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Dear editor and reviewer, 

Thank you for giving us the opportunity to submit a revised draft of our manuscript for 

publication process in the SciPost Physics journal. We appreciate the time and effort that you 

and the reviewers dedicated to provide feedback on our manuscript and are grateful for the 

insightful comments on and valuable improvements to our submission. We have carefully 

considered the suggestions to improve our manuscript. We hope that the revised version of 

the submission is now suitable for publication in the SciPost Physics journal. 

 

Responses to Reviewer: 

The paper entitled “Gravity waves in a rainbow universe” deals with the polar modes of GWs 

employing the formalism of gravity’s rainbow, which is based largely on the product of the 

disparity between quantum mechanics (QM) and general relativity (GR). They have adopted 

the perturbation of the spatially flat conformal Friedmann-Lemaitre-Robertson-Walker 

(FLRW) metric using the Regge-Wheeler formalism. 

There are some serious questions: 

Comment #1: Is the Planck length fundamental? 

Response #1:  

As is well known, Planck realized that a length, mass and time interval can be defined 

by considering fundamental constants (ℏ, 𝑐, 𝐺) as follows: 

𝑙𝑃 = √
ℏ 𝐺

𝑐3
,      𝑚𝑃 = √

ℏ 𝑐

𝐺
,      𝑡𝑃 = √

ℏ 𝐺

𝑐5
,      𝐸𝑃 = √

ℏ 𝑐5

𝐺
.  

The Planck scale sets a limit for known physics. This means we need a new physics under the 

Planck scale. Moreover, In Ref. [5], Calmet showed that a unification of quantum mechanics 

and general relativity implies that there is a fundamental length in Nature in the sense that no 

operational procedure would be able to measure distances shorter than the Planck length. 

Thus, one can naturally take into account that they are in some sense fundamental constants 

for the time being. Otherwise, whether they are a fundamental constant is still a current 

problem (please see 

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255898/ ).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255898/


Comment #2: In rainbow gravity [Joao Magueijo and Lee Smolin, Class. Quantum Grav., 21, 

1725, (2004).], the geometry of spacetime is energy (E) dependent and then quanta of 

different energies may support different classical geometries. In this context, is the 

fundamental length energy dependent? 

Response #2:  

We have used a set of units in which ℏ = 𝑐 = 1, so that 𝑙𝑃 = √𝐺 = 𝐸𝑃
−1. Newton's constant 

did not depend on energy, and all energy dependence was gathered in rainbow functions in 

the original formalism of rainbow gravity introduced in Ref. [29]. In other words, 𝑙𝑃 is energy 

independent in our study. 

   

Comment #3: Justify the choices of the rainbow functions (eq. 3), since this type of rainbow 

functions cannot be seen in Ref. 29, as stated in your paper. 

Response #3:  

The referee is right. We have rewritten the relevant part of the manuscript as follows: 

“By using the varying light speed idea, Feng and Yang [30] introduced a choice for the 

rainbow functions: 

𝑓(𝜀) =
1

1 − 𝛾𝜀
,     𝑔(𝜀) = 1. 

This model indicates that spacetime has an energy-dependent velocity c=1 − 𝛾𝜀,   

where 𝛾 is the rainbow parameter, and the varying velocity of light takes smaller values  

while the energy of photons increases [30].” 

Besides, we have replaced reference [30] with the following correct reference: 

“Z. W. Feng and S. Z. Yang, Phys. Lett. B 772 (2017) 737.” 

  

Comment #4: Justify the relation between the last paragraph of page 24 and the Fig-1 of page 

25 i.e., with experimental (Planck data) result. 

Response #4:  

The referee is right. We have redrawn the FIG. 1 to include the constraints given in Eq. (25). 

We have also checked whether the information given under Eq. (24) is consistent FIG. 1. We 

have not seen any inconsistency. 

 

 



Comment #5: Does the value of the H0 change in the presence of Rainbow functions? 

Response #5:  

𝐻0 represents the Hubble constant, which is the present value of the Hubble 

parameter, and it is based on experimental observations. Thus, rainbow functions do not 

affect the value of the Hubble constant. It is significant to emphasize that the Hubble 

parameter, 𝐻𝑐 =
�̇�

𝐴
 is also energy independent since a factor of rainbow functions in both 

numerator and denominator. 

   

Comment #6: Briefly explain how the equation 85 obeys Huygens’ principle. 

Response #6:  

It is known that Huygens principle is not satisfied by gravitational waves. However, 

based on the fact that electromagnetic waves satisfy the Huygens principle in flat space-time, 

Malec and Wylezec [45] showed that in the Friedmann space, the propagation equations of 

gravitational waves (axial modes) provide the Huygens principle under the Regge-Wheeler 

condition in the radiation era. This means form of the equation of motion in Friedman universe 

(Eq. 84) is exactly that of the electromagnetic fields. Malec and Wylezec also proved that 

Φ𝑙(𝜏, 𝑟) is a general solution of the Eq. (84) for the radiation area (w=1/3). So, we can say that 

Eq. (85) holds Huygens’ principle. 

 

 

Comment #7:  In equation 89, the authors have used the new parameters /tao and /xi. Then 

the equation 89 becomes free from rainbow functions explicitly, how is it physically justified? 

