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Abstract

We consider the exact time-evolution of a broad class of fermionic open quan-
tum systems with both strong interactions and strong coupling to wide-band
reservoirs. We present a nontrivial fermionic duality relation between the evo-
lution of states (Schrödinger) and of observables (Heisenberg). We show how
this highly nonintuitive relation can be understood and exploited in analytical
calculations within all canonical approaches to quantum dynamics, covering
Kraus measurement operators, the Choi-Jamio lkowski state, time-convolution
and convolutionless quantum master equations and generalized Lindblad jump
operators. We discuss the insights this offers into the divisibility and causal
structure of the dynamics and the application to nonperturbative Markov ap-
proximations and their initial-slip corrections. Our results underscore that
predictions for fermionic models are already fixed by fundamental principles
to a much greater extent than previously thought.
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1 Introduction

The dynamics of open quantum systems is a problem of interest in a range of research
fields. Their higher complexity as compared to closed systems evolving unitarily continues
to motivate the development of new frameworks and approximation schemes to make
further progress. Complementary to this, it has become more important to maximally
reduce this complexity within existing well-developed approaches using basic symmetries
and other general structures, see, e.g., Ref. [1] and references therein. For closed quantum
systems, simplification by exploiting symmetries for some fixed set of system parameters
is a highly developed subject and builds on the unitarity of transformations and the
corresponding Hermicity of its generators. When turning to dynamics of open systems
one runs into interesting new problems because the latter properties are lost in a reduced
description.

In this paper we instead consider a different kind of simplification offered by a duality
mapping in which the dynamics of a fermionic open system of interest is associated in a
simple way to the dynamics of a similar system governed by different parameters.

What is fermionic duality? The idea of the duality mapping is particularly easy to
describe for a closed quantum system evolving unitarily with a time-constant Hamilto-
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nian H. In this case the mapping explicitly constructs the adjoint Heisenberg evolution
(superscript H) from the Schrödinger one by a substitution of physical parameters:

UH(t) := eiH
Ht = U(t)† = eiHt = e−iH̄t =: Ū(t). (1)

We will denote such a parameter mapping by an overbar. In the present simple example
of a duality, the required relation between the Hamiltonian evolution generators,

HH = H = −H̄, (2)

is achieved by inverting the signs of all energies H → −H: all local energies, all hopping
amplitudes and all many-body interactions. To motivate this duality mapping consider
the computation of the evolution of an arbitrary state, |ψ(t)〉 =

∑
i |ui〉ui(t)〈ui|ψ(0)〉

which requires both the right eigenvectors {|ui〉} of U(t) and its left eigenvectors {〈ui|}.
Equivalently, one needs the right eigenvectors of U(t) and of UH(t) = Ū(t) where we
consider the Heisenberg evolution “as” a Schrödinger evolution at different parameter
values. The duality mapping (1) makes explicit that these two sets of eigenvectors are
related in a simple way through their parameter dependence allowing unnecessary algebra
to be bypassed.

Having outlined the key idea, we immediately observe that for closed systems with
time-constant H this trick is completely pointless because there is an obvious shortcut:
the eigenvectors of U(t) are time-constant and coincide with the eigenvectors of H = H†

which are related by taking the Hermitian adjoint, 〈ui| = 〈hi| = [|hi〉]
† = [|ui〉]

†. Since
[H,U(t)] = 0, time-dependence arises only through the eigenvalues ui(t) = e−ihit where hi
are the constant energy eigenvalues. Also, one may hesitate to work with the Hamiltonian
H̄ since it is clearly unphysical : inverting energies destabilizes any physical system which
does not have an upper bound on its energy spectrum. Notably, for a fermionic system
with a finite number of modes this latter objection is not really an issue since its spectrum
is bounded by the Pauli exclusion principle.

However, when considering an open system with evolving density operator ρ(t) =
Π(t)ρ(0) the above mentioned shortcut completely breaks down. Although it turns out
that non-unitary open-system evolutions can still be generated time-locally [2–5] as ∂tρ(t) =
−iG(t)ρ(t), new problems arise because the generator is a time-dependent, non-Hermitian
superoperator G(t) 6= [G(t)]† even though the total system evolution is generated by a
time-constant, Hermitian Hamiltonian operator. Physically, these new complications de-
rive from memory (retardation) and dissipation effects, hallmarks of open-system dynam-
ics. They cause the left and right eigenvectors of the generator G(t) to be distinct, time-
dependent and different from the eigenvectors of the evolution propagator Π(t) which is
ultimately of interest: [G(t),Π(t)] 6= 0. This implies that for an open system the transfor-
mation between the Schrödinger and Heisenberg generators is highly nontrivial (Ref. [4],
p. 125) unlike the relation (2) for the underlying closed total system. An alternative simple
mapping between the Schrödinger and Heisenberg picture evolution would dramatically
simplify time-evolution calculations by providing a link between the left and right vectors.

Transposing the simple duality mapping for fermions from a closed to an open system
does not seem to be possible at first: it is unclear how to evaluate the average of the simple
relation (1) or (2) over the reservoir degrees of freedom (partial trace), even when making
specific microscopic model assumptions. This is in contrast to other closed-system duality
mappings [6–8] which are distinct from the one considered here [9]. It is therefore remark-
able that for a very large class of fermionic open systems there does exist a nontrivial and
useful extension of the duality which applies to the reduced time-evolution superoperator
Π(t). Anticipating its later detailed discussion [Eq. (23)], it provides an elegant formula

3



SciPost Physics Submission

for the adjoint Heisenberg evolution analogous to Eq. (1) [10]:

ΠH(t) :=
[
Π(t)

]†
= e−ΓtP Π̄(t)P. (3)

Here P is a linear transformation involving the fermion parity. Its presence hints at
fermion parity superselection—forbidding quantum superpositions of states with even and
odd fermion parity—as one fundamental principle on which the duality (3) is based [10].
Γ is the lump sum of microscopic tunneling constants—known by inspecting the under-
lying model Hamiltonian—and the overbar again denotes a parameter mapping. This
generalization of Eq. (1) is truly dissipative. For example, for a resonant level coupled
to a reservoir the parameter mapping inverts not only the sign of the level energy ε and
the electrochemical potential µ, but also the dissipative tunnel-rate constant Γ. The rela-
tion (3) was first derived in Ref. [10] without making weak coupling and / or “Markovian”
assumptions, requiring the techniques of Refs. [11–14] to explicitly consider all orders of the
expansion of Π(t) in the system-environment coupling. In the following we will denote this
direct consideration of the exact propagator Π(t) as approach (i) to duality. The involve-
ment of microscopic parameters and the applicability to dynamics with strong memory
effects sets apart the fermionic duality (3) from the dissipative PT-symmetry [Prosen 2012,
van Caspel 2018] which applies to the more restricted class of Lindblad quantum master
equations.

Applied to weakly coupled but locally interacting open systems, the fermionic dual-
ity (3) has already provided several interesting insights and predictions [10, 15–17]. For
example, the time-dependent response of a “kicked” quantum dot with repulsive Coulomb
interaction was shown to exhibit effects of electron-attraction. This surprising effect can
be nicely understood from the duality mapping which involves the inversion of the local
interaction parameter as in Eq. (2). This explains pronounced effects in the measurable
time-dependent heat current which is sensitive to interactions. The same formulas are
very difficult to understand directly in terms of the real repulsive interaction, but are eas-
ily rationalized by electron-pairing induced by the attraction in the fictitious dual system
defined by the duality mapping. More generally, the thermoelectric response of a quantum
dot—although studied long ago—entails several features that turned out to have a very
simple explanation in terms of an effective attractive model that is dual to the repulsive
system of interest [15,16]. Conversely, it was also shown that the response of a physically
attractive system can be understood better by exploiting its repulsive dual system [17].
These conclusions hold even beyond linear response to electro-thermal biases where, e.g.,
Onsager relations no longer apply, and the effects can be understood by extending the
weak-coupling fermionic duality beyond the wide-band limit [16]. In all these cases, the
original system is analyzed by a dual system, an effective system with at worst unconven-
tional properties. Conversely, it was also shown that the response of a physically attractive
dual system can be understood better by exploiting its repulsive original system [17]. Thus
in the weak-coupling limit the duality can also be used in reverse.

Extension to other approaches. So far, these applications were in fact all based on a
different formulation of the duality which we will denote by approach (ii) in the following.
It differs from Eq. (3) by relying on the time-nonlocal quantum master equation (QME)
also called Nakajima-Zwanzig (NZ) [18,19] or time-convolution type QME. By introducing
a memory kernel it anticipates the time-convolution structure of the higher-order system-
reservoir coupling terms encountered in the microscopic derivation of the duality [10].
Whereas in the weak-coupling limit approach (ii) recovers various other types of quantum
master equations, for the interesting regime of stronger coupling it differs in essential
points. So far it has remained unclear what the implications of the fermionic duality
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are in general for other approaches to open-system dynamics. This problem is solved in
the present paper: besides extending the propagator approach (i) and the memory kernel
approach (ii), we establish the fermionic duality for three additional approaches which are
fundamentally different and complementary as we now outline.

(iii) The Sudarshan-Kraus or measurement-operator approach [20–22]—ubiquitous in
quantum-information theory—also directly addresses the time-evolution superoperator
Π(t). However, it is an operational approach which decomposes the evolution into inde-
pendent physical processes conditioned on possible outcomes of measurements performed
on the system’s environment. Theoretically, this has the distinct advantage that approx-
imations formulated in terms of these operational building blocks automatically preserve
the positivity of quantum states, also in the presence of initial entanglement with a ref-
erence system (complete positivity). From these measurement operators acting only on
the system one can furthermore compute the evolution of its effective environment and
quantify the exchange of information as illustrated in Ref. [23]. Barring special limits
where simpler Lindblad equations [24, 25] apply (Markovian semigroups), for most sys-
tems of interest the insights offered by this approach seem practically impossible to gain
in other formulations. The same applies to the so-called Choi-Jamio lkowski state, which
is closely related to the measurement-operator sum by a well-known isomorphism [26–28].
The microscopic calculation of Kraus operators has received recent attention [29–33] but
remains very difficult, motivating our search for analytic simplifications.

(iv) The time-convolutionless (TCL) or time-local quantum master equation approach
[2,3,34] has the advantage that it allows the Markovianity of the evolution to be scrutinized
more conveniently through the time-local generator G(t) mentioned earlier. It is thus
closely tied to the question of the divisibility of the dynamics [35,36]. In practice, time-local
QMEs also arise naturally from the time-nonlocal QMEs of approach (ii) when consistently
accounting for frequency dependence of the memory kernel in decay problems [37, 38]—
recently generalized in Ref. [5]—or in adiabatic expansions for situations with external
driving [9,39–41]. The microscopic calculation of G(t) is, however, very challenging making
additional analytic insights valuable [34, 42,43].

(v) The closely related jump-operator approach decomposes the time-local generator
G(t) into “quantum jumps” with intermittent renormalized Hamiltonian evolution occur-
ring at infinitesimal time steps. Although this is similar to the measurement-operator ap-
proach (iii) it provides distinct insights by primarily making the conditions for divisibility—
rather than complete positivity—explicit. Importantly, this approach is also at the basis
of the successful stochastic simulation method for open-system dynamics [44–51] and in-
cludes the familiar Markovian Lindblad QMEs as a special case. In the present work the
jump-operator approach is particularly interesting because it most explicitly generalizes
the closed-system duality (2) discussed above.

In none of the approaches (iii)–(v) the implications of fermionic duality have been
explored. Doing so is of particular interest since these methods are pivotal for the continued
fruitful application of ideas from quantum information theory to open-system dynamics [4,
50,52–56]. One should note that although approaches (i)–(v) are exactly equivalent, they
define completely different starting points for approximations and formal considerations.
Thus, having a formulation of fermionic duality in hand for each case will enable attaining
independent insights. This holds true even when applied to the simplest, explicitly solvable
transport model of a strongly coupled resonant level as was recently highlighted in Ref. [23]
and we will draw on this reference for illustration. Even though this model has been
studied for decades [57] the fermionic duality relations presented here went unnoticed.
Importantly, our results continue to hold for a large class of much more complicated
models whose detailed discussion is however beyond the present scope.
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Fermionic duality: Useful but unphysical? Before proceeding it is important to
neutralize two potential points of confusion. An immediate worry is that the fermionic
duality for open systems maps some physical parameters to unphysical values as noted
above. In fact, for open systems the unphysical destabilization of the system by inverting
the signs of all local energies discussed after Eq. (1) becomes more prominent. For one, the
duality mapping even makes the system-reservoir coupling Hamiltonian anti -Hermitian,
HT → iHT. Although no real physical parameters become imaginary, this does invert the
sign of all dissipative decay rates. As mentioned, for a resonant level this means that the
decay constant is inverted Γ → −Γ. This does not lead to divergent quantities since in the
duality relation (3) the negative decay rates are explicitly compensated by an exponentially
decaying prefactor e−Γt. Moreover, in the weak coupling limit close inspection reveals [10]
that one can use fermionic duality to set up a relation between two dual physical systems
which both have nonnegative decay constants but otherwise different physical parameters.
This simplification facilitated the applications in the weak coupling limit cited earlier. In
the present paper we will, however, focus on the general case of strong coupling where this
simplification fails1 and this non-physicality must be confronted. We will furthermore show
that the anti-Hermitian coupling Hamiltonian causes Π̄(t) to violate complete positivity. In
the duality relation (3) this is compensated by the parity transformation P. Although this
may sound disastrous at first, it will become clear that in none of the discussed approaches
these unintuitive features limit the practical usefulness of fermionic duality.

We will show that the anti-Hermitian coupling Hamiltonian causes the reduced dynam-
ics Π̄(t) to violate complete positivity, giving a clear operational meaning to the vague
notion of an “unphysical” system. This is important since it will allow us to identify which
contributions to the evolution of the dual system are unavoidably unphysical, a question
that cannot be answered directly using the original derivation of the duality in Ref. [10].
Instead, by leaving aside the derivation and only considering the duality relation (3) as
such, this paper shows that the loss of complete positivity is associated with the fermionic
parity transformation P, a key ingredient of the duality. Hence, unlike in the weak cou-
pling limit, the dual evolution has no statistical meaning anymore and one can no longer
refer to an effective, physical dual system which simulates the original system. Although
this may sound disastrous at first, it will become clear that in none of the discussed ap-
proaches these unintuitive features of fermionic duality limit its practical usefulness. Since
in each of these approaches the fundamental property of complete positivity is expressed—
if at all—by different constraints, a careful discussion what is unphysical about the dual
equations will be a recurring side-theme. It will emerge that the general unphysicality
of fermionic duality is instead of an artifact a key feature unveiling its unconventional
insights as compared to ordinary symmetries, see Sec. 6.

One should also realize To avoid confusion about the domain of applicability we note
that the fermionic duality (3) is primarily important for analytical calculations where
one obtains some quantities of interest as functions of physical parameters. By a simple
substitution of parameters it allows one to bypass very complicated and nonintuitive al-
gebra. The ultimate importance of fermionic duality lies therein that this simplification
allows the analysis of physical effects [10, 15–17] to be pushed much further. Unlike do-
ing algebra, solution by parameter substitution has the advantage that it preserves the
compact form of an expression that has already been calculated, simplified and physically
well-understood. For example, it makes explicit which quantities have a similar functional
dependence: if one knows that some contribution is an exponential function of time then
generically the dual contribution obtained by a parameter substitution is exponential as
well. Loosely speaking, one can thus distinguish individual nontrivial contributions to

1see footnote 20 at Eq. (70).
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Table 1: Duality relations for the approaches numbered (i)–(v) mentioned in the in-
troduction. By != we indicate equalities that are valid only in the special case where
the evolution commutes with its generator, [G(t),Π(t)] = 0, which includes the weak-
coupling limit where Π(t) = e−iGt with constant G. Hat denotes the Laplace transform
f̂(ω) =

∫∞

0 dteiωtf(t). Bar denotes the duality mapping of parameters which effects
H → −H, HT → iHT and µr → −µr. I is the identity superoperator.

