

M−1(t′, t0) k(t′) dt′ ,

where

M(t, t0) = T exp(
∫ t
t0
K(t′)dt′) (264)

is the symplectic or orthogonal transformation associ-
ated to the bosonic or fermionic dynamics, expressed
as a time-ordered exponential. Furthermore, for bosons
ka(t) = Ωabfb(t).

3. Instantaneous and adiabatic vacua

In the general time-dependent case there is no absolute
notion of vacuum. However, as we have assumed that
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TABLE V. Applications. This table summarizes and compares our methods to computed properties of bosonic and fermionic
Gaussian states using Kähler structures covered in section IV.

structure bosons fermions

von Neumann entropy S(ρ(J,z)) =
∣∣∣Tr
(
1A+iJA

2
log
∣∣∣1A+iJA

2

∣∣∣)∣∣∣
Restricted

complex structure JA
JA ≡

NA⊕
i=1

 0 cosh 2ri

− cosh 2ri 0

 JA ≡
NA⊕
i=1

 0 cos 2ri

− cos 2ri 0


entanglement entropy SA =

NA∑
i=1

(
cosh2 ri log cosh2 ri − sinh2 ri log sinh2 ri

)
SA = −

NA∑
i=1

(
cos2 ri log cos2 ri + sin2 ri log sin2 ri

)
entanglement entropy

trace formula
SA = Tr

(
1A+iJA

2
log
∣∣∣1A+iJA

2

∣∣∣) SA = −Tr
(
1A+iJA

2
log 1A+iJA

2

)
Rényi entropy

of order n
R

(n)
A =

1

n− 1

NA∑
i=1

log
(
cosh2n ri − sinh2n ri

)
R

(n)
A = −

1

n− 1

NA∑
i=1

log
(
cos2n ri + sin2n ri

)
Rényi entropy

of order 2
R

(2)
A =

1

2
log | det iJA| R

(2)
A = −

1

2
log det

(
1A − J2

A

2

)

relative entropy S(ρ‖σ) =

∣∣∣∣Tr iJρ(argh iJσ − argh iJρ) + 1
4

log det

(
1+J2

σ
1+J2

ρ

)∣∣∣∣ with argh(x) = 1
4

log
(

1+x
1−x

)2

circuit complexity C(|JT〉 , |JR〉) =
√

1
8
|Tr log2(∆)| with ∆ = JTJ

−1
R

Hamiltonian Ĥ(t) = 1
2
h(t)abξ̂

aξ̂b + f(t)aξ̂a Ĥ(t) = i
2
h(t)abξ̂

aξ̂b

generator Ka
b(t) = Ωachcb(t) Ka

b(t) = Gachcb(t)

equations of motion J̇(t) = [K(t), J(t)] = K(t)J(t)− J(t)K(t) and ż(t) = K(t)z(t) + Ωabfb(t)

classical solutions
J(t) = M(t)J0M−1(t) and z(t) = M(t)z0 +M(t)

∫ t
0 M

−1(t′) k(t′) dt′

with ka = Ωabfb(t) and M(t) = T exp
(∫ t

0 K(t′)dt′
)

ground state |J0, z0〉 J0 = |K|−1K and z0 = −(h−1)abfb

ground state energy
E0 = c0 + 1

4
Tr(|K|)− 1

2
fa(h−1)abfb with

c0 = − 1
2
habΩ

ab c0 = i
4
habG

ab

adiabatic vacua |J(m)
t , z

(m)
t 〉 λ J̇

(m)
t = [K(t), J

(m)
t ], J

(m)
t

2 = −1 and λ ż
(m)
t = K(t)z

(m)
t + Ωf(t)

vacuum subtraction δE(t)|(m) = − 1
4

Tr
(
K(t)

(
J(t)− J(m)

t

))

the system is instantaneously stable, we can define the
instantaneous vacuum at the time t as the Gaussian state
|J (0)
t , z

(0)
t 〉 with complex structure and shift defined as in

(255),

J
(0)
t = |K(t)|−1K(t) and z

(0)
t = −h−1(t)f(t) . (265)

Note that, under time evolution, the instantaneous vac-
uum does not evolve into the instantaneous vacuum, i.e.,

U(t2, t1) |J (0)
t1 , z

(0)
t1 〉 6= |J

(0)
t2 , z

(0)
t2 〉.

