

Figure R-1: Normal mode analysis of jammed sphere packings. Starting from a hard sphere packing at ϕ_{J}, we assign a soft harmonic sphere potential to particles, compress them by $\Delta \phi=\phi-\phi_{\mathrm{J}}$, and then minimize the energy. After removing of the rattlers from the configuration, we diagonalize the Hessian matrix of the obtained contact network and compute the density of states $D(\omega)$ and the participation ratio. (a): $D(\omega)$ of $\phi_{\mathrm{J}}=0.653$ (dashed lines) and $\phi_{\mathrm{J}}=0.685$ (solid lines) averaged over 500 samples for several $\Delta \phi$ from away from ϕ_{J} ($\Delta \phi=10^{-2}$) to close to the jamming $\left(\Delta \phi=10^{-5}\right)$. (b): Participation ratio computed from 3 samples for close to jamming, $\Delta \phi=10^{-5}$.

Figure R-2: An attempt to produce rattler-free isostatic packings by inflating and decompressing rattlers. Panel (a) and (b) depict the volume fraction evolution of the averaged contact number Z and fraction of rattlers N_{r} / N, respectively. Starting from a hard sphere jammed packing at $\phi_{\mathrm{J}}=0.697$ with $Z=6.01$ and $N_{\mathrm{r}} / N=0.133$, shown by the arrows, we instantaneously inflate the diameter of the rattlers up to $\sigma^{\prime}=(1+\epsilon) \sigma$ and then minimize the energy of the rattlers only. We set $\epsilon=0.2$ so that $N_{\mathrm{r}} / N \simeq 0$ as shown in the circle in (b), while Z is around 7.1 as seen in (a). Then, we repeatedly decompress the rattlers with $\Delta \epsilon=10^{-5}$ and minimize the energy (unjamming process) of the rattlers, until a hard sphere packing is recovered. However, the system goes back to almost same state as the inital state: Z and N_{r} / N are essentially unchanged.