Response #7:  

 The main purpose here is to show that gravitational waves satisfy the Huygens’ 

principle. The way to do this is to reach an equation similar to the differential equation 

provided by electromagnetic waves, which hold the Huygens’ principle, as has been done 

before in the literature [45]. These transformations are purely mathematical tools, and thus, 

we cannot say that Eq. (89) is free from rainbow functions. When the explicit solution of Eq. 

(89) is made, which is the subject of another study,  can be expressed in terms of rainbow 

functions by reusing 𝜂 = 𝑓𝜏 and 𝑟 = 𝑔𝜍 transformations.          
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The dawn of the epoch of gravitational wave (GW) astronomy, which initiated with the detec-

tion of a fundamental noise, was the period when the search for a theory in which gravity could

be quantized began to increase significantly. In this paper, we have mainly intended to focus

on the polar modes of GWs in the formalism of gravity’s rainbow, which is based largely on the

product of the disparity between quantum mechanics (QM) and general relativity (GR). For this

purpose, we have perturbed the spatially flat conformal Friedmann-Lemaitre-Robertson-Walker

(FLRW) metric, material distribution and the components of four-velocity by making use of the

polar Regge-Wheeler gauge and formulated the corresponding field equations for both the zeroth-

order (unperturbed) and the first-order (perturbed) cases of the metric. Subsequently, these field

equations have been taken into account simultaneously to get exact expressions of the gauge func-

tions. From a graphical perspective, we have studied the impact of rainbow parameters on the

amplitude of GWs. At the final step, we have discussed the Huygens Principle and concluded

that the GWs obey the principle only in the radiation-dominated era and the principle is broken

otherwise.
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I. INTRODUCTION

It is generally believed that the Planck length (lp ∼ 10−33cm)[1] is the minimum length

scale that can be observed or measured in a laboratory. On the other hand, in a cosmological

framework, there is an idea that the unification of GR and QM indicates the notion of a fun-

damental length[2]. It has been long supposed that the Planck length can set a limit, which

is eliminating the big bang singularity problem, on spacetime curvature in the quantum

gravity framework[3, 4]. Recently, it has been proven that there is no any operational pro-

cedure that can exclude the discreteness of spacetime on distances shorter than the Planck

length[3]. Therefore, we should take the Planck length as a fundamental length, or in other

words, any quantum gravity theory must imply that measuring a distance shorter than the

Planck length is prohibited.[5]. One of the generally accepted properties of quantum gravity

is the existence of a minimum measurable length, however, the difficulty of constructing a

quantum theory of gravity is notoriously known[6–8].

Although recent investigations performed in loop quantum gravity (LQG), which aims to

merge QM and the age-old theory of GR, have greatly strengthened the belief in the existence

of a minimal measurable length, these developments have also inspired numerous investi-

gations and argumentations on the Lorentz symmetry[9–12]. Nowadays, it is commonly

believed that doubly special relativity (DSR) can be used to solve the paradox, which comes

from the apparent confliction between the Lorentz symmetry and the existence of minimal

length[13–16]. The DSR is a deformed version of the special theory of relativity (SR) and it

was proposed to keep inertial frames relative while making the Planck energy an invariant

scale[13, 17, 18]. Actually, this goal can be achieved with the help of a non-linear Lorentz

transformation in momentum space, thus the usual formulations of energy-momentum (or

dispersion relations) in the SR may be altered by making use of adjustments in the order of

Planck length[19, 20]. Modification of energy dispersion relation can also be performed via

the semi-classical limit of LQG[21, 22]. According to the observational perspective[23–26],

such modifications cause not only threshold anomalies of TeV photons but also ultra-high-

energy cosmic rays, which means the DSR also faces with problematic issues. Also, in

Refs.[27] and [28], it was shown that a modified dispersion relation (MDR) may lead to

alternatives to inflationary cosmology and this can be tested via the future measurement

of cosmic microwave background spectrum. In a recent paper, Magueijo and Smolin[29]

2



have extended the MDR idea to the curved spacetime by proposing a deformed equivalence

principle (DEP) of the GR. In this formalism, it is mainly stated that[29] (i) the free-falling

observers will encounter the same laws as in the DSR, and (ii) there is no single classical

spacetime geometry explored by a particle traveling in it when the impacts of the probe itself

are considered. According to this idea, the spacetime geometry is altered by energy of the

test particle. Therefore, particles having diverse amounts of energy feel different space-time

tissue and the energy-dependent definitions construct a rainbow of metrics. As pointed out

in Ref.[29], in a DSR formalism[18], the MDR may be written as

f 2(ε)E2 − g2(ε)P 2 = m2 (1)

with ε = E
Epl

, where Epl denotes the Planck energy. Here, f(ε) and g(ε) are called rainbow

functions, which are necessary to approach to unit when E
Mpl

≪ 1 due to the correspondence

principle and to fulfill the requirements

lim
ε→0

f(ε) = lim
ε→0

g(ε) = 1. (2)

By using the varying light speed idea,Feng and Yang[30] introduced a choice for the rainbow

functions:

f(ε) =
1

1− γε
, g(ε) = 1. (3)

This model indicates that spacetime has an energy-dependent velocity c = 1− γε, where γ

is the rainbow parameter, and the varying velocity of light takes smaller values while the

energy of photons increases[30]. In literature, there are other significant scenarios for the

rainbow functions[15, 31, 32]:

f(ε) =
√
1− ε2, g(ε) = 1, (4)

f(ε) = g(ε) =
1

1− ε
, (5)

f(ε) = 1, g(ε) = 1 +
ε

2
. (6)