The instantaneous vacuum is the starting point for
the definition of the notion of adiabatic vacua of order
m. Adiabatic vacua arise in the context of driven slowly
changing systems, where one can identify a small param-
eter λ characterizing the time dependence. They play an
important role in quantum field theory in curved space-
time and cosmology [4, 32, 75, 76], where they are natural
candidates for initial states in dynamical background ge-
ometries. Interestingly, the concept is intimately linked
to the so-called Lewis–Riesenfeld invariants [77], where

the adiabatic state can be related to certain time de-
pendent operators. In the context of Gaussian adiabatic

states |J (∞)
t , z

(∞)
t 〉, this invariant operator turns out to

be the respective number operator N̂
J

(∞)
t

defined in (93).

We introduce a notion of adiabatic vacuum for bosons
and fermions defined directly in terms of Kähler struc-
tures. The notion is adapted to the time-dependent
Hamiltonian (258) and to a choice of reference time t.
We start from the definition of instantaneous vacuum
(265) and introduce the ansatz

J
(m)
t = J

(0)
t +

m∑
n=1

An(t)λn , (266)

z
(m)
t = z

(0)
t +

m∑
n=1

ζn(t)λn (267)

for the adiabatic vacuum |J (m)
t , z

(m)
t 〉 at order m. By

requiring that the following two conditions (the first due

to the dynamics (262) and the second imposing that J
(m)
t
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is a complex structure)

λ∂tJ
(m)
t = [K(t), J

(m)
t ] and (J

(m)
t )2 = −1 , (268)

are satisfied at the time t and at each order in λ, we
can determined Jm and zm by solving algebraically the
equations

[K,An] = Ȧn−1

{J (0)
t , An} = − (A1An−1 + . . .+An−1A1)

(269)

evaluated at time t for An(t) in terms of Ȧn−1(t) and

λ∂t zt
(m) = K(t)z

(m)
t + Ωf(t) . (270)

The adiabatic vacuum of order m at the time t0 is then

obtained as the Gaussian state |J (m)
t0 , z

(m)
t0 〉 associated to

J
(m)
t0 and z

(m)
t0 by setting λ = 1.

In general the series is only asymptotic in λ and does
not converge. When the series converges in the limit
m → ∞, we can define the exact adiabatic vacuum

|J (∞)
t0 z

(∞)
t0 〉 = limm→∞ |J (m)

t0 , z
(m)
t0 〉 at time t0. In this

case, the time evolution under Ĥ(t) evolves the adia-

batic vacuum |J (∞)
t0 z

(∞)
t0 〉 into |J (∞)

t z
(∞)
t 〉 at later times.

Of course, this is only possible for special cases where
Ĥ(t) is an analytical function of t.

4. Time-dependent vacuum subtraction

In a stable time-independent system, the vacuum en-
ergy can be simply subtracted once and for all from the
energy of the system. For instance, assuming for simplic-
ity fa = 0 in (245), we have

δE = 〈J | Ĥ |J〉−〈J0| Ĥ |J0〉 = − 1
4Tr
(
K(J−J0)

)
, (271)

where the vacuum complex structure is J0 = |K|−1K and
we have used (253), (256). This vacuum subtraction cor-
responds to the procedure of putting the Hamiltonian in
standard form and then normal ordering the associated
creation and annihilation operators.

On the other hand, in the time dependent case (258),
there is no standard notion of normal ordering but there
is still a well defined notion of vacuum subtraction asso-
ciated to the adiabatic vacuum |J (m)

t 〉 of order m at the
time t,

δE(t)|(m) = 〈J(t)| Ĥ(t) |J(t)〉 − 〈J (m)
t | Ĥ(t) |J (m)

t 〉

= − 1
4Tr
(
K(t)

(
J(t)− J (m)

t

))
. (272)

Note that, while the complex structure of the state |J(t)〉
evolves as J(t) = M(t, t0)J(t0)M−1(t, t0), the complex
structure of the adiabatic vacuum is computed at the
time t directly from K(t) and its time derivatives via

(269). In particular, J
(m)
t 6= M(t, t0)J

(m)
t0 M−1(t, t0).