Finite evolution approaches Infinitesimal evolution approaches

Super-
operator
approaches

(i) Propagator Π(t) [Sec. 3.1]

Π(t)† = ΠH(t)

= e−ΓtP Π̄(t)P

Π̂(−ω∗)† = Π̂H(ω)

= P ̂̄Π(ω + iΓ)P

(ii) Time-nonlocal memory kernel [Sec. 4.3][
K(t)

]†
= KH(t)

= iΓ I δ(t)− e−ΓtP K̄(t)P

K̂(−ω∗)† = K̂H(ω) = iΓ− P ̂̄K(ω + iΓ)P

(iv) Time-local generator [Sec. 4.1]

G(t)†
!
= GH(t) =

[
Π(t)−1G(t)Π(t)

]†

= iΓ I − P Ḡ(t)P

Operational
approaches

(iii) Measurement operators
[Sec. 3.2]
Mα(t)

† = M̄α′(t)
mα(t) = e−Γt(−1)Nα′ m̄α′(t)

(v) Jump operators and
effective Hamiltonian [Sec. 4.2]

Jα(t)
† !
= JH

α (t) = J̄α′(t)

jα(t)
!
= jHα (t) = (−1)Nα′ j̄α′(t)

H(t)
!
= HH(t) = −H̄(t)

the dynamics (exponential time dependence) from trivial (exponential) ones. The dual-
ity mapping also implies the concept of self-dual quantities: Despite being physical, such
quantities are mapped onto themselves by the generally unphysical duality relation, and
are thereby constrained in ways that are impossible to see with common physical dualities,
symmetries or intuition.

Outline. The outline of the paper is as follows. In Sec. 2 we first consider the simplest,
exactly solvable open system that exhibits fermionic duality beyond the weak-coupling
limit [16], the resonant level. This provides the simplest yet nontrivial illustration of
the general results derived in the subsequent sections. In Sec. 3 we consider the fermionic
duality in its most basic form (3) obtained in Ref. [10] as a mapping between the finite-time
Schrödinger and Heisenberg superoperators. From this we derive a fermionic duality for the
set of Kraus measurement operators using the Choi-Jamio lkowski state associated with the
dynamics. In Sec. 4 we consider fermionic duality for the infinitesimal-time generators of
the evolution, either via a time-local or time-nonlocal quantum master equation. Whereas
the time-nonlocal formulation allows for a solution in the Laplace-frequency domain, the
time-local formulation allows for a further decomposition into jump operators. This leads
to some unexpected insights into the divisibility of the dynamics and its causal structure.
Finally, in Sec. 5 we combine these approaches to gain deeper insight into a generally
applicable nonperturbative semigroup approximation [5,23] and its correction by an “initial
slip”. Here we combine the fermionic duality with a recently found exact functional relation
between the time-local generator G and the time-nonlocal memory kernel K [5]. In Sec. 6
we conclude and outline directions for follow-up work. Table 1 provides a guide to the
paper by summarizing the duality relations for all discussed approaches. Throughout the
paper we set ~ = kB = 1.
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2 Simple example: Fermionic resonant level

The general fermionic duality is best illustrated for the simple model of a resonant level
with arbitrary tunnel coupling Γ to a single reservoir at temperature T and electrochemical
potential µ,

Htot = εd†d+

∫
dωωb†ωbω +

√
Γ

2π

∫
dω

(
d†bω + b†ωd

)
, (4)

where d and bω are fermionic annihilation operators. This gives only a very basic descrip-
tion of the time-dependent (dis)charging of quantum dot systems realized in a range of
heterostructures including molecular junctions [58–60] and atomic impurities [61]. Because
it ignores Coulomb interaction effects this model is exactly solvable for strong coupling Γ
whose effects are primarily of interest here. Although the solution is known since Ref. [57],
several interesting aspects of the dynamics of the density operator ρ(t) were overlooked
until recently [23], including measurable effects of the breakdown of two different notions
of Markovianity. In the present paper we complement the study [23] by pointing out fur-
ther interesting properties of this model which are implied by fermionic duality and which,
importantly, turn out to be more generally valid. For example, the spectral properties of
the various time-evolution quantities of approaches (i), (ii) and (iv) were noted in Ref. [23]
to display striking regularities which could not be rationalized by any symmetry of the
resonant level model. The measurement- and jump-operators of approach (iii) and (v)
were likewise found to exhibit a pronounced pattern and to obey an unexpected sum rule
whose form depends only on one microscopic parameter and time. These formal regulari-
ties indicate that there is still more to be said about the physical properties of this model,
for instance, its degree of (non-)Markovianity as introduced below. As we will see in Sec. 5
this ties in with the practical task of constructing Markovian semigroup approximations
to the solution and their corrections. All these points—and more—will be explored step
by step in this paper.

Physical properties of the dynamics. To appreciate these implications of fermionic
duality, we, however, first need to give a summary of the various analytical forms of the
resonant level model dynamics for later reference. Further details on the latter are given
in Ref. [23]. Explicitly, all nontrivial dependence on the level detuning ε−µ, temperature
T and tunnel coupling Γ is captured by three related functions of time:

k(t) = 2T
sin((ε− µ)t)

sinh(πTt)
(5)

g(t) =

∫ t

0
ds e−

1
2Γsk(s) (6)

p(t) =
Γ

1 − e−Γt

∫ t

0
ds e−Γ(t−s)g(s) (7)

These functions contain pronounced damped oscillatory contributions at low T . Fortu-
nately their complicated precise form given in Ref. [23] is not needed here.

We first review how the functions k, g and p encode basic physical properties of the
dynamics which will be important later on. For fixed time t, the state-evolution map
ρ(0) 7→ ρ(t) = Π(t)ρ(0) has two fundamental properties, namely trace-preservation (TP),
Tr Π(t)ρ(0) = Tr ρ(0) for all initial states ρ(0), and complete positivity (CP)—reviewed in
App. A—which implies Π(t)ρ(0) ≥ 0 for all ρ(0) ≥ 0. Although TP imposes no restrictions
on k, g and p, the CP property is fully encoded in the range of values that the function
p(t) can take at any time: Π(t) is CP if and only if |p(t)| ≤ 1. This nontrivial constraint is
indeed [23] satisfied by formula (7) for all times t and all physical values of the parameters
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Figure 1: CP-divisibility for the resonant level model. The maximal value maxt≥0|g(t)| is
plotted as function of level detuning ε−µ and temperature T in units of tunnel coupling Γ.
Whenever |g(t)| > 1 for some time t the dynamics is not CP-divisible. The black curve
marks where the maximal value equals 1. Note that maxt≥0 |g(t)| depends only on the
ratios (ε− µ)/Γ and T/Γ, whereas g(t) like k(t) depends on all parameters separately.

ε, µ, T,Γ of the model, as it should. Depending on these parameters, the dynamics may be
Markovian in two different ways with different observable consequences as we now explain.

(1) The dynamics may be divisible by itself, Π(t) = Π(t−t′)Π(t′), for all t ≥ t′, which is
the case if and only if the function g(t) = constant for t > 0. Despite the simplicity of the
model, this semigroup-divisibility always breaks down except at resonance, |ε−µ|/T → 0,
where p(t) = 0 (which always holds in the limit of a hot reservoir, T → ∞), or, when the
level is completely off-resonance, |ε − µ|/T → ∞, where p(t) = ±Θ(t) is a step function.
Thus, the dynamics is virtually never Markovian in the semigroup sense and cannot be
described by a Lindblad quantum master equation. The breakdown of this property is
witnessed by an anomalous transient enhanced level occupation when decaying to a more
depleted stationary state [23].

(2) In a less strict sense, the dynamics may still be divisible as Π(t) = Π(t, t′)Π(t′)
for all t ≥ t′ by another physical evolution Π(t, t′), a CP-TP map [35, 36]. This CP-
divisibility turns out to occur if and only if |g(t)| ≤ 1 for all t. This nontrivial condition is
mapped out in Fig. 1 as function of level position and temperature relative to the coupling
energy. One sees that the dynamics fails to be Markovian in the sense of CP-divisibility
whenever the level is off-resonant by more than the tunneling and thermal broadening,
|ε − µ| & max{Γ, T}. For the resonant level this distinct property can be observed in
transport by checking whether there is no reversal of the measured current as function of
time for any initial level occupation [23].

Evolution. Having outlined some of the physics of this model, we now describe how
the functions (5)–(7) explicitly determine the structure of the exact dynamics of ρ(t). The
evolution can be written in three different ways and features the function p(t) [Eq. (7)]:

Π(t) = exp
(
− i[H, •]t+ 1

2Γt
∑

η=±

[1 − ηp(t)]Dη

)
(8)

=

3∑

i=0

πi(t)
∣∣πi(t)

)(
π′i(t)

∣∣ (9)

=
∑

N=0,1

∑

η=±

mNη(t)MNη(t) •MNη(t)†. (10)
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By [H, •] we denote the commutator of the system Hamiltonian2 H = εd†d with argu-
ment •, and the dissipator Dη will be defined in Eq. (11). Also, we write

(
A
∣∣• := TrA†• and∣∣B

)
:= B for operators A, B. Throughout the paper we will label each right eigenvector

by its eigenvalue and the corresponding left eigenvector is distinguished by an additional
prime as in Eq. (9).

The exponential form (8) is particular to this simple model. Due to the nontrivial
dependence of p(t) on time [Eq. (6)] it is not the exponential solution of some Lindblad
equation, despite the appearance of the familiar dissipator superoperators

Dη := dη • d
†
η −

1
2

{
d†ηdη, •

}
, η = ±, (11)

where we defined d+ := d†, d− := d. The more general spectral decomposition (9) is
natural to approach (i). The eigenvalues and their distinct left and right eigenvectors for
this model are listed in Table 2. Finally, the Kraus operator sum (10) of approach (iii)
always exists and in the present case the measurement operators read

M0η(t) = η
√
υη(t)ei

1
2 εtdd† +

√
υ−η(t)e−i

1
2 εtd†d, M1η = dη, (12)

with nonnegative coefficients

m0η(t) = e−
1
2Γt

[
cosh

(
1
2Γt

)
+ η

√
1 + p(t)2 sinh

(
1
2Γt

)2
]
, (13a)

m1η(t) = 1
2

(
1 − e−Γt

)
[1 − ηp(t)], (13b)

and the shorthand

υη(t) =
1

2
+
η

2

p(t) sinh(12Γt)√
1 + p(t)2 sinh(12Γt)2

. (14)

Quantum master equations. The above dynamics is the solution of the exact time-
nonlocal QME of approach (ii),

d

dt
ρ(t) = −i

∫ t

0
dt′K(t− t′)ρ(t′), (15)

whose memory kernel features the function k(t) [Eq. (5)],

−iK(t) = −i[H, •] δ(t) + 1
2Γ

∑

η

[
δ(t) − ηe−

1
2Γtk(t)

]
Dη. (16)

Note that we included the system Hamiltonian H into K and used the normalization∫ t
0 ds δ(s) = 1. Finally, the dynamics is also the solution of an exact time-local QME that

defines approach (iv),
d

dt
ρ(t) = −iG(t)ρ(t) (17)

with a generator that features the function g(t) [Eq. (6)],

−iG(t) = −i[H, •] + 1
2Γ

∑

η

[1 − ηg(t)]Dη (18a)

= −i
∑

i

gi(t)
∣∣gi(t)

)(
g′i(t)

∣∣. (18b)

2Throughout the paper we consider the action of the map Π(t) on arbitrary initial states ρ(0) since this
enables the techniques of Refs. [11,13,14] which lead to the neat exponential form (8), see Ref. [23]. Also,
this allows us later on [Eq. (61)] in the jump-operator approach (v) to generalize Eq. (2) of the introduction.
If one restricts the action of the map Π(t) to operators ρ(0) which are fermionic states commuting with the
parity, [ρ(0), (−1)N ] = 0 (superselection), then the contribution of the system Hamiltonian in Eq. (8) is not
relevant in this model. For this restricted map one can also find a simpler set of measurement operators.

10
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Table 2: Time-dependent eigenvectors and eigenvalues of the evolution Π(t) and its
time-local generator G(t) derived in Ref. [23]. Observe that the eigenvalues are trivial ex-
ponentially decaying functions and constants, respectively, fixed by the T = ∞ semigroup
limit of the model. All nontrivial time-dependence is due to finite-T effects [23] and enters
the dynamics through the functions p(t) and g(t) which appear only in the eigenvectors of
Π(t) and G(t), respectively. Note that here the normalization of the eigenvectors of G(t)
differs from the normalization fixed in Eqs. (50b) and (50c). The duality relation for the
coherences can be seen from P

∣∣dη
)

= −η
∣∣dη

)
.

Spectral decomposition of Π(t)

i
(
π′i(t)

∣∣ πi(t)
∣∣πi(t)

)

0
(
1

∣∣ 1 1
2

[∣∣1
)

+ p(t)
∣∣(−1)N

)]

1, 2
(
d†η
∣∣ e(iηε−

1
2
Γ)t

∣∣d†η
)

3 1
2

[(
(−1)N

∣∣− p(t)
(
1

∣∣] e−Γt
∣∣(−1)N

)

Spectral decomposition of G(t)

i
(
g′i(t)

∣∣ gi(t)
∣∣gi(t)

)

0
(
1

∣∣ 0 1
2

[∣∣1
)

+ g(t)
∣∣(−1)N

)]

1, 2
(
d†η
∣∣ −ηε− i12Γ

∣∣d†η
)

3 1
2

[(
(−1)N

∣∣− g(t)
(
1

∣∣] −iΓ
∣∣(−1)N

)

The eigenvalues and eigenvectors in Eq. (18b) are listed in Table 2. Although Eq. (16)
and Eq. (18a) look similar to the exponent of Eq. (8), they involve the three very different
functions (5)–(7).

Having summarized the exact equations for this model to be discussed, we note that
in the weak coupling limit it is not difficult to reveal a simple structure. For example,
in the time-local QME (17) one can simplify 1 − ηg(t) ≈ f(η(ε − µ)/T ) where f is the
Fermi function and one then directly derives a fermionic duality relation using the formal
replacement f((ε− µ)/T ) → 1 − f((ε− µ)/T ) as explained in Ref. [16]. However, this is
not possible in the case of arbitrarily strong coupling Γ considered here. Thus, despite the
simplicity of this solvable model none of the above representations of its exact dynamics
seems to exhibit an obvious general structure. In the following we will derive such a
structure and illustrate it for each of the above expressions.

3 Fermionic duality for exact time-evolution

We now extend the scope to the much broader class of models of the form Htot = H+HR+
HT where only the following assumptions are made: (I) The multiple fermionic reservoirs
described by HR are noninteracting with structureless, infinitely wide bands, each one
being separately in equilibrium at the initial time. (II) The coupling to the fermions in

the system (indexed by l) is bilinear in the field operators, HT =
∑

rl

∫
dω trl d

†
l crω + h.c.,

and independent of the energy ω of the fermionic modes in the reservoirs (indexed further
by r). (III) The system Hamiltonian H obeys parity superselection, [H, (−1)N ] = 0, and
as a result so does the total system. More explicit formulas are not needed anywhere
in the paper and we refer to Refs. [10, 16] for further discussion of these assumptions
and examples. The only microscopic quantity that explicitly plays a role in the fermionic

11
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duality is the lump sum of tunnel-coupling constants over the system and reservoir indices:

Γ := 2π
∑

rl

|trl|
2. (19)

Here l (r) includes all relevant quantum numbers (spin, orbital moment, etc.) on the
system (reservoir) which need not be conserved by HT, unlike the fermion number.

Based on these three assumptions the duality was established in Ref. [10]. However,
the detailed derivation given there does not lead to the insights reported in the present
paper. The conditions (I)–(III) do not help to understand the results obtained here by
starting from the established duality relation Eq. (3). We refer to Refs. [10,16] for further
discussion of these assumptions and the derivation and to Refs. [10,13–17,62] for numerous
detailed illustrations of how the duality can be technically applied and physically exploited
in the weak coupling limit.