It is generally accepted that predicting the existence of GWs is one of the most significant

achievements of the GR[33]. Important events such as the big bang and the mergence of

two black holes may cause the creation of such waves. Nearly 100 years later after Einstein’s

prediction of the existence of GWs, the LIGOVIRGO cooperation observed them for the first

time by detecting a signal corresponding to the event GW150914 (two black holes crashed
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into each another)[34]. Later, this conclusion has been endorsed by other events such as the

GW151226[35], GW170104[36], GW170608[37], GW170814[38] and GW170817[39] (please

visit the Gravitational Wave Open Science Center website[40] for detailed information and

more events). Detection of such fundamental noise may justify the quantization of gravity

and reveal significant features of its sources. On this purpose, the cosmological perturbations

have become a noteworthy achievement not only in identifying the formation of structure in

the Universe but also modeling dynamics of the GWs theoretically. Regge and Wheeler[41]

introduced gauge independent perturbation formalisms for the axial and polar modes of

GWs in the Schwarzschild spacetime and found stable solutions. Thereafter, focusing on

the gravitational radiation propagated by a black hole, Zerilli[42] improved the polar mode

calculations by correcting the minor mistakes made by Regge and Wheeler. Later on, Lind-

blom and Detweiler[43] investigated the f-modes for various equations-of-states numerically

by making use of the ReggeWheeler gauge, Chandrasekhar and Ferrari[44] discussed polar

perturbations in a diagonal gauge, Malec and Wylȩżek[45] used the ReggeWheeler formalism

in the FLRW cosmology to investigate the propagation of GWs and check the validity of

Huygens’ principle, Passamonti et al.[46] studied the nature of GWs by focusing on nonlin-

ear couplings of radial and polar non-radial modes in relativistic stars, and Bradley et al.[47]

worked on the StewartWalker gauge[48] to investigate GWs locally rotationally symmetric

class-II spacetimes.

Studying the behavior of GWs by making use of perturbation formalisms such as the

ReggeWheeler[41] and the StewartWalker[48] schemes has not been discussed widely in alter-

natives to the GR theory. Recently, Sharif and Siddiqa investigated axial[49] and polar[50]

modes of GWs in the f(R, T )-gravity, Salti[51] studied the propagation of axial GWs in

Rastall gravity, and Salti et al.[52] investigated polar modes of GWs in Rastall cosmology.

In this study, we intend to discuss the impact of MDR on GW physics. The article has the

following format. In the second section, we present briefly the background metric, mate-

rial content and the perturbation scheme. Subsequently, we focus on the zeroth-order (or

unperturbed) case and its cosmological indications in the third section. The fourth section

includes the perturbed background equations and effects of polar perturbations. The fifth

section consists of discussions on Huygens principle. The summary of our investigation is

presented in the final section. We accomplish some parts of the investigation and graphical

analyses by means of the high-level programming environment Mathematica. Note that,
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throughout this study, the natural Planck unit c = h̄ = 8πG = 1 is adopted.

II. THE PERTURBATION SCHEME

It is known that the ordinary time t is connected to the conformal one η by the expression

Adη = dt, where the factor A represents cosmic scale. Making use of such transformation is

beneficial especially while discussing dynamics of photons traveling radially from an observer.

Thus, such photons obey the relation

d− d0 = η − η0 =
∫ dt

A
, (7)

which purposes time and distance can be replaced each other. Therefore, the conformally

flat FLRW metric tensor reads

gµν = A2(η)
[
δ1µδ

1
ν + r2δ2µδ

2
ν + (r sin θ)2δ3µδ

3
ν − δ0µδ

0
ν

]
. (8)

Here, we can define a conformal Hubble parameter:

Hc =
Ȧ

A
=
d lnA

dη
, (9)

where the dot reveals differentiation corresponding to η. Consequently, one can define

η =
∫ dt

A
=
∫ d lnA

Hc

. (10)

Following Refs.[18, 29, 30], we can construct rainbow metrics by replacing dη → dη
f(ε)

for

the conformal time coordinate and dxi → dxi

g(ε)
for all spatial coordinates. Thence, the metric

tensor (8), in the rainbow formalism, takes the form

gµν = A2(η)

[
δ1µδ

1
ν + r2δ2µδ

2
ν + (r sin θ)2δ3µδ

3
ν

g2
−
δ0µδ

0
ν

f 2

]
. (11)

In order to investigate the propagation of PGWs in the gravity’s rainbow framework, we

can use the ReggeWheeler scheme[41]. In a recent paper, Rostworowski[53] has discussed

linear perturbations of the FLRW model by employing results presented in Ref.[41] and

concluded that the set of field equations can be abated in the case of solving a single

master scalar wave equation. Similar to the black hole perturbation schemes, two copies of

master equation identify axial and polar parts of perturbations[53]. In accordance with the

ReggeWheeler formalism[41], it is written that

ğµν = gµν + ehµν +O(e2), (12)
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where ğµν denotes the perturbed metric while the corresponding perturbations are repre-

sented by hµν and the parameter e measures the oscillation strength. It is significant to note

here that higher-order terms of the strength parameter e will be ignored in our investigation.