This adiabatic subtraction is well defined for the expec-
tation value of all operators and plays an important role
in the renormalization of the energy-momentum tensor
in cosmological spacetimes [4, 32, 75, 76].

The formula (241) provides us also with a tool for com-
puting the relative entanglement entropy of a Gaussian

state |J(t)〉 with respect to the adiabatic vacuum |J (m)
t 〉

at the time t,

SA(J(t)‖J (m)
t ) =

∣∣∣Tr iJA(t)(argh iJ
(m)
tA − argh iJA(t)) +

+ 1
4 log det

(
1+J

(m)
tA

2

1+J2
A(t)

)∣∣∣∣ . (273)

V. SUMMARY AND DISCUSSION

In applications to quantum information, Gaussian
states are often described in a covariance matrix formal-
ism [1–3]. In sections II and III we have presented a
comprehensive introduction to the description of Gaus-
sian states in terms of Kähler structures developed in
the mathematical literature on quantization [7–9] and on
quantum fields in curved spacetimes [10]. Here we have
adopted a language and selected aspects that are tai-
lored to applications in quantum information and non-
equilibrium physics. Following [7], we characterize pure
and mixed, bosonic and fermionic Gaussian states by re-
lating them to a triangle of Kähler structures (G,Ω, J)
on the classical phase space and its dual. The key in-
sight is that bosonic and fermionic Gaussian states can
be parametrized by a linear complex structure Jab in a
unified manner. Before discussing applications to quan-
tum information, let us highlight what we believe to be
the main advantages of describing Gaussian states in this
mathematical formalism:

Gaussian states and complex structure. The for-
malism is arguably best encapsulated by the equation

(1− iJ)ab(ξ̂ − z)b |J, z〉 = 0 , (274)

from which J2 = −1 and the compatibility conditions of
(G,Ω, J) can be derived for pure Gaussian states. We
showed how for both, bosonic and fermionic Gaussian
states, compatible Kähler structures turn the classical
phase space V into a complex vector space with inner
product 〈v, u〉, known as the single-particle Hilbert space.
In contrast, we found that mixed Gaussian states ρ =

e−Q̂ are characterized by G and Ω, whose incompatibility
is quantified by the failure of J2 to be equal to −1.

Phase space covariance. We put particular empha-
sis on ensuring that all our equations are independent of
the chosen basis of V and V ∗, what is often referred to
as covariant equations. This is in contrast to the typical
treatment, where one often chooses either the Hermitian

basis (we indicate by
q,p≡) or the ladder operator basis

(we indicate by
a,a†≡). For example, we have Ω

q,p≡ −ω for
bosons, i.e., the matrix representation of inverse sym-
plectic form ω only picks up a sign in this basis, but this
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relation breaks down when we move to a different basis
or consider fermionic states. While we provided a com-
prehensive list of examples, where we give the respective
equations in both bases, we were careful to present all
equations as covariant tensor equations using Einstein’s
summation convention and Penrose’s abstract index no-
tation (see appendix A 1). In this context, we also in-
troduced the notion of phase space covariant ladder op-

erators ξ̂a±, which allowed us to give a rather compact
derivation of a basis-independent Wick’s theorem.

Relative complex structure ∆. When comparing
two different Gaussian states |J, z〉 and |J̃ , z̃〉, we found

that it is natural to define the object ∆ = −J̃J , which
we call the relative complex structure. It provides a
basis-independent way to characterize the relationship
between the two states (apart from the displacement
z− z̃) and we derived various properties of its spectrum,
its utility when constructing the Cartan decomposition
and how it appears naturally when studying unitary
inequivalence of Fock spaces in field theory. It was
brought to our attention that [7] defines the same object
under the name of k for bosons and fermions in the
context of the Cartan decomposition, also known as
j-polar decomposition.