No other assumptions are necessary: in particular, the system, described by H, may
consist of any finite number of levels with any type of multi-particle interaction of arbitrary
strength, including superconducting pairing terms that break particle conservation but
preserve parity. Also, the magnitude of the couplings, temperatures and electrochemical
biases can be arbitrary assuming that the employed perturbation series converges. Thus,
the following results apply to a very large class of actively studied models which are rel-
evant to nonequilibrium quantum-impurity physics, quantum transport and open-system
dynamics. We also note that for weak coupling, the duality relation can be generalized
beyond the case of structureless wide bands [16].

Of central interest is the superoperator Π(t) describing the state evolution, i.e., the
Schrödinger propagator,

ρ(t) = Π(t)ρ(0) = Tr
R

{
e−iHtottρ(0)ρRe

iHtott
}
. (20)

It is obtained by tracing out the fermionic reservoirs, assuming that each of these is initially
uncorrelated with the system and separately in an equilibrium state. The propagator is
thus a function of the parameters specifying the system Hamiltonian H, the coupling
HT, and the different electrochemical potentials of the reservoirs, collected in µ = (µr).
This dependence is important in the following and will be denoted by Π(t,H, µ,HT) when
required. The dependence on the different reservoir temperatures Tr need not be indicated.

The superoperator Π(t)† describes the time-evolution of system observables A, i.e., the
Heisenberg propagator,

A(t) = ΠH(t)A = Π(t)†A, (21)

such that 〈A(t)†〉ρ(0) = (A(t)|ρ(0)) = (A|ρ(t)) = 〈A†〉ρ(t) for expectation values. Here

the superadjoint of a superoperator, indicated by bold †, is defined by Tr
{
A†(ΠB)

}
=

Tr
{

(Π†A)†B
}

and is of central importance in this paper. It is defined relative to the
Hilbert-Schmidt scalar product between operators (A|B) = TrA†B and therefore distinct
from the ordinary adjoint † of an operator relative to the scalar product between vectors
〈ψ|Aφ〉 = 〈A†ψ|φ〉. For superoperators with the special form • 7→ (L • R) of a left and
right multiplication by operators L and R, respectively, the two distinct adjoint operations
are related in a simple way:

(L •R)† = L† •R†. (22)

In the following these distinctions will be clear in the context and we will talk about
adjoints, eigenvectors, and orthogonality without further specification (“super”). Since
generally the evolution Π(t) is a not represented by a normal matrix, [Π(t)†,Π(t)] 6= 0, its
left and right eigenvectors are not simply related by taking the adjoint †. As both sets
of vectors are required in the analysis of dynamics, this presents a crucial complicating

12
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factor in any (semi-)analytical treatment of open quantum systems. This is what fermionic
duality addresses.

3.1 Evolution superoperator

The fermionic duality establishes a relation between ΠH(t) = Π(t)† and Π(t) evaluated
at different parameter values which is denoted by Π̄(t). By first explicitly evaluating the
wide-band limit, this relation can be derived within a renormalized perturbation expansion
of all finite-T corrections of the propagator Π(t) around the T → ∞ limit [10,13,14]. For
the considered class of models the propagator obeys the fermionic duality relation

ΠH(t) =
[
Π(t)

]†
= e−ΓtP Π̄(t)P (23)

order-by-order. Here Γ is the lump sum of couplings (19) and the superoperator

P = (−1)N• (24)

denotes the left multiplication with the system parity operator (−1)N := exp(iπN). By
the overbar we denote the following parameter substitution of some function X:

X̄(H,µ,HT) := X(−H,−µ, iHT). (25)

For example, for the resonant level model of Sec. 2 this parameter mapping corresponds to
(ε, µ,Γ) → (−ε,−µ,−Γ) which transforms the functions encoding all nontrivial parameter
dependence as follows3:

k̄(t) = −k(t) (26)

ḡ(t) = eΓt
[
− g(t) + (1 − e−Γt)p(t)

]
(27)

p̄(t) = −p(t). (28)

The fermionic duality (23) expresses an exact restriction on the possible parameter de-
pendence of Π(t) based only on the quite generic physical assumptions (I)–(III) mentioned
at the beginning of Sec. 3 and two fundamental physical principles, the Pauli exclusion
(anticommutation relations) and fermion-parity superselection applied to the total system.
One may think of Π̄(t) as a continuation of Π(t)—considered as function of microscopic
parameters—from a physical domain to a larger domain of unphysical values. This is
not uncommon in physics, cf. for example, the complexification of angular momentum
in scattering theory (Regge theory). In the present case, the system-reservoir coupling
Hamiltonian is mapped to anti-Hermitian values, HT → iHT. This corresponds4 to a
Wick-rotation trlω → itrlω together with inversion of the relative sign between the two
tunneling terms in HT. The fermionic duality is the imprint left behind in the reduced
description (after tracing out reservoirs) of the mentioned physical assumptions and prin-
ciples (before tracing). It takes the form of a restriction (23) on the continuation beyond
the physical parameter domain. It is not required—or to be expected—that the superop-
erator Π̄(t) resulting from the parameter substitution (25) should be a physical evolution.
The construction as a continuation guarantees that Π̄(t) is still a TP map, but we will
see that it is not CP. Nevertheless, approximations that break fermionic duality are in-
consistent with the physical assumptions and principles governing the underlying total
system, see Sec. 6. After presenting all our results we will compare with other works in
the discussion [Sec. 6].

3Relation (27), written as (1− e−Γt)p(t) = g(t) + e−Γt
ḡ(t), is obtained by inserting (7) on the left and

partially integrating using p(0) = 0. Relation (28) follows by taking the overbar of Eq. (27).
4The substitution HT → iHT means that we treat the conjugate pair of tunnel constants in HT =∑
rl

∫
dω

(
trld

†
l crω + t∗rlc

†
rωdl

)
as independent parameters: trl → itrl but t

∗
rl → it∗rl = (−itrl)

∗. This inverts
the sign of all spectral densities trlt

∗
r′l′ → −trlt

∗
r′l′ determining the decay rates, see Ref. [10].
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3.1.1 Cross-relation left and right eigenvectors

We now first explain the usefulness of relation (23), extending the analysis of Ref. [10]. It
implies that if

∣∣πi(t)
)

is a right eigenvector of Π(t) with eigenvalue πi(t) then

πj(t) = e−Γt π̄i(t)
∗ (29a)

is also an—in general different—eigenvalue, numbered j 6= i, with left eigenvector

(
π′j(t)

∣∣ =
(
π̄i(t)

∣∣P =
[
P
∣∣π̄i(t)

)]†
. (29b)

Similarly, right eigenvectors are related to left ones by

∣∣πj(t)
)

= P
∣∣π̄′i(t)

)
=

[(
π̄′i(t)

∣∣P
]†
. (29c)

Thus, although Π(t) is not a unitary matrix [cf. Eq. (1)] its left and right eigenvectors
are nevertheless related by conjugation up to parity signs (P) and a parameter substitu-
tion (25) (overbar).

The duality only ensures proportionality of the vectors in Eqs. (29b)–(29c). The pro-
portionality constants were chosen such that binormalization imposed for pair i is pre-
served for pair j: (π′j(t)|πj(t)) = (π̄′i(t)|π̄i(t))

∗ = 1. One is then still free to gauge the right
hand side of Eq. (29c) by any nonzero time-dependent complex scalar θj(t) and correspond-
ingly Eq. (29b) by 1/θj(t). If an eigenvalue happens to be self-dual, πi(t) = e−Γt π̄i(t)

∗,
we have i = j in Eq. (29a). In this case the gauge freedom is fixed by binormalization
(π′i(t)|πi(t)) = 1:

(
π′i(t)

∣∣ =
1(

π̄i(t)
∣∣P

∣∣πi(t)
) (π̄i(t)

∣∣P,
∣∣πi(t)

)
=

1(
π′i(t)

∣∣P
∣∣π̄′i(t)

) P
∣∣π̄′i(t)

)
. (30)

with related factors
(
π̄i(t)

∣∣P
∣∣πi(t)

)
·
(
π′i(t)

∣∣P
∣∣π̄′i(t)

)
= 1.

Table 2 shows that for the resonant level model all eigenvalues are indeed cross-related
by the duality relation (29a). The nontrivial, non-exponential time-dependence is located
in the eigenvectors. The duality relation (29b) now dictates that if the right eigenvector to
eigenvalue π0(t) = 1 depends nontrivially on time through p(t), then the same must hold
for the left eigenvector to eigenvalue π3(t) = e−Γt, see Table 2 and Eq. (28). Analogously,
the time-constancy of the left and right eigenvectors i = 1 dictates the time-constancy of
the i = 2 eigenvectors. Thus, duality provides a fine-grained insight into the location of
nontrivial contributions to the dynamics.

In an analytical calculation of the spectrum of Π(t) one may, for example, determine
for each dual pair only one eigenvalue and its left and right eigenvector algebraically, and
then obtain the remaining eigenvalues and eigenvectors via a mere parameter substitution
[Eq. (25)] and parity transform P [Eq. (24)]. This is much simpler and, moreover, preserves
the compactness of analytical expressions already obtained. For models only slightly more
complicated than the resonant level this already leads to significant simplifications and
some surprising insights as shown in the weak coupling limit [10, 15–17].

3.1.2 Constraints on evolution of states and observables

We have seen for the resonant level that the duality (29) dictates that terms with quali-
tatively similar time-dependence in the spectral decomposition of Π(t) occur pairwise on
opposite ends of the real part of the eigenspectrum. In the general dynamics,

∣∣ρ(t)
)

= Π(t)
∣∣ρ(0)

)
=

n∑

i=0

πi(t)
∣∣πi(t)

)
(π′i(t)|ρ(0)), (31)
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one pair of contributions is of particular interest.
The right eigenvector to eigenvalue π0 = 1 is a time-dependent fixed point5, Π(t)

∣∣π0(t)
)

=∣∣π0(t)
)
, which is guaranteed to exist by the evolution’s TP property,

(
π′0

∣∣Π(t) =
(
π′0

∣∣ writ-
ing

(
π′0

∣∣ = Tr. Often the operator
∣∣π0(t)

)
is unique and can then be scaled to a positive,

trace-normalized physical state6. For simplicity we assume throughout the paper that
the eigenvalue π0 is nondegenerate. The time-dependence of the fixed-point is important
and its significance was recently highlighted [23]: If one initially prepares

∣∣ρ(0)
)

=
∣∣π0(tr)

)

where the reentrance time tr > 0 is a parameter, then the nontrivial evolution is guaranteed
to exactly recover this state at the preset time t = tr, Π(tr)

∣∣ρ(0)
)

=
∣∣π0(tr)

)
, even though

the environment state for t = 0 generally differs from the one at t = tr. For the resonant
level model this reentrant behavior signals the breakdown of semigroup-Markovianity [23].

The duality cross-relation (29a) now dictates that the dynamics has another funda-
mental eigenvalue πn(t) = e−Γt with trivial time-dependence at the opposite end of the
spectrum. Here we number i = 0, . . . , n where n := d2−1 and d is the system Hilbert space
dimension. The right eigenvector

∣∣πn
)

= (−1)N is the time-constant parity operator,

Π(t)
∣∣(−1)N

)
= e−Γt

∣∣(−1)N
)
. (32)

We note that this follows directly from the fact that the dual propagator Π̄(t) is also a
TP map7,

(
1

∣∣Π̄(t) =
(
1

∣∣. The corresponding left eigenvector can be expressed via the
zeroth right eigenvector,

(
π′n(t)

∣∣ = Tr{π̄0(t)(−1)N•}, where π̄0(t) denotes the self-adjoint
operator specifying

∣∣π̄0(t)
)
. It determines the amplitude in the expansion of the time-

dependent state:

∣∣ρ(t)
)

=
∣∣π0(t)

)
+ . . . + e−Γt Tr{π̄0(t)(−1)Nρ(0)} ·

∣∣(−1)N
)
. (33)

Thus, the nontrivial time-dependence of the coefficient of the fast Γ-decay is also deter-
mined by the time-dependent non-decaying fixed-point component

∣∣π0(t)
)
, namely through

its functional dependence on parameters. For semigroup dynamics this coefficient is time-
constant, but in general it is time-dependent, even in the resonant level model, see

∣∣π0(t)
)

in Table 2. The result (33) implies that the expectation value of a system observable A can
be decomposed into an instantaneous expectation value in the time-dependent fixed-point
state plus corrections:

〈A〉ρ(t) = 〈A〉π0(t) + . . . + e−Γt Tr{π̄0(t)(−1)Nρ(0)} · Tr{A(−1)N}. (34)

The corrections with the fast Γ-decay appear only for observables which overlap with
the fermion-parity, Tr{A(−1)N} 6= 0. Such operators A depend multiplicatively on the
occupations of all fermionic orbitals in the open system, i.e., they probe global correlations
within the system. The above insight into the general dynamics extends the weak-coupling
results of Ref. [16].

3.2 Measurement operator sum

We now turn to an entirely different formulation of the same dynamics which is ubiquitous
in quantum information theory. We can apply this approach here since we are assured
that Π(t)—being the exact evolution—is a CP map8. It can therefore be written in the

5For a given time, the fixed point of a dynamical map relates to the disturbance caused by its measure-
ment operators [63].

6See Chap. 6. of Ref. [64] and discussion in Ref. [23].
7This follows from

[
Π(t)

∣∣(−1)N
)]†

=
(
1

∣∣PΠ(t)†
(23)
= e−Γt

(
1

∣∣Π̄(t)P = e−Γt
(
(−1)N

∣∣.
8The CP property is very difficult to maintain when performing approximations, see Ref. [33] for a

discussion and references.
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form of a Sudarshan-Kraus operator sum [20–22]

Π(t) =
∑

α

mα(t)Mα(t) •Mα(t)†. (35)

Without loss of generality we choose to normalize the measurement operators using the
Hilbert-Schmidt scalar product, TrMα(t)†Mα(t) = 1. The coefficients mα(t) are then real
and positive by CP, see App. A, and the TP property of Π(t) is equivalent to

∑

α

mα(t)Mα(t)†Mα(t) = 1. (36)

By taking the trace this implies a scalar sum rule: the coefficients must sum to the Hilbert
space dimension d, ∑

α

mα(t) = d. (37)

Each term in the operator sum (35) describes a physical process in which outcome α
is obtained by a measurement on the environment R in some basis. For each different
choice of a basis, there is a set of measurement operators {Mα(t)} and thus a different
operator-sum representation. We fix this freedom by considering canonical measurement
operators which are orthonormal, TrMα(t)†Mα′(t) = δαα′ . If the mα(t) are nondegenerate,
this fixes the set {Mα(t)} uniquely up to trivial changes by phase factors which cancel
out term-by-term in the sum (35), see App. A for the case of degeneracy. Importantly,
for fermionic systems the operators must have a definite parity denoted by (−1)Nα , i.e.,
(−1)NMα(−1)N = (−1)NαMα, since the operators describe measurements9.

3.2.1 Cross-relation of Heisenberg and Schrödinger measurement operators

From the operator sum (35) it is easy to find the measurement operators for the Heisenberg
evolution ΠH(t) = Π(t)† by using Eq. (22),

Π(t)† =
∑

α

mα(t)Mα(t)† •Mα(t). (38)

To see the nontrivial implication of fermionic duality (23), we insert Eq. (35) and Eq. (38)
and show that the individual terms in the two operator sums must be equal up to
a permutation of the summation index α. This follows most elegantly by the Choi-
Jamio lkowski (CJ) correspondence for which the fermionic duality is worked out in App. A.
We obtain the key result that pairs of orthonormal measurement operators with the same
parity obey

Mα(t)† = M̄α′(t) (39a)

and their corresponding coefficients fulfill

mα(t) = e−Γt(−1)Nα′ m̄α′(t). (39b)

where α = α′ is allowed. In Eq. (39a) the only freedom left in the relation between the
operators Mα and Mα′ is a complex phase factor, which we set to 1.