According to the polar perturbation gauge proposed by Clarkson et al. in Ref.[54], we can

write

hµν = Y

[
(ψ1 + ψ2)(

δ0µδ
0
ν

f2
+
δ1µδ

1
ν

g2
) +

r2ψ2

g2
(δ2µδ

2
ν + sin2 θδ3µδ

3
ν) +

ψ3

fg
(δ0µδ

1
ν + δ1µδ

0
ν)

]
(13)

with[55]
d2Y

dθ2
= −l(l + 1)Y − cot θ

dY

dθ
. (14)

Here, ψ1 = ψ1(η, r), ψ2 = ψ2(η, r), ψ3 = ψ3(η, r) and Y = Y (θ) := Y m
l (θ) is the stan-

dard spherical harmonics, where l corresponds to the angular momentum and m implies its

projection on z-axis[41]. Here, we assume m = 0 and l = 2, 3, 4, ... to study a wave-like

solution[41]. This assumption means that ϕ will be vanished in our results. As a result, the

non-zero components of perturbed metric tensor are given as follows:

ğµν =
e(ψ1 + ψ2)Y − A2

f 2
δ0µδ

0
ν +

e(ψ1 + ψ2)Y + A2

g2
δ1µδ

1
ν +

r2

g2
[eψ2Y + A2]δ2µδ

2
ν

+

(
r sin θ

g

)2

[eψ2Y + A2]δ3µδ
3
ν +

eψ3Y

fg
(δ0µδ

1
ν + δ1µδ

0
ν) +O(e2). (15)

Stress-energy tensor describing the background matter is generally written as

T µν = (ρ+ p)V µVν + pgµν , (16)

where ρ, p and Vµ denote the energy density, pressure and the components of four-velocity,

respectively. Here, we can assume also that[55]

ρ̆ = ρ+ eφ1(η, r)Y ρ+O(e2), (17)

p̆ = p+ eφ2(η, r)Y p+O(e2), (18)

where eφ1(η, r)Y and eφ2(η, r)Y indicate the corresponding contrasts. In such a perturbed

scheme, the fluid also feels distortions and it is not necessarily comoving. Moreover, the

appropriate velocity in the rainbow framework is defined as[56]

Ξi ≡
dxi

g

dx0

f

=
V i

V 0
, (19)
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where the perturbed four-velocity reads[55]

Vµ ⇒



V0 = −A
f
+ e(ψ1+ψ2)Y

2Af
+O(e2)

V1 =
eAξ1(η,r)Y

g
+O(e2)

V2 =
eξ2(η,r)

g
dY
dθ

+O(e2)

V3 =
e sin θξ3(η,r)

g
dY
dθ

+O(e2)

(20)

and satisfies the normalization condition VµV
µ = −1 + O(e2) with the help of auxiliary

functions ξ1, ξ2 and ξ3.

III. COSMOLOGY VIA ZEROTH-ORDER FIELD EQUATIONS

Substituting the metric (11) into the field equations Rµν − 1
2
gµνR = Tµν leads us to the

subsequent Friedmann equations

3H2
c =

A2

f 2
ρ, (21)

H2
c + 2Ḣc = −A

2

f 2
p. (22)

Also, the conservation formula∇µT
µ
ν = 0 can be written explicitly as[4] ρ̇+3Hc(ρ+p) = 0.

It is noteworthy to remind here that equations (21)-(22) and the conservation relation are

dependent on each other. We can easily see that the stress-energy conservation relation can

be obtained also by making use of equations (21) and (22).

Now, with the help of equations (21) and (22), we obtain

Ḣc = −σH2
c . (23)

with

σ =
1 + 3ω

2
, (24)

where ω = p
ρ
is the Equation-of-State (EoS) parameter of background material. The cold

dark matter (ω = 0), dust matter (ω = 0), radiation (ω = 1
3
), ultra-relativistic particle

(ω = 1
2
), sub-relativistic matter (ω = 1

4
), and the stiff fluid (ω = 1) dominated epochs lead

to the deceleration behavior (solid orange line in FIG. 1) of the cosmos while the phantom

dark energy (ω < −1), cosmological constant (ω = −1), incompressible fluid (ω = −1)

and the quintessence dark energy (−1 < ω < −1
3
) dominated phases indicate the speedy
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expansion state (dashed line in FIG. 1). According to the data obtained from the Planck

Telescope[57], it is now known that there is a limit on the value of EoS parameter:

ω >


−1.56−0.48

+0.60 (Planck) TT+lowE,

−1.58−0.41
+0.52 (Planck) TT, TE, EE+lowE,

−1.57−0.40
+0.50 (Planck) TT, TE, EE+lowE+lensing.

(25)

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

ω

σ

FIG. 1: Illustration of σ versus ω.

