Algebraic Bethe Ansatz for spinor R-matrices

Reply to Referee 3

I thank the referee for carefully reading the manuscript and for their useful comments and suggestions. Below I list replies to the queries raised and list the changes I have made:

1. The deformation parameter of $U_{q^{2}}\left(\mathfrak{s o}_{2 n+1}\right)$ is set to q^{2} to avoid having \sqrt{q} in the spinor-spinor R-matrix and the corresponding exchange relations. The square root of the deformation parameter arises because the root system of $\mathfrak{s o}_{2 n+1}$ has a short root. This explanation was added to the Introduction (page 2, line 45) and Section 2.5 (page 8, line 178).
2. It is indeed possible to obtain the vector-vector R-matrix by fusing spinor-vector R-matrices. However this construction is not needed for the goals of this paper, hence is not included.
3. - The q-transposition defined by (2.6-2.7) and all instances of it were renamed to a new symbol, u.

- The ambiguous notation of the creation operators was fixed. The repeated symbol β was replaced by b.
- The notation below line 142 on page 6 is correct. Here $x_{j}^{m_{j}}$ with $m_{j}=0,1$ denote elements of the exterior algebra Λ defined in line 140. In particular, $x_{j}^{0}=1$ and $x_{j}^{1}=x_{j}$.
- The notation in equation (2.30) is correct. Here ω_{i} is an element of the deformed Clifford algebra \mathscr{C}_{q}^{n}.

4. - I have added an explanation of the product notation below line 110 on page 5.

- The ambiguous notation $(\dot{a} \ddot{a})_{n}^{j}$ was replaced by a_{n}^{j}. An explanation of this notation was added at the beginning of Section 3.1 on page 18 and at the beginning of Section 4.1 on page 25.
- The algebras $U_{q^{2}}\left(\mathfrak{s o}_{2 n+1}\right)$ and $U_{q}\left(\mathfrak{S o}_{2 n}\right)$ are explicitly mentioned in the Abstract. I have not included them in the title to avoid having mathematical symbols and thus help the search engines to index the paper.

Kind regards,
Vidas Regelskis