The fermionic duality relation (39) implies that if a coefficient is self-dual, mα =
e−Γt(−1)Nαm̄α, the measurement operator is a strongly constrained function: its adjoint

must correspond to dual parameters, M †
α = M̄α. In all other cases, for each pair α, α′ of

9If the parity is initially definite, [ρ, (−1)N ] = 0, then for individual processes conditioned on outcome
α, parity is still well-defined, [MαρM

†
α, (−1)N ] = 0. This holds for any ρ, giving Mα(−1)N ∝ (−1)NMα.

Applying this twice we find that the proportionality constant is some sign (−1)Nα . See also App. A.
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dual coefficients one needs to determine only one of the measurement operators, obtaining
its dual operator for free. Thus, very similar to the relation (29) between left and right
eigenvectors of Π(t), the difficult task of analytically finding the measurement operators
and coefficients for nontrivial fermionic open systems is significantly simplified.

3.2.2 Additional fermionic sum rule for measurement operators

Since the dual propagator Π̄(t) =
∑

α m̄αM̄α(t) • M̄α(t)† is also a TP map, the dual
measurement operators also obey a sum rule:

∑
α m̄αM̄α(t)†M̄α(t) = 1. Notably, this

is not an obvious consequence of the TP sum rule (36) for Π(t): inserting Eq. (39) we
instead find10 that the original measurement operators of the fermionic systems must obey
an additional, independent sum rule:

∑

α

(−1)Nαmα(t)Mα(t)Mα(t)† = e−Γt
1 (40)

This shares with Eq. (32) the remarkable feature of depending only on a single detail
of the microscopic model, the lump sum of couplings Γ, independent of interactions and
external controls such as temperature, and chemical potentials. Unlike the familiar sum
rule (36), the adjoint appears on the right operator and the difference of even and odd
parity terms is constrained to a time-dependent operator.

The trace of Eq. (40) implies an extra scalar sum rule

∑

α

(−1)Nαmα(t) = d e−Γt (41)

where we used that TrMα(t)†Mα′(t) = δαα′ for canonical measurement operators. To-
gether with Eq. (37) we obtain separate sum rules for the coefficients of the even and odd
measurement-operators as functions of time:

∑

α

1
2 [1 + (−1)Nα ]mα(t) = d 1

2 [1 + e−Γt], (42a)

∑

α

1
2 [1 − (−1)Nα ]mα(t) = d 1

2 [1 − e−Γt]. (42b)

Whereas for t = 0 the even operators must contain all the weight to produce Π(0) = 1•1,
the even and odd weights coincide in the stationary limit t → ∞, evenly splitting the
standard sum rule (37). In other words, the stationary evolution gives equal weight to
parity changing and parity preserving processes.

For the resonant level model the measurement operators are indexed by α = Nη
with level occupation N = 0, 1 for even or odd parity and η = ±. The operators (12)
and coefficients (13) have a simple explicit dependence on Γ, ε. All nontrivial parameter
dependence is contained in the function p(t) [Eq. (7)] which has a simple transform p̄(t) =
−p(t) [Eq. (28)] under the parameter mapping (ε, µ,Γ) → (−ε,−µ,−Γ). Thus, duality
strongly restricts the functional form of the coefficients (13) for even parity, and for odd
parity pairs them up:

m0η = +e−Γtm̄0η, m1η = −e−Γtm̄1(−η). (43)

10To this end, multiply Π(t)(−1)N =
∑

α
mαMα(−1)NM†

α = e−Γt(−1)N by (−1)N and use
(−1)NMα(−1)N = (−1)NαMα. Note that not every eigenvalue equation Π(t)X =

∑
α
mαMαXM†

α = λX
can be converted to a sum rule of this form: it requires that the operator X is invertible and commutes
up to a scalar factor with all measurement operators MαX = kαXMα.
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Correspondingly, the even-parity operators (12) are self-dual and the odd ones are dual
partners,

M †
0η = M̄0η, M †

1η = M̄1(−η). (44)

The self-duality strongly constraints the coefficients of d†d and dd† inside the operator
M †

0η: the substitution (ε, µ,Γ) → (−ε,−µ,−Γ) maps the coefficients to their complex
conjugates. We stress that without the unphysical inversion of the decay rates Γ → −Γ
one cannot explain this puzzling “symmetry” of this exact result. Furthermore, it is by no
means obvious from the explicit solutions (12)–(13) that the additional simple sum rule
(40) indeed holds. Also, the scalar sum rule (42) implies for fixed level occupation N = 0
or 1 that any nontrivial time-dependence of the coefficients (13) for η = ± must be the
same up to a sign. All these structural features of the measurement operators were left
unexplained in Ref. [23].

3.2.3 Unphysicality of the duality mapping

Of all the approaches to be discussed, the measurement-operator formulation (39) most
clearly reveals that the dual propagator Π̄(t) is unphysical. It is not CP whenever Π(t)
and ΠH(t) are CP: the fermion-parity signs in Eq. (39b) imply that for operators M̄α with
odd-parity the coefficients m̄α′ are strictly negative. This means that due to the inversion
of coupling constants, Γ 7→ −Γ, Π̄(t) cannot correspond to the evolution of any physical
system. In the duality relation (23) this is reflected in the parity transformation P.

We stress that this unphysicality in no way obstructs the derivation of Eq. (23) or its
useful application to physical problems. On the contrary, it makes the duality map-
ping particularly interesting: by continuation of parameters to non-physical domains
[Eq. (28) ff.] it points out functional dependencies which are not just physically “un-
intuitive” but even impossible to motivate by strictly physical parameter mappings.

4 Fermionic duality for exact quantum master equations

We now consider how fermionic duality constrains equivalent exact quantum master equa-
tions which generate the evolution Π(t).

4.1 Time-local quantum master equation

The dynamics can be described by a time-local QME [5]

d

dt
Π(t) = −iG(t) Π(t), Π(0) = I. (45)

Importantly, the time-local generator G(t) is in general time-dependent even though it
derives microscopically from a time-constant Hamiltonian generator Htot for system plus
reservoirs. The generator of the corresponding Heisenberg evolution acts from the left,

d

dt
Π(t)† := iGH(t)Π(t)†, (46)

in order to generate the evolution of observables (21) as d
dtA(t) = iGH(t)A(t). As a

consequence, it is not11 simply equal to the adjoint of the generator:

GH(t) =
[
Π(t)−1G(t)Π(t)

]†
6= G(t)†. (47)

11The adjoint equation d
dt
Π(t)† := iΠ(t)†G(t)† suggests to identify G(t)† with the generator. However,

since it acts on the right one verifies that it is not the generator in the equation of motion for an observable
A(t) := Π(t)†A(0) which is instead GH(t).
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This difference implies that for open systems one cannot switch from the equation of mo-
tion in the Schrödinger picture, d

dtρ(t) = −iG(t)ρ(t), to the Heisenberg picture, d
dtA(t) =

iGH(t)A(t), without first solving the dynamics. This is a known complication (Ref. [4],
p. 125) of the analysis of open-system evolutions not commuting with their generator [65].

This nontrivial problem—specific to open systems—is solved by fermionic duality and
will play a role in the construction of approximations in Sec. 5. Only in the simple
cases where [G(t),Π(t)] = 0 do we have GH(t) = G(t)†. This includes the familiar case of
Markovian semigroup dynamics where a time-constant G generates Π(t) = e−iGt. However,
already for the resonant level model we have GH(t) 6= G(t)† since time-ordering of the
generator matters except for special parameters (T = ∞ or ε = µ, see Sec. 2).

The TP property of the Schrödinger evolution, TrG(t) = 0, by Eq. (47), corresponds
to the Heisenberg evolution being unit-preserving or unital,

GH(t)
∣∣1
)

= GH(t)Π(t)†
∣∣1
)

=
[(
1

∣∣G(t)Π(t)
]†

= 0. (48)

Physically this means that trivial measurements stay trivial.
Taking the time-derivative of relation (23) one obtains the fermionic duality for the

time-local generator:

GH(t) =
[
Π(t)−1G(t)Π(t)

]†
= iΓ I − PḠ(t)P (49)

This relation is another key result of the paper which we again stress is exact, in particular,
it is not based on any time-local approximation. It solves the nontrivial task of obtaining
the Heisenberg generator GH(t) directly from G(t), without computing Π(t). Already for
the resonant level model this presents a significant simplification: instead of performing
quite some superoperator algebra12 as required by Eq. (47), we obtain GH(t) by the simple
parameter substitution g(t) → ḡ(t) given in Eq. (27).

4.1.1 Cross-relation left and right eigenvectors of the generator

The time-local fermionic duality (49) immediately implies that if
∣∣gi(t)

)
is a right eigen-

vector of G(t) with eigenvalue gi(t) then

gj(t) =
[
iΓ − ḡi(t)

]∗
(50a)

is also a—generally different—eigenvalue gj with left eigenvector

eΓt/2
(
g′j(t)

∣∣ =
(
ḡi(t)

∣∣PΠ(t)−1 =
[
(Π(t)−1)†P

∣∣ḡi(t)
)]†

. (50b)

Similarly, for right eigenvectors:

e−Γt/2
∣∣gj(t)

)
= Π(t)P

∣∣ḡ′i(t)
)

=
[(
ḡ′i(t)

∣∣PΠ(t)†
]†
. (50c)

As before [Eq. (29) ff.], the proportionality factors were chosen to ensure that the binor-
malization of pair i is passed on to pair j: (g′j(t)|gj(t)) = (ḡ′i(t|ḡi(t))

∗ = 1. For self-dual
eigenvalues gi(t) = [iΓ − ḡi(t)]

∗ biorthonormality (g′i(t)|gi(t)) = 1 implies

(
g′i(t)

∣∣ =
1(

ḡi(t)
∣∣PΠ(t)−1

∣∣gi(t)
)(ḡi(t)

∣∣PΠ(t)−1 (51a)

∣∣gi(t)
)

=
1(

g′i(t)
∣∣Π(t)P

∣∣ḡ′i(t)
)Π(t)P

∣∣ḡ′i(t)
)

(51b)

12Insert Eq. (8) and use PD†
ηP = −D−η − I, [L,Dη] = 0, [L,Π] = 0 and the general relations L† = L,

and PLP = L.
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where
(
ḡi(t)

∣∣PΠ(t)−1
∣∣gi(t)

)
·
(
g′i(t)

∣∣Π(t)P
∣∣ḡ′i(t)

)
= 1. It is expected that fermionic duality

takes a more complicated form here since the generator G(t) incorporates a great deal of
the complexity of the solution Π(t) into the QME (45) in order to eliminate the memory
integral of QME (15). In this respect, the simplicity of the eigenvalue duality (50a) is
surprising and presents a definite advantage for analytical calculations. It generalizes the
relations of Refs. [10,16] which for weak coupling imply that Γ is always the largest decay
rate [16].

As expected the cross-relation (50b)–(50c) of the eigenvectors is more complicated due
to the involvement of Π(t). Only the special case [G(t),Π(t)] = 0 leads to a simpler duality
relation G(t)† = iΓ I − PḠ(t)P that directly relates left and right eigenvectors of G(t):(
g′j(t)

∣∣ =
(
ḡi(t)

∣∣P and
∣∣gj(t)

)
= P

∣∣ḡ′i(t)
)
. This includes the Markovian-semigroup limit

with time-constant G, recovering the weak-coupling results of Ref. [16].
Table 2 shows that for the resonant level model, the eigenvalues of G(t) indeed satisfy

the cross-relation (50a). Yet, since [G(t),Π(t)] 6= 0 for this model, the eigenvector rela-
tions (50b)–(50c) remain nontrivial: their verification requires the transformation (27) of
the function ḡ(t) and some algebra to verify Eq. (49). We note that G(t) and its eigenvec-
tors also satisfy another, simpler relation which is, however, specific to the model and not
related to general principles, see App. B.

4.1.2 Constraints on time derivatives of states and observables

Analogous to the fermionic duality (31) for the propagator, its time-local version (49)
provides general insight into where nontrivial (non-exponential) contributions occur in
the dynamics. In this case it concerns the time-derivative of the state:

d
dt

∣∣ρ(t)
)

= −iG(t)Π(t)
∣∣ρ(0)

)
(52a)

= −i
∑

i

gi(t)
∣∣gi(t)

) (
g′i(t)

∣∣Π(t)
∣∣ρ(0)

)
(52b)

= −ie−Γt/2
∑

ij

′
gi(t)

∣∣gi(t)
) (
ḡj(t)

∣∣P
∣∣ρ(0)

)
(52c)

The prime indicates that we sum over pairs of dual eigenvalues i and j keeping only one
term for self-dual ones. Here there is a catch because the evaluation of Eq. (52c) requires
that the normalization of

∣∣gi(t)
)

is known, which we implicitly fixed in the duality relation
Eq. (50). This is not an issue for two important contributions which we now discuss.

The first one is the missing contribution: the time-dependent zero-mode of the gen-
erator, G(t)

∣∣g0(t)
)

= 0. Such a right eigenvector with eigenvalue g0(t) = 0 always exists
since by trace preservation

(
g′0
∣∣G(t) = 0, writing

(
g′0
∣∣ = Tr =

(
π′0

∣∣. At finite times
∣∣g0(t)

)

is distinct from the time-dependent fixed point
∣∣π0(t)

)
of Π(t) [Eq. (31)], even though

asymptotically both converge to the stationary state
∣∣ρ(∞)

)
=

∣∣g0(∞)
)

=
∣∣π0(∞)

)
when-

ever it is unique13. In fact, for the resonant level
∣∣g0(t)

)
even fails to be a positive operator

in time intervals where |g(t)| > 1 [Table 2], which happens precisely in parameter regimes
where the dynamics is not CP-divisible shown Fig. 1. In contrast,

∣∣π0(t)
)

is always positive
since |p(t)| ≤ 1 for all t, see Sec. 2.

The fermionic duality (50a) implies that there is another fundamental contribution to
Eq. (52c) with eigenvalue gn(t) = −iΓ at the other end of the spectrum. Remarkably, it
only depends on Γ and its right eigenvector does not depend on any microscopic detail:

G(t)
∣∣(−1)N

)
= −iΓ

∣∣(−1)N
)

(53)

13This agrees with the stationary state obtained from the memory kernel,
∣∣k̂0(0)

)
=

∣∣g0(∞)
)
[Eq. (79)].
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This follows from
∣∣gn(t)

)
= eΓt/2Π(t)

∣∣(−1)N
)

= e−Γt/2
∣∣(−1)N

)
[Eq. (32)]. Note that this

also follows from the fact that Ḡ(t) generates a TP map,
(
1

∣∣Ḡ(t) = 0. The corresponding

left eigenvector is
(
g′n(t)

∣∣ = e−Γt/2 Tr{ḡ0(t)(−1)NΠ(t)−1•} [Eq. (29b)] where ḡ0(t) denotes
the self-adjoint operator specifying

∣∣ḡ0(t)
)
. It inherits the parameter dependence of the

zero-mode which in general is complicated,

d
dt

∣∣ρ(t)
)

= −e−ΓtΓ
∣∣(−1)N

)(
ḡ0(t)

∣∣P
∣∣ρ(0)

)
+ . . . . (54)

For the time-derivative of the expectation value of an observable A the nontrivial time-
dependent prefactor of the Γ-decay rate,

d
dt〈A〉 = −e−ΓtΓ Tr{A(−1)N} · Tr{ḡ0(t)(−1)Nρ(0)} + . . . (55)

is completely determined by the parameter dependence of the zero-mode of the generator,∣∣ḡ0
)
, the missing term in the expansion (52c).
This remarkable structure is a generalization of the weak-coupling result of Ref. [16]

which introduces a new distinction: whereas the fixed-point of Π(t) determines this fast
contribution to ρ(t) and expectation values 〈A〉(t) [Eq. (34)], it is the distinct zero-mode
of G(t) that determines the fast contribution to d

dtρ(t) or currents d
dt〈A〉(t) [Eq. (55)].