Integrating equation (23), as a result, we achieve that

Hc(η)

H0

=
1

1 + σH0(η − η0)
, (26)

where H0 = Hc(η0) is the Hubble constant. Thus, one can say that the big bang happens

at the following critical time

ηcri = η0 −
1

σH0

. (27)

In addition to this, the cosmic scale factor is given by

A(η)

A0

= [1 + σH0(η − η0)]
1
σ , (28)

where A0 = A(η0) denotes the current value of the parameter. According to the recent

astrophysical data observed via the LIGO and VIRGO Interferometers[58], H0 = 70.00+12.00
−8.00

km Sec−1 Mpc−1. Finally, substituting expressions (26) and (28) into equation (21) leads us

to a relation for the background material distribution:

ρ =
3f2H2

0

A2
0

[1 + σH0(η − η0)]
2(1+ 1

σ ) . (29)
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IV. FIRST-ORDER PERTURBATIONS AND THEIR EFFECTS

Each non-zero component of the Einstein tensor Gµν = Rµν− 1
2
gµνR, up to the first-order

in perturbations, are obtained as follows:

G00 =
eY

2f 2r2A2

{(
g2[l(l + 1) + 2]− 4f 2r2H2

c

)
ψ1 + 2r2f2Hcψ̇1 + 2g2rψ′

1

+2
(
g2l(l + 1)− 6f2r2H2

c

)
ψ2 + 6f 2r2Hcψ̇2 − 4rg2ψ′

2

−2r2g2ψ′′
2 − 4rfgHc (2ψ3 + rψ′

3)
}
+ 3H2

c , (30)

G01 = G10 =
eY

2fgr2A2

{(
g2l(l + 1)− 4f 2r2Ḣc − 2f 2r2H2

c

)
ψ3

−2fgrHc(2ψ1 + rψ′
1 − rψ′

2) + 2fgr(ψ̇1 − rψ̇′
2)
}
, (31)

G02 = G20 =
e

2fA2

dY

dθ

{
2f(Hcψ2 − ψ̇2) + gψ′

3 − fψ̇1

}
, (32)

G11 = −f
2

g2

[
H2
c + 2Ḣc

]
+

eY

2g2r2A2

{(
g2[l(l + 1)− 2]− 8f 2r2Ḣc

)
ψ1 − 2rg2ψ′

1

+4rfgψ̇3 − 4f 2r2Ḣcψ2 − 2f 2r2Hc(ψ̇1 − ψ̇2)− 2f2r2ψ̈2

}
, (33)

G12 = G21 =
e

2gA2

dY

dθ

[
gψ′

1 − fψ̇3

]
, (34)

G22 =
G33

sin2 θ
= −f

2r2

g2

[
H2
c + 2Ḣc

]
− erY

2g2A2

{
−2f 2r(H2

c − Ḣc)ψ1 + 2g2ψ′
1 + g2rψ′′

1

+f2rψ̈1 + 4f 2rḢcψ2 − 2f 2rHcψ̇2 + 2f 2rψ̈2 − 2fgψ̇3 − 2fgrψ̇′
3

}
, (35)

where the prime represents the derivative with respect to r. On the other hand, the surviving

components of Tµν = gµαT
α
ν , up to first order in perturbations, are calculated as

T00 =
eY ρ

f 2

[
A2φ1 − ψ1 − ψ2

]
+
A2

f 2
ρ, (36)

T01 = T10 = −eY
fg

[
ξ1A

2(ρ+ p)− pψ3

]
, (37)

T02 = T20 = −eAξ2
fg

(ρ+ p)
dY

dθ
, (38)

T03 = T30 = −eAξ3 sin θ
fg

(ρ+ p)
dY

dθ
, (39)
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T11 =
A2p

g2
+
epY

g2

[
A2φ2 + ψ1 + ψ2

]
, (40)

T22 =
T33
sin2 θ

=
A2r2p

g2
+
epr2Y

g2

[
A2φ2 + ψ2

]
. (41)

So, the perturbed field equations are written as follows

eY

2f 2r2A2

{(
g2[l(l + 1) + 2]− 4f 2r2H2

c

)
ψ1 + 2r2f2Hcψ̇1 + 2g2rψ′

1

+2
(
g2l(l + 1)− 6f2r2H2

c

)
ψ2 + 6f 2r2Hcψ̇2 − 4rg2ψ′

2

−2r2g2ψ′′
2 − 4rfgHc (2ψ3 + rψ′

3)
}
+ 3H2

c =
eY ρ

f 2

[
A2φ1 − ψ1 − ψ2

]
+
A2

f 2
ρ, (42)

[
g2l(l + 1)− 4f2r2Ḣc − 2f2r2H2

c

]
ψ3 − 2fgrHc(2ψ1 + rψ′

1 − rψ′
2)

+2fgr(ψ̇1 − rψ̇′
2) = −2r2A2

[
ξ1A

2(ρ+ p)− pψ3

]
, (43)

2f(Hcψ2 − ψ̇2) + gψ′
3 − fψ̇1 = −2A3ξ2

g
(ρ+ p), (44)

0 = ξ3(ρ+ p) (45)

−f
2

g2

[
H2
c + 2Ḣc

]
+

eY

2g2r2A2

{(
g2[l(l + 1)− 2]− 8f 2r2Ḣc

)
ψ1 − 2rg2ψ′

1 + 4rfgψ̇3

−4f 2r2Ḣcψ2 − 2f2r2Hc(ψ̇1 − ψ̇2)− 2f2r2ψ̈2

}
=
A2p

g2
+
epY

g2

[
A2φ2 + ψ1 + ψ2

]
, (46)

gψ′
1 − fψ̇3 = 0, (47)

− erY

2g2A2

{
−2f 2r(H2

c + Ḣc)ψ1 + 2g2ψ′
1 + g2rψ′′

1 + f 2rψ̈1 + 4f 2rḢcψ2 − 2f2rHcψ̇2

+2f 2rψ̈2 − 2fgψ̇3 − 2fgrψ̇′
3

}
− f2r2

g2

[
H2
c + 2Ḣc

]
=
A2r2p

g2
+
epr2Y

g2

[
A2φ2 + ψ2

]
. (48)