While these methods are well-known in mathematical
physics, they have not been broadly applied in quan-
tum information and out-of-equilibrium quantum sys-
tems. We believe that this manuscript can help to estab-
lish a link between these fields by providing comprehen-
sive review of the methods and demonstrating their ver-
satility in practical applications. In sections IV A, IV B
and IV C, we have shown how Kähler structures provide
a powerful tool for studying (A) entanglement and com-
plexity for the vacuum and the adiabatic vacuum of (B)
stable and of (C) driven quantum systems in bosonic and
fermionic Gaussian states. In particular, we have shown
concretely how quantities such as the entanglement en-
tropy of a Gaussian state, and its time dependence in
a driven quantum system, can be expressed in terms of
Kähler structures. The table V provides a comprehen-
sive overview of our results that compare bosonic and
fermionic expressions side-by-side and hope to be useful
for many readers. Remarkably, various formulas (e.g.,
for von Neumann entropy and circuit complex) take the
same form for bosons and fermions when expressed in
terms of J .

We believe that the presented formalism provides a
starting point for future studies of Gaussian states from
a mathematical physics perspective with applications
in various research field. In fact, some of our meth-
ods have already been used to study entanglement pro-
duction [17, 18, 53, 54], entanglement of energy eigen-
states [19, 21, 22], variational methods [24, 34] and circuit
complexity [70, 71, 73]. We also expect that our results
are particularly useful for the study of generalized Gaus-
sian states, as defined in [24, 39, 40], where we allow for
certain non-Gaussian unitaries to entangle bosonic and

fermionic degrees of freedom in the initially unentangled
Gaussian state.

As outlined in section IV C 3, Kähler structures also
provide a powerful tool to compute so-called adiabatic
vacua, i.e., states that change the least under the time
evolution of time-dependent Hamiltonians. They play an
important role in quantum field theory of curved space-
time and cosmology, but also in the context of the so-
called Lewis-Riesenfeld invariants [77]. The traditional
approach relies on WKB approximations and works for
well for translationally invariant field theories, but treat-
ing more complicated systems is difficult, when the time
dependent Hamiltonian does not split over individual
(momentum) degrees of freedom. The formal power se-
ries presented in this manuscript reduces the problem
to solving sets of algebraic equations iteratively, whose
applications to concrete models in cosmology we will
present elsewhere.

Another interesting avenue for the presented formalism
would be to extend it to discrete phase spaces and stabi-
lizer states. Quantum degrees of freedom are often classi-
fied as bosonic, fermionic or as being spin. For the former
two, we have the important classes of Gaussian states,
which we can characterize in the unified framework based
on Kähler structures presented in this manuscript. On
the other hand, spin degrees of freedom with d levels are
also known as qudits (generalization of qubit) and there
is the well-known class of so called stabilizer states [78].
They are characterized by their eigenvalues with respect
to certain spin operators (Pauli matrices) and play an
important role in the context of quantum computation.
Over the last few years, there has been substantial evi-
dence that stabilizer states are the analogues of Gaussian
states for spin system [79, 80], but this connection has not
been made mathematically precise. What is well under-
stood is that there is a discrete phase space formulation
for qudits, which largely resembles the case of bosonic
Gaussian states. In particular, there is a discrete ana-
logue of the symplectic form, which for bosons governs
the commutation relations. This is peculiar as spins are
neither bosonic nor fermionic. It would thus be interest-
ing to explore if there is an equivalent fermionic phase
space formulation for spins, which resembles the case of
fermionic Gaussian states (positive definite form instead
of symplectic form). This leads to the natural question:
Can we extend our unifying framework of Kähler struc-
tures to spin systems, where the analogous structure may
be suitable to parametrize stabilizer states efficiently?
Finding new results in this direction will be challenging,
but if successful it may be directly relevant for algorithms
and error correction in quantum computing.
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Appendix A: Conventions and notation

In this appendix, we review the conventions and nota-
tion used in this manuscript. The goal of our formalism is
to be largely self-explanatory with an easy conversion be-
tween abstract objects (vectors, tensors, operators) and
their numerical representation (lists, matrices, arrays).
Note that this appendix largely resembles the one in [24].