Whereas for [G(t),Π(t)] = 0 (including Markovian semigroups) the fixed point and zero
mode coincide at any time, they are in general different,

∣∣π̄0(t)
)
6=

∣∣ḡ0(t)
)
. This illustrates

that fermionic duality leads to independent insights when formulated in complementary
approaches.

For the simple resonant level model this leads to an interesting insight into the transport
current by taking A = N , the level occupation operator. Using Eq. (52c) one can verify
that the omitted terms in Eq. (55) are zero because (N |gj(t)) = 0 except for j = 3. The
normalization of the eigenvector

∣∣g3(t)
)

can then be calculated14 by taking the trace of
Eq. (50c) and we obtain from Eq. (55)

d
dt〈N〉 = Γe−Γt 1

2

[
ḡ(t) + ((−1)N |ρ(0))

]
. (56)

Thus, the observable transport current is automatically decomposed in two contribu-
tions of which one is a trivial exponential decay depending on the initial state through
1
2((−1)N |ρ(0)) = 1

2 − 〈N〉(0). All nontrivial time-dependence is captured by the single
function g(t) from the generator G(t) but evaluated at dual parameters. Note that this
relation does not follow from Eq. (34) unless one laboriously uses identities connecting the
nontrivial functions g and p.

4.2 Jump operator sum

As mentioned in the introduction, a distinct advantage of the previous time-local QME
approach is that it connects to the divisibility properties of the dynamics (Markovianity).
These are, however, only revealed when decomposing the generators G and GH(t) [Eq. (47)]
appearing in the time-local fermionic duality (49) into jump-operator sums, analogous to
the decomposition of Π(t) into a measurement-operator-sum.

4.2.1 Causal and anti-causal divisibility

This approach requires some preliminary discussion. We first note that the Hermicity- and
trace-preservation properties of the dynamics alone already imply the following structure

14In this case we can circumvent the calculation of Π(t) in Eq. (50c) because we only need the normal-
ization of

∣∣g0(t)
)
which can be fixed using the known left eigenvector

(
1

∣∣Π(t) =
(
1

∣∣.
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of the generator [App. C] due to Lindblad, Gorini, Kossakowski and Sudarshan [24,25]

−iG(t) = −i[H(t), •] +
∑

α

jα(t)Dα(t). (57)

The dissipators Dα(t) = Jα(t)•Jα(t)†− 1
2

{
Jα(t)†Jα(t), •

}
contain jump operators Jα(t) and

are weighted with real coefficients jα(t) which we assume to be nondegenerate, see App. C
for the degenerate case. Their structure guarantees that the generated dynamics is TP
(TrDα(t) = 0). The coefficients jα(t) need not be positive, in contrast to the coefficients
of measurement operators [Eq. (37)]. The effective Hamiltonian H(t) is Hermitian but
differs from the bare one, H, which we indicate by the time argument.

Similar to the measurement operators [Sec. 3.2], we eliminate gauge freedom by working
with canonical jump operators, which are orthonormal, both mutually Tr Jα(t)†Jβ(t) = δαβ
and to the identity, Tr Jα(t) = 0. Importantly, the canonical jump operators Jα(t) have a
definite parity (−1)Nα , i.e. (−1)NJα(t)(−1)N = (−1)NαJα(t) and the canonical effective
Hamiltonian has even parity, (−1)NH(t)(−1)N = H(t) [App. C].

The dynamics is CP divisible, Π(t) = Π(t, t′)Π(t′) for all 0 ≤ t′ ≤ t ≤ ∞, if and only if
the condition15 jα(t) ≥ 0 holds for all α and t ≥ 0 [35,36]. In this case the jump operators
have an operational meaning: Jα(t) is a measurement operator for outcome α measured on
the environment with infinitesimal probability jα(t)δt ≥ 0 during infinitesimal evolution.
For example, in the resonant level model, the two jump rates jη(t) = 1

2 [1 − ηg(t)]Γ are
positive if and only if |g(t)| ≤ 1 which holds true for the parameter in the divisible region
mapped out in Figs. 1 and 2(a). In this case the corresponding odd-parity jump-operators
Jη = dη [cf. Eq. (11)] represent a jump of a particle to or from the level induced by a
measurement in the environment in an infinitesimal time δt. The effective Hamiltonian
coincides with the original one, H(t) = H = εd†d [Eq. (18a)]. The relation to stochastic
simulation methods will be discussed in Sec. 6.

Divisibility also has a clear operational meaning in terms of a simulation task. The
condition states that the full evolution up to time t can be simulated by stopping the
evolution earlier at t′—decoupling and discarding the environment—and then applying to
the output some postprocessing device described by Π(t, t′). Such a physical device exists
if and only if the latter is a CP map, see Sec. III of Ref. [23] for a discussion. If such
a simulation is possible for every t′ and every t, then Π(t) is called CP divisible. This
indicates that the input-output correlations of the dynamics are weak. For this purpose
we only need to inquire into the possibility of such a simulation, not its implementation.

To derive a fermionic duality for jump coefficients and operators, we need to decompose
the Heisenberg generator GH(t) appearing in Eq. (49) in a similar way,

iGH(t) = i[HH(t), •] +
∑

α

jHα (t)DH
α (t), (58)

with Hermitian HH(t). The different structure of the Heisenberg dissipator, DH
α (t) :=

JH
α (t) • JH

α (t)† − 1
2

{
JH
α (t)JH

α (t)†, •
}

, now ensures that the Heisenberg evolution is unit-
preserving [Eq. (48)]. Moreover, the coefficients jHα (t) are distinct from the jα(t) and
related to a different type of divisibility: jHα (t) ≥ 0 is the condition16 for what can be called
anti-causal CP divisibility of the state dynamics, Π(t) = Π(t′)Πa(t, t

′) for all t′ ∈ [0, t] by
some CP-TP map Πa(t, t

′) on the right, in contrast to the usual division of the dynamics

15If G(t) satisfies this condition of CP-divisibility, it implies that Π(t) = Π(t, 0) is CP. Note that if G(t)
does not satisfy this condition, it is not known which sufficient conditions the Jα(t) and jα(t) should satisfy
to ensure that Π(t) is CP.

16If GH(t) satisfies this condition, then it implies that Π(t) = Πa(t, 0) is CP.
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Figure 2: Regions of causal and anti-causal CP-divisibility for the resonant level model.
The Heisenberg jump rates jHη (t) = 1

2 [1 − ηḡ(t)]Γ are positive if and only if |ḡ(t)| ≤ 1.
(a) maxt≥0 |ḡ(t)| as function of level detuning ε − µ and temperature T . The black line
marks maxt≥0 |ḡ(t)| = 1, forming the boundary of the anti-causally divisible region. The
dashed line limits the causally divisible regime by marking maxt≥0 |g(t)| = 1, see Fig. 1.
(b) Continuation of maxt≥0 |g(t)| from physical (Γ > 0) to dual parameters (Γ < 0)
shows the connection of causal and anti-causal divisibility revealed by fermionic duality.
In (a) this connection is hidden in the T/Γ → ∞ limit. At resonance (ε = µ) the
evolution is a semigroup which is trivially both causally and anti-causally divisible. As
one tunes further away from resonance, the evolution first looses the anti-causal and then
the causal divisibility. For T < Γ/(2π) (white regions) maxt≥0 |ḡ(t)| = ∞, reflecting that
the stationary limit of GH(t) does not exist even though the limit ΠH(∞) is well defined.
This is a peculiarity of the time-local description.

by postprocessing to the left. Whereas semigroup dynamics is both causally and anti-
causally CP divisible, this does not hold for more general dynamics as studied here. For
the resonant level model the parameter regime of anti-causal divisibility is mapped out in
Fig. 2(a) and does not coincide with the regimes of causal divisibility.

The operational meaning of anti-causal divisibility becomes clear when viewed as a
simulation task: The condition states that the full evolution Π(t) up to time t can be
simulated by preprocessing its input by some device described by Πa(t, t

′), and then after-
wards running the evolution Π(t′) only up to time t′. Also here, a physical preprocessing
device exists if and only if Πa(t, t

′) is a CP map. If such a simulation is possible for every
t′ and every t, the evolution can be called anti-causally CP divisible. This indicates that
the input-output correlations of the dynamics are weak and additionally that the causal
ordering is weak, i.e., the dynamics is robust against interruption at t′ and reversal of
causal ordering. As for causal divisibility, we only inquire into the possibility of such a
simulation, not its implementation.

These two types of divisibility are not related in an obvious way. It is in general
possible to express HH(t), JH

α (t) and jHα (t) in H(t), Jα(t) and jα(t) using the measurement
operators Mα(t) and mα(t) of the solution of the dynamics Π(t). However, just like the
relation between G(t) and GH(t), this relation is highly nontrivial whenever [G(t),Π(t)] 6= 0.
As a result, anti-causal divisibility cannot be easily related to causal divisibility. The
fermionic duality for jump operators solves this nontrivial problem by relating the two
jump operator sums, as we will explain below.
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4.2.2 Fermionic sum rule for jump operators

To derive the duality relation for the jump operator sum, we first note a special implication
of Eq. (49), the exact fermion-parity zero mode of G(t), Eq. (53). This is equivalent to a
fundamental sum rule for the jump operators:

∑

α

jα(t)
[
Jα(t)†Jα(t) − (−1)NαJα(t)Jα(t)†

]
= Γ1. (59)

This is remarkable since in general the jump operators are not constrained by any sum rule
independent of model details, and here the only such detail is the lump sum Γ. Taking the
trace, we find that the time-dependent coefficients jα(t) of the odd-parity jump operators
sum to a constant, ∑

α

jα(t)12 [1 − (−1)Nα ] = 1
2dΓ, (60)

leaving the even parity jump coefficients unrestricted. Although Eqs. (59) and (60) are
clearly analogous to the additional sum rules (40)–(41) and originate from the same
fermionic duality relation they are not simple consequences of each other. In the res-
onant level model there are only odd-parity jump operators [Eqs. (11) and (18a)] and the

fermionic sum rule for jump operators (59) is obeyed,
∑

η jη(t)[d†ηdη + dηd
†
η] = Γ1, which

in this case is a multiple of the scalar sum rule (60),
∑

η jη(t) = Γ.

4.2.3 Cross-relations between Heisenberg and Schrödinger jump operators

Inserting Eq. (57) into Eq. (49) and using the fermionic sum rule (59) we obtain17 GH(t)
in the form (58) where the effective Heisenberg Hamiltonian equals minus the Schrödinger
one evaluated at dual parameters,

HH(t) = −H̄(t). (61a)

We thus explicitly recover the closed-system fermionic duality (2) extended nontrivially by
the inclusion of the time-dependent renormalization by the environment (H(t) 6= H). In
close analogy to the measurement-operator duality (39), the Heisenberg jump operators
are related pairwise to Schrödinger jump operators at dual parameters:

JH
α (t) = J̄α′(t) (61b)

whereas their corresponding coefficients obey

jHα (t) = (−1)Nα′ j̄α′(t). (61c)

This duality relation implies that the distinct anti-causal divisibility of the dynamics (all
jHα (t) > 0) can be decided by the parameter dependence of the coefficients determining
the causal divisibility properties (all jα(t) > 0). For the resonant level model, this is
achieved by simply replotting Fig. 2(a) in units of temperature while varying the coupling
Γ as shown in Fig. 2(b). The continuation of the causal divisibility boundary to negative
coupling Γ precisely gives the anti-causal divisibility boundary that was shown in Fig. 2(a).

The duality relation (61c) tells us precisely when causal and anti-causal divisibility
coincide: jα(t) ≥ 0 for all α must imply (−1)Nα j̄α ≥ 0 and vice versa. This imposes a very
strong constraint on the parameter dependence of the dynamics. This always holds when

17In Eq. (49) the parity transformation P • P inverts the sign of the odd parity jump coefficients in
Eq. (57). Combined with the Γ-shift in Eq. (49) it transforms the trace-preserving property of G(t) into
the unit-preserving property of GH(t) as it should.
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the evolution commutes with its generator, which includes the case of Markovian semigroup
evolutions. We then have GH(t) = G(t)†, implying by Eq. (22) that HH(t) = H(t),
JH
α (t) = Jα(t)† and jHα (t) = jα(t). Moreover, Eq. (61a) becomes H̄(t) = −H(t): the

effective Hamiltonian is constrained to change sign under the duality mapping. In this
case equation (58) additionally strengthens to a cross relation between the jump operators
of G(t) alone: Jα(t)† = J̄α′(t) and their coefficients jα(t) = (−1)Nα′ j̄α′(t). This extends
the results of Ref. [16] for the weak-coupling generators G in Lindblad form (57).

Beyond this trivial case the two types of divisibility need not coincide, as evidenced
by the resonant level model [Fig. 2(a)]. Thus, fermionic duality strongly suggests that
anti-causal divisibility generically differs from causal divisibility by an explicit strong
constraint on model parameters. This is in line with the general intuition that this type of
divisibility additionally requires weak causal ordering of the dynamics and is thus a more
fragile property. This motivates further investigation, for example in relation to recent
work on causal ordering in quantum information theory [66,67].

We stress that although the duality relations (39) and (61) have a common origin,
for general dynamics one cannot derive the jump-operator duality by using the trick of
“linearizing” the measurement operators in Eq. (39) as it is possible in the Markovian semi-
group limit [68]. The analogy between (39) and (61) is best seen in the Choi-Jamio lkowski
correspondence to G(t) (instead of Π(t)) as discussed in App. C.

4.2.4 Unphysicality of the duality mapping

To conclude we verify that Ḡ(t) is the generator of the dual evolution Π̄(t): using Eq. (23)
and (49) we find

d
dtΠ̄(t) = −iḠ(t)Π̄(t). (62)

What is interesting here is that Ḡ(t) generates Π̄(t) in the same causal order as the
Schrödinger evolution Π(t). On the other hand the dual propagator Π̄(t) is related to
the propagator in the Heisenberg picture ΠH(t) = e−ΓtPΠ̄(t)P. This implies that Ḡ(t) is
related to the generator GH(t) acting from the left in the Heisenberg evolution [Eq. (46)]
and not to G(t)† acting from the right. This explains why in Eq. (61c) the jump-coefficients
j̄α(t) are related to the coefficients jHα (t) characterizing the anti-causal divisibility of the
evolution [Eq. (58)] and not to the jα(t) describing ordinary causal divisibility. Note that
the generator GH builds up the Heisenberg evolution in anti-causal order in contrast to
G†. These observations are gratifying since they tie the physical divisibility properties of
the dynamics to a key step in the derivation of the duality (23), the formal reversal of the
causal ordering [Eq. (S-71) of Ref. [10]], within a completely different formalism.

We also observe that the relation between ΠH(t) and Π̄(t) is reflected by their genera-
tors appearing in the duality (49). Written as jump operator sum similar to Eq. (58), the
dual generator reads

−iḠ(t) = −i[H̄(t), •] +
∑

α

j̄α(t)D̄α(t). (63)

The TP property of Π̄(t) corresponds to Tr Ḡ(t) = 0 which is ensured by Eq. (53). In
Eq. (63) this property is ensured by the causal structure of the dual dissipators D̄α(t) =
J̄α(t) • J̄α(t)† − 1

2

{
J̄α(t)†J̄α(t), •

}
which differs from the Heisenberg dissipators DH

α (t) by
the position of the adjoint in the anticommutator [cf. Eq. (58) ff.].

Even though Ḡ(t) has the causal structure and the TP property of a Schrödinger
picture generator, we know that the dynamics Π̄(t) it generates is never CP [Sec. 3.2.3].
This general conclusion is not readily seen from the jump expansion (57) of Ḡ(t), which
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is tailored to reflect divisibility properties.18 However, it can be seen in the special case
where G is time-constant: then Π(t) = e−iGt is CP-TP if and only if jα ≥ 0. Since in
this case we also have jα = (−1)Nα′ j̄α′ [Eq. (61) ff.] this implies j̄α < 0 for all odd-parity
jump-operators and thus the generated map Π̄(t) = e−iḠt is not CP.