Now, we are in a stage to investigate effects of the polar perturbations. To achieve this

goal, we can discuss behavior of the unknown perturbation functions. Using the zeroth-order

extended Friedmann equations (21) and (22) in the perturbed field equations (42) and (46),

we get the following expressions for the material distribution functions φ1 and φ2

φ1 =
1

6r2f 2A2H2
c

{(
g2[l(l + 1) + 2] + 2f 2r2H2

c

)
ψ1 + 2r2f2Hcψ̇1 + 2g2rψ′

1

+2
(
g2l(l + 1)− 3f2r2H2

c

)
ψ2 + 6f 2r2Hcψ̇2 − 4rg2ψ′

2

−2r2g2ψ′′
2 − 4rfgHc (2ψ3 + rψ′

3)
}
, (49)

10



φ2 =
−1

2r2f 2A2(H2
c + 2Ḣc)

{(
g2[l(l + 1)− 2] + 2f2r2H2

c − 4f2r2Ḣc

)
ψ1 − 2rg2ψ′

1

+4rfgψ̇3 + 2f 2r2H2
cψ2 − 2f2r2Hc(ψ̇1 − ψ̇2)− 2f 2r2ψ̈2

}
. (50)

We see that the four-velocity perturbation functions ξ1, ξ2 and ξ3 do not appear in the

above expressions. However, equations (43)-(45) describe deformation of the four-velocity

components. It is easy to conclude that equation (45) immediately indicates that ξ3 = 0.

From the modified zeroth-order Friedmann equations (21) and (22), we can write

ρ+ p =
2f2

A2
(H2

c − Ḣc), (51)

p = − f 2

A2
(H2

c + 2Ḣc). (52)

Subsequently, inserting the above expressions into equations (43) and (44) leads us to

ξ1 =
−g

4r2f 2A2(H2
c − Ḣc)

[
gl(l + 1)ψ3 − 2frHc(2ψ1 + rψ′

1 − rψ′
2) + 2fr(ψ̇1 − rψ̇′

2)
]
, (53)

ξ2 =
g

4fA(H2
c − Ḣc)

[
ψ̇1 − 2(Hcψ2 − ψ̇2)−

g

f
ψ′
3

]
. (54)

It seems that equation (47) does not depend on matter density or pressure explicitly and

yields

gψ′
1 = fψ̇3. (55)

On the other hand, using equation (46) together with (48) leads to the following differential

equation

{
g2 [l(l + 1)− 2]− 2f 2r2Ḣc

}
ψ1 + 2rfgψ̇3 − 2r2f2Hcψ̇1 + f 2r2ψ̈1 − fgr2ψ̇′

3 = 0. (56)

Thus, making use of the relation (55) in the above differential equation leads to

f 2ψ̈1 − g2ψ′′
1 − 2f 2Hcψ̇1 +

2g2

r
ψ′
1 +

{
g2

r2
[l(l + 1)− 2]− 2f2Ḣc

}
ψ1 = 0. (57)

To solve this equation, we can assume that

ψ1 = rAΦ(η, r), (58)

which yields

f 2Φ̈− g2Φ′′ +

{
g2l(l + 1)

r2
− f 2Ḣc − f 2H2

c

}
Φ = 0. (59)
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The exact solution of this differential equation can be obtained via separation of the variables

method. From this point of view, we can define Φ(η, r) = T (η)R(r) and assume a separation

constant −λ2. So, using equations (23) and (26) and defining a new variable

u =
1

H0

+ σ(η − η0), (60)

we find

d2T

du2
+

{
λ2

σ2f 2
− 1− σ

σ2u2

}
T = 0, (61)

R′′ +

{
λ2

g2
− l(l + 1)

2r2

}
R = 0. (62)

Thus, the solutions are

T (η) =

√
1

H0

+ σ(η − η0) [c1Jµ(z) + c2Yµ(z)] , (63)

R(r) =
√
r

[
c3Jν(

λr

g
) + c4Yν(

λr

g
)

]
, (64)

with

µ =
1

2
− 1

σ
, (65)

z =
λ

fσH0

+
λ

f
(η − η0), (66)

ν =

√
1 + 2l + 2l2

2
. (67)

Here, c1, c2, c3 and c4 stand for the integration constants, Ja(x) is the first kind Bessel

function and Ya(x) represents the Bessel function of the second kind:

Ja(x) =
∞∑
n=0

(−1)n
(
x
2

)a+2n

n!(n+ a)!
, (68)

Ya(x) =
Ja(x) cos [aπ]− J−a(x)

sin [aπ]
. (69)

Now, we substitute equations (28), (63) and (64) into ψ1(η, r) = rA(η)T (η)R(r), it leads to

ψ1(η, r) = r
3
2 [1 + σH0(η − η0)]

1
2
+ 1

σ

[
c3J√

1+2l+2l2

2

(
λr

g

)
+ c4Y√

1+2l+2l2

2

(
λr

g

)]

×
[
c1J 1

2
− 1

σ

(
λ

fσH0

+
λ

f
(η − η0)

)
+ c2Y 1

2
− 1

σ

(
λ

fσH0

+
λ

f
(η − η0)

)]
. (70)
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To investigate the coupling impact on the propagation of PGWs, we focus on the radiation

(σ = 1) dominated stage as an example. On this purpose, in FIG. 2, we illustrate the metric

perturbation function ψ1(η, r) versus η and r. Here, we consider four different sets of the

rainbow parameters: (f, g) = (2, 1) (upper-left), (f, g) = (5, 1) (upper-right), (f, g) = (1, 2)

(bottom-left) and (f, g) = (1, 5) (bottom-right). One can easily see that the increase in the

value of the rainbow parameter f causes an increase in the maximal amplitude of wave while

the increase in the value of g leads to an increase in the maximal amplitude.

