
Dear editor,

We would like to thank the referee for his report and we are pleased to see that he is overall positive about
our manuscript. We agree with the referee's assessment of the strengths and weaknesses of our manuscript: Our
overarching purpose was to study an exactly solvable example of electron-phonon interactions and downfolding.
Our choice of the dimerization transition in the SSH model in the Born-Oppenheimer approximation makes
that possible. It should be seen as a minimal model to elucidate some interesting and important aspects of the
physics, not as a fully realistic treatment of what happens in speci�c materials. Indeed, the current model-based
work is largely complementary to the research line of ab initio studies of electron-phonon coupling, where the
full complexity is addressed.

From the referee report, it is clear that we should discuss in more detail how the results derived in this
simple model translate to more generic electron-phonon systems. In the revised manuscript, we have addressed
this point in several places. Our three main approximations are the classical description of the phonons (Born-
Oppenheimer), the restriction to a single phonon mode (dimerization), and considering a Hamiltonian with only
the lowest-order terms in the atomic displacements (the SSH model). In the revised manuscript, we explain in
more detail how these three approximations lead us to our results. We have also included a brief discussion of
additional phonon modes in a length-4 unit cell, still within the Born-Oppenheimer approximation of the SSH
model. Since the matrix size of all objects quickly increases with the number of atoms in the unit cell, making
the expressions unwieldy, we restrict ourselves to the calculation of the electronic energy in this enlarged cell,
and do not perform the full downfolding procedure. This topic could be interesting for future work.

In the literature, two di�erent conventions exist for coordinates in the SSH model Hamiltonian: the hopping
term can be written either as 1 + ũi or as 1 +ui−ui+1. The former version was used in the original submission
of our manuscript and is frequently used in the discussion of topology in the SSH model. On the other hand,
the second convention is more intuitive in terms of atomic coordinates, since only the distance between atoms
has physical meaning. The two conventions are related by the linear transformation ũi = ui − ui+1, which
also changes the prefactor of the bare phonon term. To deal with displacements beyond dimerization, i.e., the
length-4 unit cell, the second version is much more natural. Because of this, the revised manuscript uses the
second convention throughout, which leads to di�erent prefactors in some of the equations (see list of changes
below), but does not change the physics.

Below, we discuss the points made in the report and the requested changes one by one. With these changes,
listed at the end of this document, we believe our manuscript is suitable for publication in SciPost Physics.

Yours sincerely,

The authors

Report

Expand our discussion on CDWs beyond the Peierls type

�The SSH model is presented as targeted for CDW transitions : there are additional ingredients in the full
treatment of the CDW, in particular more complex (or purely electronic) screening e�ects, nesting etc. . .There
is a (sometimes sterile) debate in the literature about the nature of CDWs (purely electronic, always with a
phonon contribution, with or without nesting. . . ). The present authors equate CDW with Peierls and with an
explicit electron phonon mechanism, but in principle CDW could arise from purely electronic instabilities which
give broken translation symmetry at equilibrium ionic positions. I think it would be useful to give some context
for this and recognize there are CDW cases and mechanisms which may be completely outside the SSH type of
mechanism.�

This is absolutely correct: The SSH model has a CDW transition, but that does not mean that all CDWs
are of this nature. We have added a paragraph to the introduction explaining that non-SSH CDWs also occur.
Our interest here is in the SSH model, since we can solve it, and we try to identify e�ects that are of general
use.

Finite T

�What happens at �nite T? The electron hole symmetry might be broken, but the Green's function treatment and
other derivations should be easy to transpose.�

There are two aspects of temperature that can be discussed:
First, the electronic temperature makes the Fermi-Dirac distribution function smooth. This can be incorpo-

rated relatively straightforwardly in diagrammatic theories, for example by using Matsubara frequencies. This
makes the momentum integrals somewhat more complicated, but numerical treatment should still be possible.
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One qualitative change is that it now starts to matter if one performs calculations at constant electron density
or at constant chemical potential (kf ), since the total density is now an explicit function of µ, T and α.

This paper is aimed towards the investigation of electronic downfolding based on density-functional-theory
calculations, and T ≈ 0 is usually assumed from the start in downfolding procedures. Because of this, we believe
that the investigation of electronic temperature e�ects does not �t so well into the scope of this paper. We do
believe that it might be an interesting topic for future work.