4.3 Time-nonlocal quantum master equation

We now turn to the expression of fermionic duality in the last approach discussed in this
paper, which will be particularly important for the application in Sec. 5. We now exploit
that the evolution Π(t) is also the solution of the completely different time-nonlocal QME

d

dt
Π(t) = −i

∫ t

0
dt′K(t− t′)Π(t′). (64)

In contrast to the time-local QME (45), its convolution structure matches the one obtained
in the microscopic derivation of the evolution [10–14, 18, 19]: the propagator decomposes
into a geometric series of convolutions of memory-kernel blocks −iK(t − t′) of duration
t− t′, giving a self-consistent Dyson equation: denoting (f ∗ g)(t) =

∫ t
0 dt

′f(t− t′)g(t′),

Π = I + I ∗ (−iK) ∗ I + I ∗ (−iK) ∗ I ∗ (−iK) ∗ I + . . . = I + I ∗ (−iK) ∗ Π. (65)

Taking the time derivative gives Eq. (64) [Eq. (15)].
By definition we included the time-local closed-system dynamics L = [H, •] into the

memory kernel K(t) = Lδ(t) + K′(t) with the normalization
∫ t
0 ds δ(s) = 1. Using the

adjoint of Eq. (64) and (65) we obtain the time-nonlocal Heisenberg QME

d

dt
Π(t)† = i

∫ t

0
dt′K(t− t′)† Π(t′)†, (66)

noting that under the convolution one may commute19 Π(t′) and K(t− t′).
Inserting the propagator duality (23) and Eq. (64) on the left-hand-side of Eq. (66) we

obtain the fermionic duality for the memory kernel

[
K(t)

]†
= iΓ I δ(t) − e−ΓtP K̄(t)P. (67)

For the resonant level model the memory kernel (16) indeed obeys this relation: this
follows from the parameter dependence of the nontrivial function k̄(t) = −k(t) [Eq. (26)]

and the parity transformation of the dissipator PD†
ηP = −D−η − I.

4.3.1 Complex-frequency representation of dynamics

An advantage of the time-nonlocal QME (64) is that it allows a particularly simple explicit
expression of Π(t) in terms of the Laplace transform K̂(ω) :=

∫∞

0 dteiωtK(t) of the memory
kernel which facilitates further analysis:

Π̂(ω) =
i

ω − K̂(ω)
. (68)

18For time-dependent generators which commute with the evolution, [G(t),Π(t)] = 0, we still have a
direct relation jα(t) = (−1)Nα′ j̄α′(t). If Π(t) is CP-divisible, i.e., jα(t) ≥ 0 for all t ≥ 0 then j̄α(t) ≤ 0 for
all odd-parity operators. As mentioned in footnote 15 this does not allow to infer whether Π̄(t) is CP or
not. If Π(t) is not CP-divisible, the signs of jα(t) are unrestricted and we cannot conclude either.

19The identity K ∗ Π = Π ∗ K follows from the two ways of writing the Dyson equation, Π = I + I ∗
(−iK) ∗Π = I +Π ∗ (−iK) ∗ I = I + I ∗ [Π ∗ (−iK)] and taking the time derivative.
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Laplace transforming relation (23) gives the fermionic duality in frequency-domain re-
ported in Ref. [10]:

Π̂(ω)† = P ̂̄Π(iΓ − ω∗)P. (69)

This relates Π̂(ω) and ̂̄Π(ω) in complex-frequency regions where either both their Laplace
transforms converge, or in regions where both are defined by analytical continuation. The
mapping of the complex frequency argument reverses the real energy part of ω, while
maintaining the sign of the dissipative imaginary part of ω up to a shift iΓ into the upper
half plane. The fermionic duality for the frequency-domain memory kernel has the same
structure:20

K̂(ω)† = iΓI − P ˆ̄K(iΓ − ω∗)P. (70)

4.3.2 Unphysicality of the duality mapping

While the above discussed operational approaches concern algebraic properties at each
instance of time, the analytical structure of the memory kernel makes explicit how phys-
ical properties evolve in time. This makes fermionic duality in the frequency domain of
independent interest (see below). It also reveals another way in which the dual propagator
is unphysical as follows. Since a physical evolution Π(t) in general shows oscillations and
decay or a combination thereof, its Laplace transform converges only for complex frequen-
cies in the upper half plane. The obtained function Π̂(ω) has a unique extension to the
lower half plane where in general it has both poles and branch points. This is illustrated
for the resonant level model in Fig. 3. Integrating along any clockwise oriented contour
C enclosing the poles and branch cuts (parallel to the imaginary axis) gives the general
solution for the real-time evolution [11,12]:

Π(t) =

∫

C

dω

2π
e−iωtΠ̂(ω) = −i

∑

p

Res
[
Π̂(ωp)e

−iωpt
]

+

∫

b.c

dω

2π
e−iωtΠ̂(ω) (71)

where Res f(ωp) denotes the residue of f(ω) at ω = ωp. In view of our later application in
Sec. 5.2, we note that the first term on the right hand side of (71) sums up contributions
from two types of poles: those that arise due to the frequency-dependent eigenvalues
π̂i(ω) = i/[ω − k̂i(ω)] obeying the pole equation k̂i(ωp) = ωp where k̂i(ω) is an eigenvalue
of K̂(ω), and the remaining poles which also involve the eigenvectors.

Since the parameter map Π(t) → Π̄(t) appearing in the duality relation (23) inverts the
sign of dissipative decay rates, the Laplace transform of Π̄(t) converges only for frequencies
above an imaginary cutoff in the upper half of the complex plane which is at least iΓ,
the fundamental parity eigenvalue: If Π(t) converges to some stationary value Π(∞) this
implies by Eq. (23) that Π̄(t) diverges at least as fast as eΓt which must be suppressed by
eiωt in the Laplace transform. Thus, also its analytical structure proves clearly that the
time-dependence of the dual propagator Π̄(t) is not physical, complementing the discussion
of the algebraic, operational constraints of CP and TP [Sec. 3.2.3] which are independent
of time, see also [33].

4.3.3 Cross-relations frequency-dependent left and right eigenvectors

Laplace transforming Π(t) and K(t), analytically continuing and diagonalizing gives

Π̂(ω) =
∑

i

π̂i(ω)
∣∣π̂i(ω)

)(
π̂′i(ω)

∣∣, K̂(ω) =
∑

i

k̂i(ω)
∣∣k̂i(ω)

)(
k̂′i(ω)

∣∣. (72)

20In the weak coupling limit Γ enters in K̂(ω) only as a prefactor, K̂(ω) ∝ Γ. In this case it is possible to
consider a physical dual system without inversion of the coupling Γ by directly including the sign change
of K̂ in a modified duality relation [10,16, 17].
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Figure 3: Resonant level model for strong coupling and detuning ε− µ = Γ/2. Plotted is
the modulus of the complex valued matrix element (0|Π̂(ω)|0) in units of Γ in the complex
frequency plane where |0) = |0〉〈0| denotes the unoccupied state. (a) Finite temperature
T = Γ/4: distinct from the two infinite sets of equidistant poles there are four poles
(marked ×) at ω = 0, ω = −iΓ and ω = ±ε − iΓ/2. The last two poles are not visible
here but appear in other matrix elements. (b) For T → 0 two branch cuts develop from
the sets of equidistant poles. At resonance (ε − µ ≪ T ) these poles (branch cuts) cancel
exactly leaving just a single pole at −iΓ whereas off-resonance (ε−µ≫ T,Γ) they move to
the sides where they become suppressed in amplitude. Only in these two limits four poles
remain and the dynamics is a semigroup [23]. For T → ∞ the first case always applies.

Inserted into the memory-kernel duality (70) we obtain for the eigenvalues

k̂j(ω) =
[
iΓ −

¯̂
ki(iΓ − ω∗)

]∗
(73a)

with the duality between left and right eigenvectors

(
k̂′j(ω)

∣∣ =
(¯̂
ki(iΓ − ω∗)

∣∣P,
∣∣k̂j(ω)

)
= P

∣∣¯̂k′i(iΓ − ω∗)
)
. (73b)

Due to the simple relation (68) in the frequency domain the eigenvectors coincide,
(
π̂′i(ω)

∣∣ =(
k̂′i(ω)

∣∣ and
∣∣π̂i(ω)

)
=

∣∣k̂i(ω)
)
, with eigenvalues π̂i(ω) = i/[ω − k̂i(ω)]:

π̂j(ω) = ˆ̄πi(iΓ − ω∗)∗ (74)

in agreement with Eq. (69). We stress that the frequency-domain fermionic duality re-
lations (73)–(74) are of independent interest: they are not trivial consequences of the
time-domain relations (29) since the Laplace transformation and diagonalization do not
commute. The ω-dependent eigenvectors (eigenvalues) of Π̂(ω) are not the Laplace trans-
forms of the t-dependent eigenvectors (eigenvalues) of Π(t).

For the resonant level model, Laplace transforming Eq. (8) gives (App. D of Ref. [23]):

Π̂(ω) =
∑

η=±

i

ω + ηε+ iΓ2

∣∣d†η
)(
d†η
∣∣ +

i

ω
1
2

[∣∣1
)

+ k̂
(
ω + iΓ2

) ∣∣(−1)N
)] (

1

∣∣

+
i

ω + iΓ
1
2

∣∣(−1)N
) [(

(−1)N
∣∣− k̂

(
ω + iΓ2

) (
1

∣∣
]
. (75)
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The left and right eigenvectors are indeed cross-related as dictated by Eq. (73b). In
particular, the (non)trivial frequency dependence of the left (right) eigenvector for the
eigenvalue with pole ω = 0 necessarily implies that the right (left) eigenvector for the
eigenvalue with pole ω = −iΓ is (non)trivial as well. Thus, also in the frequency domain
duality provides fine-grained insight into the location of nontrivial (non-exponential in
time) contributions to the dynamics. In particular, the frequency dependence of the
eigenvectors through the Laplace transform of k(t) [Eq. (5)],

k̂(ω) =
i

π

∑

η=±

ηψ

(
1

2
− i

ω + η(ε− µ)

2πT

)
, (76)

generates infinitely many additional poles at ω = ±(ε−µ)−iΓ/2−iπT (2n+1), n = 0, 1, . . .
due to the digamma function ψ. For T → 0 the poles merge to form two branch cuts as
shown in Fig. 3. In our application in the next section this analytic structure turns out to
provide crucial insights.

5 Nonperturbative semigroup approximation and initial slip

Finally, we consider an application of fermionic duality where the insights of several of
the discussed approaches come together. We consider analytic approximations to the
solution of the time-local QME (45), d

dtΠ(t) = −iG(t)Π(t), constructed from the generator
G(t) which we assume to be exactly known (best case). This equation naturally suggests
a nonperturbative semigroup approximation which does not rely on any weak-coupling
assumption [5, 38]:

Π(1)(t) := e−iG(∞)t =
∑

i

e−igi(∞)t
∣∣gi(∞)

)(
g′i(∞)

∣∣, (77)

requiring only that the generator converges to a stationary value G(∞), which is diagonal-
izable. It is not in general clear how accurate this approximation and corrections to it are.
We will show that the quality of these approximations can be deeply understood using its
exact relation to the corresponding time-nonlocal QME (64) and its memory kernel K(t)
combined with fermionic duality. This effort is motivated by two attractive properties of
the approximation (77):

(i) For the large class of evolutions which are CP-divisible in the stationary limit, i.e.,
jα(∞) ≥ 0 in Eq. (57), the approximate evolution (77) is both CP and TP. This is in
general very difficult to achieve for nonperturbative approximations [29–33]. This class
includes dynamics which is not a trivial semigroup described by a Lindblad equation,
which is already the case for the resonant level model (except for T = ∞ or ε = µ, see
Sec. 2). It also includes dynamics which is not CP-divisible as long as jα(t) ≤ 0 occurs
only for finite times.

(ii) The approximate evolution (77) converges to the exact stationary state as we
demonstrate below, e−iG(∞)t

∣∣π0(∞)
)

=
∣∣π0(∞)

)
=

∣∣ρ(∞)
)
.

5.1 Fixed-point relation between generator G and memory kernel K

To address this problem, we will make use of a recent exact result [5] which shows that
the stationary generator obeys the self-consistent equation [App. E]

G(∞) =

∫ ∞

0
dtK(t)eitG(∞). (78)
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Here the superoperator G(∞) takes the role of the complex frequency ω in the Laplace
transform of the memory kernel K(t). Inserting the spectral decompositions, this implies
K̂[gi(∞)]

∣∣gi(∞)
)

= gi(∞)
∣∣gi(∞)

)
, and a careful analysis shows that the eigenvalues of

the stationary generator G(∞) are eigenvalue-poles21 of Π̂(ω), i.e., ωp = k̂j(ωp) [Eq. (68)].
Equation (78) thus states that G(∞) “samples” the Laplace transform K̂(ω) of the memory
kernel precisely at complex frequencies given by the eigenvalues of G(∞):

G(∞) =
∑

i

k̂ji(gi(∞))
∣∣k̂ji(gi(∞))

)(
g′i(∞)

∣∣ (79)

Here k̂ji(gi(∞)) = gi where ji denotes the index of the eigenvalue k̂j(ω) of K̂(ω) which
equals gi at frequency ω = gi. By trace-preservation, the frequency sampling always
includes zero, g0(∞) = 0, and thus G(∞) and K̂(0) have the same stationary state eigen-
vector, proving property (ii) mentioned above. However, also nonzero complex frequencies
are sampled. Thus, only the set of eigenvectors {

∣∣k̂ji(gi(∞))
)
}, collected from different

superoperators [K̂(ω) at different frequencies ω = gi(∞)] provides the full set of right
eigenvectors {

∣∣gi(∞)
)
} of the single superoperator G(∞). This in turn determines the left

eigenvectors {
(
g′i(∞)

∣∣} of G(∞) and thus, remarkably, G(∞) can be directly constructed

from the memory kernel K̂(ω) once one knows the eigenvalues gi(∞). For the resonant
level model this surprising construction was verified explicitly in Ref. [5].

Ref. [5] focused on the implications of relation (78) assuming that one knows K and
aims to compute G. Here we focus in a sense on the converse question: Using a known
G to construct an approximation for Π(t), what general insights into the quality of the
approximation does K provide, and how does fermionic duality help in this analysis? We
consider the simplest approximation beyond the semigroup approximation (77), a corrected
semigroup which aims at improving the description of the evolution at long times. To
illustrate the simplest type of such a correction we assume in the following that the poles
of Π̂(ω) at the eigenvalues of G(∞) are of first order.22 We start by noting that by Eq. (79)
the eigenvalues of G(∞) must be poles in the eigenvalues of Π̂(ω) [first term of Eq. (71)].
Their contribution to the exact evolution can be expressed as

Π(2)(t) := −i
∑

i

e−igi(∞)t Res Π̂(gi(∞)) (80a)

=: e−iG(∞)tS (80b)

Here the sum over i runs over distinct values of gi(∞). This indeed looks like an initial
slip correction to the semigroup approximation. We will now discuss the quality of the
two approximations Π(1) and Π(2) and then derive an exact restriction on this procedure
imposed by fermionic duality.

5.2 Nonperturbative semigroup approximation

The quality of the semigroup approximation (77) can be investigated using the result (80a)
of the time-nonlocal QME approach. We observe that in the complex-frequency domain
the error Π̂(ω) − Π̂(1)(ω) has in general the same poles as the exact dynamics except for
the pole at zero frequency. Thus, the approximation captures only the stationary state
systematically.