FIG. 2: ψ1(η, r) versus η and r for the radiation stage (σ = 1) with H0 = 70.00, η0 = 0, l = 2,

c1 = c2 = c3 = c4 = 0.01, (f, g) = (2, 1) (upper-left), (f, g) = (5, 1) (upper-right), (f, g) = (1, 2)

(bottom-left) and (f, g) = (1, 5) (bottom-right).

We can now find out the exact expression of metric perturbation coefficient ψ3(η, r). To

reach this goal, we use the new variable

y(η) = H0u = 1 + σH0(η − η0) (71)
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in equation (55), thus it is found that

dψ3

dy
− g

fσH0

ψ′
1 = 0. (72)

As a result, inserting the solution (70) in the above differential equation yields the subsequent

solution

ψ3(y(η), r) = c1r +

√
r

2y

( λ
fσ
)−

1
σ

4σH0λ2Γ(µ+ 1)

c1(2− σ)

√2λy

(
λy

fσ

) 1
σ

Γ(µ)Jµ

(
λy

fσ

)

−2
3
2
−µ
√
fσλy

]
− c2 sec

(
π

σ

)2√2λσy

(
λy

fσ

) 1
σ

Γ(µ+ 1)J1−µ

(
λy

fσ

)

+(σ − 2) sin
(
π

σ

)√2λy

(
λy

fσ

) 1
σ

Γ(µ)Jµ

(
λy

fσ

)
− 2

3
2
−µ
√
fσλy


×
{
c3

[
3gJµ

(
λr

g

)
− rλ

(
Jµ+1

(
λr

g

)
− Jµ

(
λr

g

))]

+× c4

[
3gYµ

(
λr

g

)
− rλ

(
Yµ+1

(
λr

g

)
− Yµ

(
λr

g

))]}
, (73)

where Γ indicates the gamma function.

To get the remaining perturbation coefficient ψ2(η, r), we can focus on the squared sound

speed formula υ2s = ∂p
∂ρ
. It is generally expected that a physically acceptable model should

satisfy Herreras cracking concept[59], i.e. 0 ≤ υ2s ≤ 1. On the other hand, fundamental

stability and causality principles indicate two significant physical bounds on the speed of

sound[60]:

• The squared sound speed should be positive (υ2s ≥ 0),

• Small perturbations of the background should emit at the local speed of light at most

(υ2s ≤ 1).

Then, it is written that

υ2s =
δp

δρ
=
φ2p

φ1ρ
, (74)

which means

3H2
cφ1 + (H2

c + 2Ḣc)φ2 = 0 (75)

with υ2s = 1. So, replacing the expressions of φ1 and φ2 presented in equations (49) and

(50), one can reach an evolution equation for the perturbation function ψ2(η, r):

2f 2ψ̈2−3g2ψ′′
2+4f 2Ḣcψ̇2−

6g2

r
ψ′
2−

[
10f2H2

c − 3g2l(l + 1)
]
ψ2−

Ω(η, r) + Ω̃(η, r)

r2
= 0, (76)
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where

Ω(η, r) =
[
g2 {2− l(l + 1)}+ 4r2f 2H2

c − 2r2f 2Ḣc

]
ψ1 − 4r2f 2Hcψ̇1 − 4rg2ψ′

1 (77)

Ω̃(η, r) = 2rfg(6Hc + 1)ψ3 + 6r2fgHcψ
′
3. (78)

Moreover, inserting equations (70), (73) and the solution of (76) in equation (49), (50), (53)

and (54), the other perturbation functions φ1, φ2, ξ1 and ξ2 can also be evaluated exactly.

Additionally, the non-zero components of the four-velocity vector become

V0 = −A0

f
[1 + σH0(η − η0)]

1
σ +

e(ψ1 + ψ2)Y

2A0f
[1 + σH0(η − η0)]

− 1
σ , (79)

V1 =
eA0ξ1Y

g
[1 + σH0(η − η0)]

1
σ , (80)

V2 =
eξ2
g

dY

dθ
, (81)

with

Y (θ) = Y 0
2 (θ) =

1

4

√
5

π
(3 cos2 θ − 1), (82)

dY (θ)

dθ
=
dY 0

2 (θ)

dθ
=

1

8

√
5

π
sin 2θ. (83)

for l = 2.