A second aspect is the thermal occupation of phonons. Within the Born-Oppenheimer Approximation, the
thermal excitation of lattice vibrations is captured if the potential energy surface is described correctly, as is
the case in our downfolding approach. E�ects that go beyond the Born-Oppenheimer approximation and mix
target with rest space states are beyond the applicability range of the downfolding approach.

2nd order electron-phonon coupling

�In Sect 4 the �rst derivative coupling is cited, and indeed is 99% of the literature, but in advanced theories (e.g.
Allen Heine Cardona) second order terms can appear as well for the Fan and Debye Waller contributions to the
self energy.�

Here, we are considering the lattice degrees of freedom in the Born-Oppenheimer approximation. In other
words, we �x all displacements and then diagonalize the resulting tight-binding Hamiltonian. This leads to a
change in electronic eigenstates and eigenenergies due to displacements, but not to usual self-energy e�ects such
as a �nite lifetime/broadening. Diagrammatically, the Born-Oppenheimer approximation means that there
is no phonon propagator (the �classical phonons� only appear as external lines) and no second-order Fan or
Debye-Waller diagrams appear. The diagrammatic structure is equivalent to that of non-interacting electrons
in a Zeeman �eld or subject to lattice inhomogeneities.

Minor things

�I do not quite understand the phrase before Eq 18 "e.g. at order α2". In principle self energies can contain
arbitrarily high order diagrams. . . �
By phonon self-energy, we mean diagrams with two external lines, as usual. In this case, as discussed above,
there is no phonon propagator due to the Born-Oppenheimer approximation. This means that α is only allowed
to appear as an external line, leading to the statement in the text. We have rewritten the statement in the text
to make this point clearer.

�A reference is missing for Hirsch Fye QMC, though this is incidental.�
A reference to the original article has been added.

Requested changes

Appearance of 2 phonon diagrams in the downfolded interaction

�Is the appearance of 2 phonon diagrams in the downfolded interaction generic? It seems to depend only on +−
alpha symmetry, but it could necessitate also a very simple band structure or a 1D dynamics etc. . . �

The appearance of a 2-phonon interaction is generic, in the sense that one should expect it to appear
when downfolding from arbitrary Hamiltonians. In fact, one should generally expect to generate all possible
interactions in the downfolded model. The generation of interactions of arbitrary orders is usual for procedures
where degrees of freedom are integrated out. Diagrammatically, the downfolded interactions are obtained by
drawing all possible diagrams with a given number of external lines, so speci�c interactions can only vanish if
symmetries forbid certain classes of diagrams or if all diagrams with a given number of external lines would
sum to zero. The �rst situation occurs here and forbids all interactions except the two-phonon interaction. We
have expanded the discussion on this at the start of Section 5.

The appearance of vertices with arbitrary order also occurs in, e.g., the functional renormalization group,
Kadano� decimation in the Ising model, or the dual fermion expansion around dynamical mean-�eld theory.

Criterion for the best target space in ab initio calculations

�And the reasoning about orbital mixing out of the target space is insinuated to be general, but a stronger
statement might be made. Do the authors suggest a criterion for choosing the best target space in a full ab initio
calculation? (adding a few bands which might mix in, for instance)�

In this model, we �nd that the self-energy in the single-band model due to the e�ective interaction induced by
high-energy states that are integrated out is proportional to the electron-phonon coupling between these bands
squared, divided by the energy separation/barrier. In the present case, that expression is exact, in general one
also expects this formula from second-order perturbation theory (e.g., J ∝ t2/U in the Hubbard model, or the
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expression t2G for hybridization), with possible corrections at higher orders. So the target space should consist
of states that are close in energy and/or strongly coupled, whereas states further away in energy or weakly
coupled can be integrated out relatively safely.

One aspect of this that we discuss in more detail in the revised manuscript is retardation. In electron-phonon
problems, one is used to retarded interactions coming from the phonons. Here, however, the Born-Oppenheimer
approximation rules out this kind of retarded interaction. Instead, the energy-dependence (retardation) occurs
due to the integrating out of high-energy electronic states.

Calculations beyond dimerization

�The dimerization transition is enforced explicitly. Could the authors

1 - provide an overview of other known phases of the SSH model?