21Because we assume that G(∞) exists and Eq. (78) holds, K(gi(∞)) cannot have poles in its eigenvectors.
22Our assumption is equivalent to dk̂ji(ω)/dω|ω=gi(∞) 6= 1. Higher order poles would require a time-

dependent slip superoperator S(t) = S1 +S2t+S3t
2 + · · · where Sn is constructed from the residues of all

nth order poles of Π̂(ω) at eigenvalues of G(∞).
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Figure 4: Error analysis for approximations to the resonant level model for coupling Γ = 4T
and ε − µ = Γ/2. Plotted is the amplitude of one matrix element (0|[Π̂(ω) − Π̂(1)(ω)]|0)
(left) and (0|[Π̂(ω)−Π̂(2)(ω)]|0) (right) for the unoccupied state |0) = |0〉〈0| in the complex
frequency plane. Whereas the semigroup approximation Π(1)(t) = e−iG(∞)t does not fully
cancel the pole at ω = −iΓ, the initial-slip approximation Π(2)(t) = e−iG(∞)tS exactly
cancels all four indicated poles of Π̂(ω) in Fig. 3.

In Fig. 4(a) this is illustrated for the resonant level model. The reason becomes clear
when comparing Eq. (77) with Eq. (80a). Although the decompositions of Π(1)(t) and
Π(2)(t) share the same coefficients and right vectors, only in Π(2)(t) the different pole con-
tributions appear with the correct left eigenvectors. In Eq. (77) all eigenvalues are expo-
nential functions with prefactor one, while the coefficients in Eq. (80a) may include prefac-
tors from the residuals Π̂(gi(∞)) due to the frequency-dependence of K̂(ω) [cf. Eq. (82b)].
Also, the left eigenvectors in Eq. (77) are biorthogonal to the right eigenvectors, while the
left eigenvectors of the residuals in Eq. (80a) are collected from kernels K̂(ω) at different
frequencies and do not need to obey such restrictions, as is indeed the case for the resonant
level model [5].

5.3 Nonperturbative initial slip correction

Within the time-local QME approach one may set up a nonperturbative correction of the
semigroup approximation by an initial slip [69–73] using some superoperator S:

Π(2)(t) = e−iG(∞)tS. (81)

This initial-slip approximation is precisely what is obtained in the time-nonlocal QME
approach when selecting the exact poles gi(∞) in the contour integration (71) of the
inverse Laplace transform. This relation can be used to investigate how well one can do
in the time-local approach: we know from Eq. (80) that such a correction can be achieved
by

S = −i
∑

i

Res Π̂(gi(∞)) (82a)

=
∑

i

1

1 − ∂k̂ji/∂ω(gi(∞))

∣∣gi(∞)
)(
k̂′ji(gi(∞))

∣∣. (82b)
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Figure 5: Resonant level model: Nonperturbative semigroup [Eq. (77), dashed] and initial
slip approximation [Eq. (80), dash-dotted] compared to the exact occupation dynamics
(solid line). (a) For generic level positions ε and couplings Γ . 2πT the slip-corrected dy-
namics coincides with the exact result well before reaching the stationary value, while the
semigroup approximation converges much later. In this case the time-nonlocal QME (64)
solved by selection of the poles [Eq. (83)]—automatically including semigroup plus initial
slip—is advantageous. (b) Surprisingly, near isolated points in the ε,Γ-parameter space
the initial slip correction worsens the reliable semigroup approximation (77) based on
the time-local QME. The precise positions at which this failure occurs are predicted by
fermionic duality: As explained after Eq. (85), they are a consequence of the constraints
it imposes on the slippage superoperator. The increased error introduced by the slip cor-
rection can also be understood as a failure to account for cancellation by eigenvector poles
responsible for the branch cuts of the dynamics at T = 0.

Note that this expansion is not the spectral decomposition of S, since the sets of left
and right eigenvectors are not biorthogonal. This is in fact the best one can do for an
approximation in the long time limit since in the frequency domain this approximation
for the resolvent reads

Π̂(2)(ω) =
i

ω − G(∞)
S = −i

∑

i

i

ω − gi
Res Π̂(gi) (83)

showing that now the exact poles gi are completely canceled in the error Π̂(ω) − Π̂(2)(ω)
as illustrated in Fig. 4(b). Here we assumed that the eigenvalues gi(∞) are nondegenerate
as is the case in the resonant level model, see App. D for the degenerate case.

In Fig. 5(a) we illustrate that for the resonant level model the inclusion of the exact
initial slip S may indeed lead to a much faster approach to the exact dynamics than the
nonperturbative semigroup. In Eq. (80b) this is achieved by first mapping the initial state
using S to a possibly nonpositive density operator—reflected in the plot by the unphys-
ical occupation > 1—and then applying the semigroup evolution (77). Indeed, although
S and Π(2)(t) are both TP maps23, the map S is not CP. Thus, the initial dynamics is
unphysical whenever the slip is nontrivial, since by construction Π(2)(0) = S 6= I [74–76].
For the same reason, the slip-approximated dynamics (81) is not a semigroup: even
though the decay is exponential, any nontrivial slip obstructs addition of the exponen-
tials: e−iG(∞)t′Se−iG(∞)tS 6= e−iG(∞)(t+t′)S. Although this is not a problem—the exact
dynamics Π(t) is not a semigroup either—it may be overlooked that summing isolated

23TrS = Tr since Tr gi = (g′0|gi) = δi0 and
(
π′
0

∣∣ = Tr.
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Figure 6: Time after which the initial slip approximation (80b) to the resonant level evo-
lution becomes completely positive, in units of inverse temperature. For |ε− µ| → ∞ the
semigroup approximation is exact and the slip correction vanishes. Arbitrarily close to the
discrete parameter points (87) [Fig. 5(b)] the correction diverges even though the semi-
group is very accurate. In between these points the correction remains small [Fig. 5(a)].

pole contributions [Eq. (80a)] in the time-nonlocal QME approach, one does not obtain a
Markovian semigroup approximation.

In Fig. 6 we investigate this correction more closely for the resonant level model by
plotting the time at which Π(2)(t) becomes CP, a necessary indicator of quality. Interest-
ingly, near resonance, ε = µ, this time may diverge for specific physical values of the strong
coupling. Fig. 5(b) illustrates that in their vicinity the initial slip may give a very large
correction even though the semigroup approximation is very close to the exact dynam-
ics. This breakdown is easily overlooked when constructing the slip approximation within
the time-local formulation in which the frequency-domain structure is not available. This
crucial insight is enabled by the fixed-point relation (78) of Ref. [5].

We note that in the time-local approach, one might expect the exact slip superoperator
to be expressible as S = limt→∞ eiG(∞)tΠ(t) but this limit may actually fail to exist. In
the resonant level model this indeed happens when the coupling exceeds a sharp threshold,
Γ ≥ 2πT . However, one can regularize this expression to recover Eq. (82) by taking the
zero-frequency residual of its Laplace transform L: S = −iResL

[
eiG(∞)tΠ(t)

]
(0). We

further note that Markovian approximations can also be performed starting from the
Heisenberg equation of motion d

dtA(t) = iGH(t)A(t) as is often done in quantum optics.
However, naively following the same steps in this picture leads to different results with
problematic features. This further subtlety and its resolution are discussed in App. D.

5.4 Fermionic duality for the initial slip

The restrictions imposed by fermionic duality now provide a crucial insight: already for the
resonant level model, divergences of the CP-time quality indicator [Fig. 6] are unavoidable.
This can be understood by taking the stationary limit of the duality relation (49) which,
provided S−1 exists, simplifies to

GH(∞) =
[
S−1G(∞)S

]†
= iΓ I − PG(∞)P. (84)

Here G(∞) applies the duality mapping after the stationary limit [App. D]. This matters
since although the generator G(∞) exists for all parameters of the model this is not true for
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GH(∞) and Ḡ(∞), a further illustration of the nontrivial relation between the Schrödinger
and Heisenberg time-local generators. Importantly, the slip superoperator that appears
here obeys a separate fermionic duality which is another key result of the paper:

S† = P S̄ P. (85)

For the resonant level model, the exact relations (84) and (85), together with the trace
preserving property of S, completely fix the relevant part of the slip superoperator con-
structed from the generator G(∞) [App. D]:

S = I + 1
2

∑

η

ηk̂(ηi12Γ)
∣∣(−1)N

)(
1

∣∣, (86)

where k̂(i12Γ) = (2/π) Imψ
(
1
2 + [Γ/2 + i(ε − µ)]/(2πT )

)
[cf. Eq. (76)]. As function of

parameters the expression k̂(i12Γ) dictated by fermionic duality is singular at physical
parameter points

ε = µ± 0+, Γ = (1 + 2n)2πT (87)

with n = 0, 1, 2, . . ., causing the slip approximation (80b) to break down as in Fig. 5(b).
Moreover, the Heisenberg and dual generator diverge here. This illustrates that fermionic
duality can be a useful tool for understanding the often highly nontrivial properties of
time-local generators of quantum evolutions which complicate analytic approximations.

In the time-nonlocal approach the breakdown can be clearly understood in the fre-
quency representation: Close to the values (87), three poles in the exact result for Π̂(ω)
[Eq. (75)] approach the same point (ω = −iΓ). One pole comes from an eigenvalue of
Π̂(ω) (lowest cross in Fig. 3) and two others come from its eigenvectors (top two unmarked
poles in Fig. 3). The prefactor of the eigenvalue-pole diverges as function of parameters
as 1/(ε − µ) but in the exact result this is canceled by corresponding divergence of the
prefactors of the two eigenvector poles. However, in the slip approximation the latter two
poles are discarded [Fig. 4], leaving the spurious divergence of the remaining one.

6 Discussion

In this paper we have shown that for a large class of fermionic open systems the nontrivial
relation between state and observable evolution can be completely bypassed by a simple
fermionic duality mapping that exploits and generalizes the functional dependence of the
two evolutions on the microscopic physical parameters. We have shown that this works
for essentially all canonical approaches used in quantum transport, open-system dynam-
ics and quantum information theory without introducing any assumptions (such as weak
coupling, high temperature, various Markovian approximations, etc.) except for wide-
band coupling to the reservoirs. The obtained fermionic duality relations are summarized
in Table 1. In the superoperator-based approaches these imply exact parity eigenvalues
and eigenvectors [Eqs. (32), (53)] and nontrivial cross-relations for the entire spectrum
[Eqs. (29), (50), (73), (74)]. Correspondingly, in the operational approaches we derived
additional fermionic sum rules for measurement and jump operators [Eqs. (40), (59)] and
their scalars coefficients [Eqs. (41), (42), (60)], and nontrivial cross-relations for these en-
tire sets of operators [Eqs. (39), (61)]. Combining the latter approaches with fermionic
duality naturally led us to consider a new type of divisibility of the dynamics: We noted
that the Schrödinger and Heisenberg time-local generators through their quantum-jump
coefficients encode both ordinary causal and anti-causal divisibility, respectively. Using
fermionic duality we showed how the operational condition of anti-causal divisibility can
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be inferred from the condition of ordinary, causal divisibility. Dynamics which does not
commute with its generator may be causally divisible but fail to be anti-causally divisi-
ble, as we demonstrated by an explicit example. This provides definite information about
the causal ordering of the dynamics, i.e., whether the ordering of dividing the dynamics
matters.

Throughout we emphasized both the usefulness of duality relations such as Π(t)† =
e−ΓtPΠ̄(t)P and the unphysicality of mappings such as Π(t) 7→ Π̄(t). The usefulness
was illustrated by identifying various “symmetries” in the dynamics of the resonant level
model which went unnoticed so far. Importantly, our results apply much more generally
and are therefore relevant for a large class of outstanding dynamical open-system problems
in regimes of strong coupling, strong interactions, finite temperature and nonequilibrium.
This holds in particular for much of the analysis and applications in Sec. 5, which apply to
complex models of high interest for which the calculations are of course very complicated.
Here one should remember that the merit of duality lies in simplifying a calculation given a
method of choice, not in providing this method. In this application we exploited fermionic
duality to provide deeper insight into a nonperturbative semigroup approximation which
respects CP-TP for a broad class of dynamics, using the key result from Ref. [5] that relates
time-local and non-local QMEs. We showed that inclusion of the initial-slip correction
[Eq. (80b)] in the time-local approach (TCL) corresponds precisely to a selection of poles
in the time-nonlocal approach (Nakajima-Zwanzig). We found that even for the resonant
level model this correction unexpectedly fails at specific physical parameters and that
this failure is unavoidable due to fermionic duality constraints. The failure of the slip-
correction is interesting: in the resonant level model it is caused by the poles that form
branch-cuts in the limit T → 0. That branch cuts invalidate exponential approximations
at T = 0 is not unexpected, but here we found that precursors of branch-cuts already
cause havoc at finite temperature T .

The unphysicality of the duality mapping appeared particularly clearly in the opera-
tional formulations tailored to quantum information theory which show that the evolution
Π̄(t) at dual parameters violates complete positivity. We highlighted this point since it
implies that when tacitly assuming this valid and important restriction in any of the oper-
ational approaches one may easily overlook the powerful constraints imposed by fermionic
duality. For example, in the operational approach evolution maps are invariably writ-
ten as Π =

∑
αMα •M †

α (which we avoided doing) by anticipating positive coefficients
in the operator sum and absorbing them into the norm of the measurement operators,
i.e., TrM †

αMα = mα. This automatically eliminates the dual superoperator Π̄(t) with its
benefits from further considerations since it has no such expression.

Relation to other works. The fermionic duality is most closely related to the extension
of PT-symmetry [77,78] to dissipative systems [79,80]. Unlike ordinary symmetries which
relate for example the evolution to itself by conjugation with a symmetry transformation,
the evolution is related to its adjoint. In the present paper we have emphasized this
relation as a connection between the mathematically and physically distinct evolutions of
states and observables. In the Refs. [79,80] this was achieved under the strong assumption
of Markovianity in the sense of semigroup divisibility (Lindblad). The fermionic duality
which was derived in Ref. [10] is instead based on far less restrictive assumptions and is
applicable to strongly non-Markovian dynamics such as in the resonant level model.

The involvement of the adjoint sets fermionic duality apart from standard symmetry
consideration transposed to Liouville space—called “weak symmetry” in Ref. [81]—where
the time-local generator commutes with the symmetry superoperator. Open systems also
allow for a notion of “strong symmetry” where the Hamiltonian and jump operators of this
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time-local generator commute with a symmetry operator. This stronger notion introduced
in Ref. [81] for semigroup-Markovian systems played a role in our analysis albeit in modified
form (the jump operators may either commute or anticommute with the fermion parity
operator, see Eq. (57) ff. and App. C). However, fermionic duality is distinct from both
these notions of symmetry.

We furthermore note that after the original derivation of fermionic duality in Ref. [10]
subsequent work appeared [82,83] which exploited similar tricks to simplify the calculation
of open system evolutions, such as unphysical, non-Hermitian coupling to reservoirs with
structureless wide bands. However, in addition to focussing on bosonic systems, these
works relate the environment of a system of interest to a simpler, effective environment to
reduce the computational complexity. In contrast, the fermionic duality relates a system
and its environment to an equally complex dual system and environment, in order to
exploit the functional parameter dependence of the evolution.

Finally, our finding of a new type of divisibility of the dynamics raises an interesting
question regarding stochastic simulations as different types of divisibility are at the basis of
different simulation methods. Whereas CP-divisibility of the dynamics enables an imple-
mentation that directly uses the jump operators to generate quantum jumps [51, 84, 85],
P-divisibility allows only for an indirect implementation of the jumps via Diosi’s rate-
operator [51, 86, 87]. If the evolution has no divisibility property, its simulation is more
complicated, requiring reverse quantum jumps connecting trajectories [51]. However, all
these distinctions are based on causal division of the dynamics. Fermionic duality surpris-
ingly enables conclusions about anti-causal divisibility, an apparently new concept with
a clear operational formulation independent of fermionic duality. It presents a refined
distinction between different types of dynamics. For the resonant level model we found
that anti-causal CP-divisibility is lost while the dynamics remains causally CP-divisible
and thus efficiently simulateable. It is an interesting open question how to detect the loss
of this property on the level of simulated quantum trajectories.