1. Abstract index notation

Throughout this paper, all equations containing in-
dices follow the conventions of abstract index notation.
This formalism is commonly used in the research field of
general relativity and gravity, where differential geometry
plays an important role, but we believe that it is also of
great benefit when studying the geometry of variational
manifolds.

The formalism is suitable to conveniently keep track
of tensors built on a vector space. Given a finite dimen-
sional real vector space V with dual V ∗, a (r, s)-tensor T
is a linear map

T : V ∗ × · · · × V ∗ × V × · · · × V → R . (A1)

In particular, a (1, 0)-tensor is a vector, a (0, 1)-tensor is
a dual vector and a (1, 1)-tensor is a linear map. To keep
track of the type of tensor, abstract index notation refers
to the (r, s)-tensor T as T a1···ar

b1···bs , i.e., we assign r
upper indices and s lower indices. Typically, we choose
the indices from some alphabet to indicate which vector
space, we are referring to. For the classical phase space V
and its dual V ∗, we use consistently Latin letters a, b, c.

The key advantage of abstract index notation in the
context of variational manifolds is that it helps us to keep
track of what types of tensors, we are dealing with and
which contractions are allowed. Apart from vectors Xa

and dual vectors wa, we are mostly dealing with tensors
that have two indices, namely linear maps Jab, bilinear
forms gab and dual bilinear forms Ωab

In the present paper, we often deal with linear maps
and bilinear form, i.e., tensors that have two indices.
They are naturally represented as matrices, in particular,
for numerical evaluation. For convenience, we will also
use the notation, where tensors with suppressed indices
are implied to be contracted, just as standard matrix
multiplication works. Obviously, this means that only
such expressions are allowed where the adjacent indices
are given by one upper and one lower index.

2. Special tensors and tensor operations

In the following, we review common matrix and tensor
operations and emphasize how they are defined if we do
not have a natural identification between a vector space
and its dual space. This highlights that certain formulas
involving matrix operations (such as computing deter-
minants, traces, eigenvalues or transposes) are only well
defined in certain cases, i.e., if the respective matrix rep-
resents a linear map in some cases or bilinear form in
other cases.

Identity. Every vector space V comes with the canon-
ical identity map δab satisfying δabX

a = Xa. Note that
the notation 1ab would also be consistent, but we stayed
with the commonly used Kronecker delta. There does
not exist a canonical analogue as bilinear form, e.g., a
form δab or δab which only make sense with respect to a
specific basis and are therefore not canonical, but rather
a specific choice, such as a metric gab.

Transformation rules. An invertible linear map
Ma

b : V → V of the vector space V acts on a general
(r, s)-tensor T a1···ar

b1···bs and transforms it to

Ma1
c1 · · ·Mar

cr (M
−1)d1

b1 · · · (M−1)dsbsT
c1···cr

d1···ds
(A2)

In particular, a vector Xa transforms as Ma
bX

b,
a dual vector wa as wb(M

−1)ba, a dual bilinear
form Sab as Ma

cB
cd(Mᵀ)d

b, a bilinear form sab
as (M−1ᵀ)a

cbcd(M
−1)db and a linear map Ka

b as
Ma

cK
d
d(M

−1)db.
Determinant. The determinant det (M) is only well-

defined for a linear map Ma
b. The determinant of a

bilinear form sab or Sab is ill defined, unless we have a
reference object, such as a metric gab or Gab. Then, we
can compute the determinant of the matrix of the linear
maps Sacgcb or Gacscb.

Trace. The trace tr(M) = Ma
a is only defined for a

linear map, not for bilinear forms Sab or sab, unless we
again have a reference object, such as a metric.

Eigenvalues. Without additional structures, we can
only defined eigenvalues for a linear map Ma

b, where an
eigenvalue λ associated to an eigenvector Xa satisfies

Ma
bX

b = λXb . (A3)

This is well-known from linear algebra. A bilinear form
Xab does not have intrinsic eigenvalues, but we can com-
pute its eigenvalues relative to another bilinear form.
Given a bilinear form sab and a metric Gab or symplectic
form Ωab, we can define the metric or symplectic eigen-
values as the regular eigenvalues of the linear map Gacscb
or Ωacscb, respectively.