2 - make a statement about which aspects of the calculations will carry over to other phonon modes, band
structures etc. . . ?

3 - comment on the relation between the induced anharmonicity and one that would be present in the original
system? Will they just sum or somehow interfere?�

Dimerization is the favored phase at half-�lling, since it is commensurate with 2kf in that case. Away from
half-�lling, the expectation at T = 0 is that a phase transition to an ordered phase is likely to set in. However,
determining the ground state at arbitrary �lling and allowing for all forms of symmetry breaking is not so easy,
especially when dealing with incommensurate order or with charge density waves with large unit cells.

In the present formalism, it is conceptually relatively straightforward to enlarge the unit cell to study other
CDWs, but the calculations lose a great deal of transparency. As an example, in the appendix of the revised
manuscript we consider the doubling of the unit cell to length 4. This doubles the number of bands and allows
for the study of 3 di�erent displacement modes instead of the single mode considered in the original manuscript.
As a result, the Born-Oppenheimer total energy becomes a function of three variables, αi. The series expansion
of E(αi) along the direction of the dimerization mode does not change (i.e., the terms with αdimerization), but
o�-diagonal terms also appear. It is a priori di�cult to state anything about the sign (and magnitude) of these
terms. Indeed, Figure 2(a) already shows that ∆ω2 and h(4) have opposite sign in the SSH model, and in

Appendix A we have shown that the electronic screening term is bounded by
√
α2 at large α, which is only

possible if the terms in the Taylor expansion do not have a �xed sign.
Regarding the relation between intrinsic and induced anharmonicity: As the reviewer correctly observed,

the original system, i.e., the bare phonons, are harmonic in this model. The anharmonicity is induced by
the displacements, which lead to electronic screening of the phonons and thus the anharmonic terms appear
in the Taylor expansion, see Eqs. (8�13) of the manuscript. However, in general the bare phonons could be
anharmonic. The phononic Hamiltonian could include third- or higher-order terms, which are called three-
phonon or N -phonon processes. These terms will contribute to the induced anharmonicity as a sum in the form
of Feynman diagrams with arbitrary sign.

List of changes

� Change in Introduction: Despite of the unquestionable success of the current ab initio computational
methods, . . .

� Change in Introduction: Additionally it was applied to monolayer 1H-TaS2 . . .

� Change in Introduction: Previous investigations using this model have studied properties such as the
e�ective mass [57,58] and the band structure [59,60], but also phonon-related properties [61] in this model.

� Change in Introduction: In some sense, this is similar to the method employed in Hirsch-Fye Quantum
Monte Carlo [63], where a Hubbard-Stratonovich transformation is used . . .

� New paragraph in Introduction: We choose to study the SSH model here for its simplicity, acting as a
minimal model for electron-phonon coupling. At the same time, this means that there are many relevant
aspects of electron-phonon coupling and CDWs that are not captured by the SSH model. In particular,
the SSH model neglects Coulomb interactions between the electrons, and these are responsible for impor-
tant effects such as screening and entirely electronic CDWs without lattice displacement. Furthermore,
in higher dimensions, the shape of the Fermi surface can play an important role, in the form of nesting
and Van Hove singularities. Given the complexity of electron-phonon systems, studying simple models is
a useful way to identify relevant effects and mechanisms.
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� Change in Sec. 2: We consider spinless fermions in a one-dimensional lattice with Hamiltonian

H = −t
N−1∑
i=0

(1 + ui − ui+1)(c†i ci+1 + c†i+1ci) +
ks
2

N−1∑
i=0

(ui+1 − ui)2.

Here, ui is a (classical) variable describing the atomic displacements, with 0 ≤ i < N .

� Change in Sec. 2: We consider dimerization, i.e., displacements of the form ui = (−1)iα/2, and double
the unit cell to include entire dimers.

� Change in Sec. 2: Using the notation ai = c2i and bi = c2i+1, we obtain

H = −t
N/2−1∑
i=0

(1 + α)(a†i bi + b†iai)− t
N/2−1∑
i=0

(1− α)(a†i+1bi + b†iai+1) +
1

2
2Nksα

2.