V. THE HUYGENS PRINCIPLE

Making use of the definition (7), Malec et al.[61] investigated the relation between the

areal and luminosity distances from the perspective of classical Maxwell theory and proved

that the master equation identifying the propagation of electromagnetic waves is given by[
− ∂2

∂η2
+

∂2

∂r2

]
ϕl(η, r) =

l(l + 1)

ϱ2
ϕl(η, r), (84)

where ϱ = sinh r for the open universe, ϱ = r for the flat universe and ϱ = sin r for the

closed universe. The authors also concluded that the solution of equation (84) in a general

form can be written as[61]

ϕl(η, r) = ϱl
∂

∂r

1

ϱ

∂

∂r

1

ϱ
...
∂

∂r

Σ1 + Σ2

ϱ︸ ︷︷ ︸
l

, (85)
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with Σ1(η, r) = Σ1(r− η) and Σ2(η, r) = Σ2(r+ η) and then they showed that the above so-

lutions obey Huygens’ principle. Furthermore, making use of the ReggeWheeler gauge[41] in

the GR theory, Malec and Wylȩżek[45] studied the propagation of axial GWs and Kulczycki

and Malec[55] investigated axial and polar modes of GWs. In both of these papers[45, 55],

it was concluded that the Huygens principle is satisfied only in the radiation era and the

master wave equation is exactly the same as equation (84). In our investigation, defining

new variables η = fτ and r = gς transforms equation (59) into

−d
2Φ

dτ 2
+
d2Φ

dς2
=

{
l(l + 1)

2ς2
+Q

}
Φ, (86)

where

Q = f2(σ − 1)H2
c =

f 2(σ − 1)H2
0

[1 + fσH0(τ − τ0)]2
. (87)

For the radiation dominated phase (ω = 1
3
or σ = 1), we have

lim
σ→1

f2(σ − 1)H2
c = 0, (88)

which means equation (86) now becomes[
− d2

dτ 2
+

d2

dς2

]
Φ(τ, ς) =

l(l + 1)

2ς2
Φ(τ, ς), (89)

So, it is clearly seen that equations (84) and (89) have the same form, thus we can say that

the Huygens principle is satisfied also in the rainbow gravity formalism for the radiation

dominated case. In general, it is concluded that the additional term Q is the mainspring of

the violation of the Huygens principle in the gravity’s rainbow formalism. From equation

(87), we can say that Huygens principle does not hold in the cold dark matter (ω = 0 or

σ = 1
2
), ultra-relativistic particle (ω = 1

2
or σ = 5

4
), sub-relativistic matter (ω = 1

4
or σ = 7

8
),

stiff fluid (ω = 1 or σ = 2), phantom dark energy (ω < −1 or σ < −1), incompressible fluid

(ω = −1 or σ = −1) and the quintessence dark energy (−1 < ω < −1
3
or −1 < σ < 0)

dominated stages of the cosmos. In FIG. 3, we analyze the behavior of Q for the dark energy

(left plot) and ultra-relativistic matter (right plot) dominated phases to give examples. Since

GWs can backscatter on the curvature of the geometry and a part of the radiation would

come with a delay, they do not satisfy the Huygens principle[45]. On the other hand, since

electromagnetic waves propagate along with null cones, such waves obey the principle[62].
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FIG. 3: The behavior of Q(η) for the dark energy (σ = −1, left plot) and ultra-relativistic matter

(σ = 5
4 , right plot) stages with H0 = 70.00, τ0 = 0, l = 2, c1 = c2 = c3 = c4 = 0.01 and f = 2.

VI. SUMMARY

It is now known that some of the violent (or most energetic) processes in the universe

produce GWs. The existence of a such phenomenon was predicted firstly by Einstein in

his GR theory. The corresponding mathematical ground in the GR implied that massive

accelerating cosmic objects (for instance black holes or neutron stars orbiting around each

other) would warp the structure of the cosmos in such a way that cosmological radiation

of fluctuating geometry would emit in all directions away from the source. Nowadays, it is

commonly believed that these interesting ripples may include information about the nature

of gravity. The direct observations of a GW signal by kilometric-size improved gravity-wave

interferometers started a new era in modern astronomy. In addition to this, this mysterious

window composes a validation of gravity models, because they are taken into account in all

calculations of gravitational radiation.

In the light of above information, we think that discussing how accurately such observa-

tions could bound alternative gravity theories would be interesting and may yield significant

conclusions. In this article, we have studied the effects produced by polar GWs via the

framework of gravity’s rainbow. In the first step, we have presented perturbation assump-

tions for the conformally flat rainbow metric and the background material content. Also,

the four-velocity is assumed to be non-commoving. It is important to remind at this point

that all field equations are reduced to the GR case[55] for the limiting condition f = g = 1.

Our main conclusions can be specified as follows:
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• In the second part of the investigation, we have obtained exact forms of the un-

known perturbation functions by making use of the zeroth-order and the first-order

background equations. We have seen that the increase in the value of the rainbow

parameter f causes an increase in the maximal amplitude of gravitational wave while

the increase in the value of g leads to an increase in the maximal amplitude.

• We have found that the factor ξ3(η, r) appearing in V3 components of the four-velocity

vector vanishes, which means polar GWs do not effect this component.

• In the third step, we have investigated the Huygens principle in the RG framework and

found that the principle is strictly obeyed only in the radiation era. The additional

term Q = f 2(σ − 1)H2
c written in the master equation explaining the propagation of

polar GWs is the main cause of the violation of the Huygens principle in the gravity’s

rainbow formalism.

• Currently, we know that the Universe is in an accelerated expansion era. Thus, inves-

tigating the propagation of GWs in this speedy enlarging universe would be crucial.

In this regard, one can easily expand our investigation by assuming −1.5 < σ < 0 for

expanding matter and discuss how such forms of GWs can effect the spacetime tissue

in the recent epoch.
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