Functions. Given a scalar function f and a linear
map Ma

b, we can define the matrix function f(M) in
the following ways: First, if M is diagonalizable, we can
apply to each eigenvalue individually. This may require
f to be define on the whole complex plane if the eigen-
values can be complex. Second, we often only consider
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analytical functions f , in which case we can also define
f(M) by its power series, so that f(M) is even defined
for non-diagonalizable M . Note that there is no canoni-
cal way to apply a function f to a bilinear form, such as
Gab or Ωab, unless we give a procedure to first convert
the form into a linear map (e.g., by contraction with an
inverse bilinear form), then apply the function in the pre-
viously described way and then convert back to a bilinear
form.

Transpose. The transpose of a linear map Ma
b : V →

V is the map (Mᵀ)a
b : V ∗ → V ∗. We have the relation

(Mᵀ)a
b = M b

a, which means that the two represent the
same tensor and typically one does not distinguish be-
tween the two in abstract index notation. However, for
our shorthand notation, it is important to keep the order
of indices in right order. From the perspective of abstract
index notation, there is not really much point to use the
transpose operation, but we will still write the respective
expressions for convenience, so that they can be easily
converted to matrix expressions, e.g., for numerical im-
plementations.

3. Common formulas

Given a triangle of Kähler structures (G,Ω, J) with in-
verses (g, ω,−J), we have the following relations. We list
them both in abstract index notation and in shorthand
notation:

−J2 = 1 ⇔ −JacJcb = δab , (A4)

−(Jᵀ)2 = 1ᵀ ⇔ −(Jᵀ)a
c(Jᵀ)c

b = δa
b , (A5)

−J−1 = J ⇔ −(J−1)ab = Jab , (A6)

JΩJᵀ = Ω ⇔ JacΩ
cd(Jᵀ)d

b = Ωab , (A7)

−ΩJᵀ = JΩ ⇔ −Ωac(Jᵀ)c
b = JacΩ

cb , (A8)

JGJᵀ = G ⇔ JacG
cd(Jᵀ)d

b = Gab , (A9)

−GJᵀ = JG ⇔ −Gac(Jᵀ)c
b = JacG

cb , (A10)

ΩJᵀ = G ⇔ Ωac(Jᵀ)c
b = Gab , (A11)

−JΩ = G ⇔ −JacΩcb = Gab , (A12)

Ωω = 1 ⇔ Ωacωcb = δab , (A13)

ωΩ = 1ᵀ ⇔ ωacΩ
cb = δa

b , (A14)

Gg = 1 ⇔ Gacgcb = δab , (A15)

gG = 1ᵀ ⇔ gacG
cb = δa

b , (A16)

−ωGω = g ⇔ −ωacGcdΩdb = gab , (A17)

−gΩg = ω ⇔ −gacΩcdGdb = ωab , (A18)

Ωg = J ⇔ Ωacgcb = Jab , (A19)

−Gω = J ⇔ −Gacωcb = Jab , (A20)

−Ωᵀ = Ω ⇔ −Ωba = Ωab , (A21)

Gᵀ = G ⇔ Gba = Gab . (A22)

A symplectic group element Ma
b ∈ Sp(2N,R) and a

symplectic algebra element Ka
b ∈ sp(2N,R) are char-

acterized by the following properties:

MΩMᵀ = Ω ⇔ Ma
cΩ

cd(Mᵀ)d
b = Ωab , (A23)

ΩMᵀω = M−1 ⇔ Ωac(Mᵀ)c
dωdb = (M−1)ab , (A24)

−ΩKᵀ = KΩ ⇔ −Ωac(Kᵀ)c
b = Ka

cΩ
b . (A25)

An orthogonal group element Ma
b ∈ O(2N) and an or-

thogonal algebra element Ka
b ∈ so(2N) are character-

ized by the following properties:

MGMᵀ = G ⇔Ma
cG

cd(Mᵀ)d
b = Gab , (A26)

GMᵀg = M−1 ⇔ Gac(Mᵀ)c
dgdb = (M−1)ab , (A27)

−GKᵀ = KG ⇔ −Gac(Kᵀ)c
b = Ka

cG
b . (A28)
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