� Changes in Sec. 2: . . . the Hamiltonian in matrix form reads

H =
∑
k

(
a†k b†k

)
ε̂(k)

(
ak
bk

)
+

1

2
2Nksα

2,

ε̂(k) = −t
(

0 1 + α+ (1− α)e2ik

1 + α+ (1− α)e−2ik 0

)
,

� Change in caption of Fig. 2: (a) Energy landscape at ks/t = 0.80.4, 〈n〉0 = 0.9.

� Change in Sec. 2: ...the total energy per dimer is

E = 2ksα
2 + Eel.

� Change in Sec. 2: Without electrons, Ebare = 2ksα
2 is a convex parabola with a minimum at α = 0.

� New sentence in Sec. 3: In Appendix A, we show that there can be at most two minima, symmetrically
located around α = 0. Only even orders of α appear due to the symmetry of the system.

� Change in Sec. 3: ω2
bare
≡ 24ks

� Change in Sec. 4: There is a single q = 0 phonon mode corresponding to dimerization, with frequency
ω2
bare

= 24ks.

� Change in Sec. 4.1: For the phonon self-energy, i.e., at order α2 with two external lines, there is only a
single diagram, . . .

� New sentence in Sec. 5: . . . and an in�nite set of vertices can appear in this way. The only general con-
straints are the conservation of the fermion number and momentum conservation. Thus, the low-energy
Hamiltonian can contain interactions of the form αm(c†c)n for arbitrary m and n. However, additional
symmetries of the system can provide further constraints on the effective action.

� New paragraph in Sec. 5: The downfolded SSH model has only a single effective interaction vertex.
This happens because the electron-phonon coupling in the original SSH model only has a single exter-
nal high-energy electron (blue line in Fig. 4a. On the other hand, if the original model had contained
either electron-electron interactions in the high-energy band or electron-phonon coupling between differ-
ent electronic states in the high-energy band, then the downfolding would be more involved, since more
diagrammatic contributions would appear in the expression for the effective action.

� Changes in Discussion: For example, monolayer 1H-TaS2 has a single band crossing the Fermi level . . . A
similar situation, with a single composite band crossing the Fermi level, occurs in monolayer 1H-NbS2 [66].

� New paragraph in Discussion: The SSH model in the Born-Oppenheimer approximation�as studied
here�is very much a simpli�cation of the complex reality of electron-phonon-coupling and charge-den-
sity-wave physics. We assume that the lattice is one-dimensional, that the electronic hopping amplitudes
and the bare restoring forces are linear in the displacement, that there is no electron-electron interaction,
that there is a single relevant phonon mode (dimerization), and that the system is in the T = 0 ground
state. Still, some general conclusions are possible from our work. It is possible to generate anharmonic
phonon terms entirely electronically, from an initial Hamiltonian that has purely harmonic phonons. Dia-
grammatic expressions can be constructed for the electronic screening at and beyond the harmonic level; in
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the general case these will be in�nite series of diagrams, but here there is only a single diagram at any order
in the displacement. In the presence of multiple relevant phonons, see Appendix C, the Born-Oppenheimer
energy landscape will include mode-mode coupling as well. Downfolding of the electronic space generates
a new perturbation series, in which effective higher-order vertices appear naturally. Unlike in the original
Hamiltonian, the vertices of the downfolded system are also dynamical (frequency-dependent). As a result,
the self-energy is dynamical as well, leading to spectral-weight transfer in the downfolded model. We note
that this happens even though the electrons are noninteracting. The magnitude of the self-energy in the
low-energy band is approximately given by the electron-phonon coupling (between the target and the rest
space) squared times the displacement squared divided by the energy separation between the low-energy
and the high-energy band. This supports the natural strategy of including bands in the low-energy model
that are close in energy and those that are strongly coupled to the target space via the relevant phonon
modes.

� Changes in Appendix B: The two eigenvalues of ε̂0 are ε±,0 = ±2t cos(k) with corresponding eigenvectors

~v±(k) =
1√
2

(
1

∓e−ik
)
.

With the eigenvectors, we can form the transformation matrix

ÛU(k) =
1√
2

(
1 1

−e−ik e−ik

)
,

which diagonalizes ε̂0. This yields the electron-phonon coupling in the band basis,

ĝ(k) = Û−1(k)ĝ(k)Û(k) = 2t

(
0 i sin(k)

−i sin(k) 0

)
.

� New Appendix C on 4-site unit cell.
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