Outlook. Exploiting the results reported here in applications to interacting models with
strong coupling requires that one uses an approach that maintains fermionic duality in
approximations. The renormalized perturbation theory [13, 14] which was used originally
[10, 16] to derive the duality relation (3) exhibits this feature: It preserves duality order
by order in a renormalized temperature-dependent coupling, see Ref. [88] for a recent
implementation. Ordinary perturbation theory in the bare coupling Γ [89–91] already
breaks fermionic duality in the next to leading order Γ2. For the Anderson model this
breakage seems specifically related to the electron pair-tunneling contributions [90,92,93].

For calculations involving stronger coupling the renormalization-group approach of
Refs. [11–13,94–99] is well-suited. Its original formulation [11,13] is build on the renormal-
ized perturbation expansion, which explicitly preserves fermionic duality [10]. Although
in Ref. [13] the first implications of fermionic duality were discovered and applied in a
very advanced context, it remains an interesting open question which truncation schemes
for this exact hierarchy of the RG equations maintain the fermionic duality. Moreover,
the potential advantages of the duality for the more recent E-flow formulation [95–97,99]
also remain unexplored. Finally, it is of interest to understand how approximations can
be formulated within other nonperturbative approaches in a way that maintains fermionic
duality, i.e., by which rules. A key step in this direction would be an elementary micro-
scopic derivation of fermionic-duality within these approaches. Our finding that fermionic
duality takes a simple form in each of the canonical approaches to quantum dynamics
suggests that this is possible.
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A Duality for Choi-Jamio lkowski state of propagator Π(t)

CP and CJ operator. A dynamical map ρ(t) = Π(t)ρ(0) is completely positive (CP) if and
only if it preserves positivity when evolving the system together a non-evolving auxiliary
system: (Π(t)⊗I)ρext(0) ≥ 0 for any initial state ρext(0) of the system plus any auxiliary
system. This is equivalent to positivity for the worst case ρext(0) = 1

d |1〉〈1| of a maximally
entangled state |1〉 =

∑
k |k〉|k〉 on the tensor product of the system Hilbert space with

an auxiliary copy of itself. Thus, the so-called Choi-Jamio lkowski (CJ) operator should
be positive:

choi[Π(t)] :=
(
Π(t) ⊗ I

)
|1〉〈1| (88)

The operators Mα(t) in the operator sum (35) for a Hermicity-preserving superoperator
Π(t) are obtained by diagonalizing the Hermitian choi[Π(t)]:

choi[Π(t)] =
∑

α

mα(t)|Mα(t)〉〈Mα(t)|. (89)

When diagonalized with eigenvectors normalized to 1 the real eigenvalues mα(t) are the co-
efficients in the operator sum (35). If Π(t) is CP they are positive since then choi Π(t) ≥ 0
as noted in the main text. The bipartite eigenvectors |Mα(t)〉 = (Mα(t) ⊗ 1)|1〉 =∑

ij〈i|Mα(t)|j〉 |i〉|j〉 determine the matrix elements of the canonical measurement op-
erators relative to the chosen basis {|i〉}.

Parity of measurement operators. Fermion superselection for the total system evolution
and initial reservoir state implies that the reduced system evolution Π(t) commutes with
the parity superoperator (−1)LN := (−1)N•(−1)N . This implies that choi[Π(t)] commutes
with the bipartite parity (−1)N ⊗ (−1)N .

choi[Π(t)] = choi
[
(−1)LN Π(t)(−1)LN

]
= (−1)N⊗(−1)N choi[Π(t)] (−1)N⊗(−1)N (90)

This shows that the eigenvectors |Mα(t)〉 have definite bipartite parity and thus the mea-
surement operators must have definite parity: (−1)NMα(t)(−1)N = (−1)NαMα(t) with
Nα = even or odd, as claimed in the main text.

Fermionic duality. Using the property that in the maximally entangled state the action
of any operator on the system is perfectly transposed to its copy, A⊗ 1|1〉 = 1⊗ AT |1〉,
the relation (23) implies the fermionic duality for the CJ state

choi[Π(t)†] = S
(

choi[Π(t)]
)∗
S = e−Γt

(
(−1)N ⊗ (−1)N

)
choi[Π̄(t)] (91)

involving the bipartite swap operator S|i〉|j〉 = |j〉|i〉. Thus, if |Mα′(t)〉 is a right eigen-
vector of choi[Π(t)] with eigenvalue mα′(t), then [S|M̄α′(t)〉]∗ = |M̄α′(t)†〉 is also a right
eigenvector with eigenvalue mα(t) = e−Γt(−1)Nα′ m̄α′(t) proving Eq. (39b) in the main
text. Using |Mα〉 = (Mα ⊗ 1)|1〉 we also establish the fermionic duality (39a) for mea-
surement operators.
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Degenerate coefficients mα(t). If some coefficient mα(t) is a degenerate eigenvalue of
choi[Π(t)] with eigenvectors denoted {|Mαλ〉}λ∈α, then the above argument establishes a
correspondence between Hermitian eigenprojectors, Pα ≡

∑
λ∈α |Mαλ〉〈Mαλ|. The eigen-

values m′
α and mα(t) = e−Γt(−1)Nα′ m̄α′(t) are equally degenerate and the projectors on

their eigenspaces are related by
(SPαS)∗ = P̄α′ . (92)

This means that corresponding partial operator sums for the dual eigenvalue pair α and
α′ are equal: ∑

λ∈α

M †
αλ •Mαλ =

∑

λ∈α′

M̄α′λ • M̄ †
α′λ. (93)

B Relation specific to resonant level model

In addition to the generally valid duality relation (49), the time-local generator of the
resonant level model obeys another, simpler relation. This may be understood also from
the formal similarity of Eq. (8) and Eq. (18). Despite the fact that Π(t) = T exp

(
−

i
∫ t
0 dsG(t)

)
and the time-ordering T is nontrivial for this model, it holds true that Π(t) =

exp(−itG(t))|g(t)→p(t). Inserting this into the relation (23) and using p̄(t) = −p(t) one
obtains by comparing exponents

[
G(t)

]†
= iΓ I + P G(t)|

g(t)→−g(t) P. (94)

where on the right we replace “by hand” g(t) → −g(t) in analogy to the transformation of
p(t) under the parameter substitution. As a result, the left and right eigenvectors of G(t)
are formally related by taking the adjoint, multiplying with the fermion parity (−1)N and
replacing g(t) → −g(t), as one can verify in Table 2. Although relation (94) is simpler and
inferred by inspection, it is not valid for the general class of models for which Eq. (50)
holds.

C Duality for Choi-Jamio lkowski operator of generator G(t)

Jump expansion for G(t). The canonical jump-expansion for a time-local generator G(t) is
obtained by constructing its CJ-operator (88) proceeding analogous to Π(t) as in App. A.
However, G(t) is not a CP map (unlike Π(t)) and we can only use that TrG = 0 (instead
of Tr Π = Tr), and that −iG is Hermicity-preserving and thus choi[−iG(t)] is Hermitian.
The canonical form

choi[−iG(t)] = |1〉〈B| + |B〉〈1| +
∑

α

jα|Jα〉〈Jα| (95)

is obtained by diagonalizing the projection of choi[−iG(t)] on the orthogonal space of the
maximally entangled state |1〉 :=

∑
k |k〉|k〉. This gives the last term in Eq. (95) and

the first two terms account for the remaining matrix elements. The projector to this
orthogonal space is denoted as Q := 1− |1〉〈1|/d. Splitting B = ReB+ i ImB one checks

that the Hermitian part is fixed to ReB = −1
2

∑
α jαJ

†
αJα by the condition TrG(t) = 0.

The remaining anti-Hermitian part defines the effective Hamiltonian H(t) = − ImB(t) in
Eq. (57).

Parity of jump operators. In our case we can also use that fermion superselection,
[(−1)LN ,Π(t)] = 0, implies [(−1)LN ,G(t)] = 0. Thus, choi[G(t)] also commutes with the
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bipartite parity since Eq. (90) also applies with Π → G. Since |1〉 has even bipartite parity,
we have (−1)N ⊗ (−1)N |B〉 = |B〉 or [B, (−1)N ] = 0. This shows that the Hamiltonian
part in Eq. (57) commutes with fermion parity [H(t), (−1)N ] = 0.

The remaining eigenvectors of the projection with Q have definite bipartite parity of
either sign, (−1)N ⊗ (−1)N |Jα〉 = (−1)Nα |Jα〉 for Nα being even or odd. These deter-
mine the jump operators through |Jα(t)〉 = (Jα(t)⊗ 1)|1〉 for which (−1)NJα(t)(−1)N =
(−1)NαJα(t) as claimed in the main text. Note that this implies that ReB has even parity
consistent with the above.

Degenerate coefficients jα(t). If some coefficient jα is a degenerate eigenvalue of
Q choi[−iG(t)]Q in the construction of Eq. (95) then similar remarks apply as for the
measurement operators. The partial operator sums for the dual eigenvalue pair α and α′

are equal, ∑

λ∈α′

JH
α′λ • JH

α′λ
†

=
∑

λ∈α

J̄αλ • J̄†
αλ, (96)

instead of the individual jump operators [Eq. (61b)].
Evolution commutes with its generator. In the special case where [G(t),Π(t)] = 0 things

simplify, iGH(t) = [−iG(t)]†, and we have by Eq. (22) HH(t) = H(t), JH
α (t) = Jα(t)† and

jHα (t) = jα(t) in Eq. (58). Comparing the latter with the jump expansion for the right
hand side of Eq. (49),

choi[iG(t)†] = choi
[
−ΓI − iPḠ(t)P

]

= |1〉
[
〈B̄| − Γ

2 〈1|
]

+
[
|B̄〉 − Γ

2 |1〉
]
〈1| +

∑

α

(−1)Nα j̄α|J̄α〉〈J̄α| (97)

we find the result of the main text H̄(t) = −H(t), Jα(t)† = J̄α′(t) and jα(t) = (−1)Nα′ j̄α′(t)
for nondegenerate coefficients.

D Duality for stationary generator and slip superoperator

Duality for the slip superoperator S [Eq. (86)]. Using the t → ∞ limit of Eq. (50a),
gj(∞) =

[
iΓ − ḡi(∞)

]∗
, and Eq. (69) in Eq. (82) we obtain writing gi for gi(∞)

PS̄P = −i
∑

i

P Res ˆ̄Π(ḡi)P = −i
∑

i

Res
[
Π̂(−iΓ − ḡ∗i )†

]
(98a)

= i
∑

i

[
Res Π̂(−iΓ − ḡ∗i )

]†
=

∑

j

[
− iRes Π̂(gj)

]†
= S†. (98b)

Initial slip S for resonant level model. The nontrivial part of the slip ∆ := S−I obeys
three equations by the fact that S is TP, Eq. (85) and Eq. (84),

(
1

∣∣∆ = 0, ∆† = P∆̄P, G(∞)(1 + ∆) = (1 + ∆)[−iΓ I − PG(∞)
†
P]. (99)

Solving these equations for the resonant level model gives Eq. (86) up to an additional term∑
η αη(t)

∣∣dη
)(
dη
∣∣ with undetermined function αη(t)∗ = ᾱη(t). The latter term is irrelevant

for the occupation dynamics, in which the breakdown of the initial slip correction occurs.
Thus duality fixes the relevant part. Note that the evolution of the coherences is already
exact in the semigroup approximation. Setting αη(t) = 0 we obtain the exact result.

Stationary limit of time-local duality (49) [Eq. (84)]. Noting that the left action of
G(∞) on the slip operator gives G(∞)S = −i

∑
i gi Res Π̂(gi) by Eq. (82b), we insert the

39



SciPost Physics Submission

dual parameters and follow the same steps as in Eq. (98):

PG(∞)S̄P = −i
∑

i

ḡiP Res ˆ̄Π(ḡi)P

= i
∑

j

(iΓ − g∗j )
[

Res Π̂(gj)
]†

= {[−iΓ − G(∞)]S}†. (100)

This relation holds generally. When S is invertible, we can insert Eq. (98) on the left hand

side and right-multiply with S†−1
to obtain the result Eq. (84):

iΓI − PG(∞)P = [S−1G(∞)S]†. (101)

Note that S is invertible if and only if {
(
k̂′ji(gi(∞))

∣∣} is a linearly independent set, i.e.,

Π(2)(t) and Π(t) have the same rank.
Degeneracy of gi(∞). In the main part we assume that G(∞) and K(gi(∞)) are

diagonalizable, sharing nondegenerate stationary eigenvalues gi(∞). However, the slip ap-
proximation can also be constructed if G(∞) and K̂(gi(∞)) share an eigenvalue with the
same degeneracy di. In the construction of the slip approximation the contributions of dif-
ferent eigenvectors

∣∣gi(∞), l
)
, l = 1, . . . , di to a degenerate eigenvalue gi(∞) can be treated

separately. However, when writing S as a sum of residuals Res Π̂(gi(∞)) in Eqs. (82a)
and (83) we must count these independent contributions only once: the summation index
i must label the different eigenvalues of G(∞), not the eigenvectors.

Inconsistent approximations using GH(t) and G(t)†. It is clear that the equation of
motion d

dtΠ
H(t) = iΠH(t)G(t)†, obtained by taking the adjoint of the time-local QME

d
dtΠ(t) = −iG(t)Π(t), leads to the semigroup approximation Π(1)(t)† = eiG(∞)†t with

initial slip correction Π(2)(t)† = S† eiG(∞)†t. These approximations are equivalent to those
discussed in the main text, but not related to the observable equation of motion.

Semigroup approximation in Heisenberg picture. If one instead uses the generator GH

[Eq. (47)] appearing in the observable equation of motion, d
dtA(t) = iG(t)HA(t) to con-

struct a semigroup approximation, one obtains a different result, Π(t)H ≈ eiG
H(∞)t, which

has several problems. It is not asymptotically exact and the required stationary gen-
erator limt→∞ GH(t) may fail to exist even when G(∞) exists [Eq. (49)]. This problem
can be circumvented by constructing a generator from the duality relation Eq. (84) as
GH
fix(∞) = [S−1G(∞)S]† = iΓI − PG(∞)P where it is important that the long time

limit limt→∞ G(t) = G(∞) is taken before inserting dual parameters, avoiding the trouble
with limt→∞ Ḡ(t). Using this “fixed” stationary generator for observables we then obtain

a semigroup approximation S†−1
e−iGH

fix(∞)S† with slip approximation e−iGH
fix(∞)S† which

coincide with the above mentioned adjoints of Schrödinger picture approximations Π(1)(t)†

and Π(2)(t)†, respectively.

E Fixed-point relation generator and memory kernel

Here we verify the consistency of the fermionic duality relations (49) and (67) applicable
to a broad class of fermionic systems with the general, exact connection between the
generator G(t) and the memory kernel K(t) established in Ref. [5]. This relation takes the
form of a functional fixed-point equation:

G(t) = K̂[G](t) :=

∫ t

0
dsK(t− s)T→e

i
∫ t

s
drG(r) (102)
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with anti-timeordering T→. In Ref. [5] it was shown that for t→ ∞ this gives the stationary
fixed-point relation (78) used in the main text.

Analogous to Eq. (102) the Heisenberg generator GH(t) = [Π(t)−1G(t)Π(t)]† also obeys
a functional fixed-point equation with the memory kernel KH(t) = K(t)†:

GH(t) = K̂H[−GH](t) :=

∫ t

0
dsKH(t− s)T→e

−i
∫ t

s
drGH(r). (103)

The proof of this relation is analogous to the proof of the functional fixed-point equation in
Schrödinger picture in Ref. [5]. In neither of the above general relations fermionic duality
was used and it is thus important to check that it is consistent with these relations. To
see this, substitute (49) and (67) in Eq. (103) to recover Eq. (102) evaluated at dual
parameters:

GH(t) = iΓ I − PḠ(t)P (104a)

!
=

∫ t

0
ds

[
iΓ I δ(t− s) − e−Γ(t−s) P K̄(t− s)P

]
T→e

−i
∫ t

s
[iΓ I−PḠ(t)P]dr (104b)

= iΓI − P

∫ t

0
dsK̄(t− s)T→e

i
∫ t

s
drḠ(r)P. (104c)
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