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Here we include a detailed response to the questions, comments, and requested changes in the attachment to Report
#2 by Dr. Harold Erbin; our response to general comments is provided with the resubmission. For clarity, we have
included the original text of said attachment in blue, with our responses to each point in black. Note that, relative
to the original Report, an effort has been made to update page/equation numbers where necessary to match the
resubmission (version 2).

1. The authors introduce many assumptions at various stages of the paper. While they are necessary to perform
analytic computation, it seems that they restrict a lot the original claims (from the abstract and introduction) and
make obscure the physical meaning of the computations. In particular, each assumption is introduced as a minor
technical assumption without taking into account the bigger perspective. While the authors come back on some
assumptions in the conclusion, I feel that they should be discussed earlier, possibly all at the same place before
starting the computations.

From a more general point of view, I think it is important for physicists applying physics methods to computer
science to remember that, in the end, what matters is to make contact with the ?real? world and not just build an
abstract formalism. For example, a lot of work has been done at the end of the ?80 to understand neural networks
with statistical physics, but this has played no role in the recent resurgence of neural networks and the design of
new architectures.

Authors’ response: We agree with the referee that we do indeed make many assumptions along the way. Our
intention, as we have now made explicit in the beginning of section 2, was to introduce assumptions only as needed
in order to keep the analysis as general as possible. However, the paper certainly benefits from having these collected
in one place. Since this necessarily involves a great deal of notation and technical detail, we have relegated this to
a new appendix (A.1), rather than obstructing the flow of the paper by expanding the already long introduction.
We have pointed the reader to said appendix at the very beginning of section 2, where we have also elaborated on
the general strategy in order to help the reader keep the big picture in mind. We thank the referee for these helpful
suggestions, which we believe have improved the work.

2. sec. 2 to 4: I would suggest clarifying the role of the time t, the different assumptions which are made, and
what it means physically. While the assumptions are clearly needed to make progress, it is important to understand
what it means for concrete neural networks and how much we can expect the current computations to be valid for
numerical experiments.

(a) sec. 2.1: The neural network is originally described by a set of hidden layers indexed by t ∈ {0, . . . , T}. To
reach eq. (2.9), the continuous-time limit is taken. While it is a useful assumption and allows to reuse the
formalism of path integral for stochastic process, this is not easy to interpret. I can see how it would make
sense for a large set of layers, but I am still slightly uncomfortable (and even more after taking T → ∞, see
below).

Authors’ response: As the referee states, the continuum limit only makes sense for a large number of layers,
i.e., large T . So, in fact, one should be less, not more, uncomfortable after taking the T → ∞ limit. There
is no difficulty in interpretation here: when one takes the continuum limit, one immediately and implicitly
states that one is interested in phenomena that occur on the scale of a large number of layers. (Formally
of course, this simply amounts to recovering the initial SDE from the Ito discretization, as we have noted in
footnote 12, where we also commented explicitly about there being a perfectly sensible continuum limit in
the layer direction, but not in the width direction (number of neurons)). We have however added additional
clarifications about the large T (and large N) regime of applicability in the introduction, appendix A, and
multiple footnotes.

(b) sec. 2.3, p. 16, above eq. (2.41): The authors introduce the assumption that “(...) the system exhibits time
translation symmetry (...)” While this is necessary for most of the computations of the paper, this is a very
strong assumption and I would suggest spending more time discussing it and what this means (this is done in
the conclusion, p. 59 par. 2 but this appears far too late given the importance of this condition). Boundaries
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are breaking time translation invariance, so it means that time becomes either periodic or non-compact (the
second being chosen later). What does this mean in terms of neural networks (beyond what is said in the
conclusion)?

Authors’ response: We agree that time-translation symmetry is an important assumption, and have added a
detailed discussion about this in the new appendix A.1 (see our response to point 1). We have also added more
details to the explanation about this in the introduction.

(c) sec. 4.3 and 4.4: this section assumes T →∞ such that T/N is fixed since the expansion is made in terms of
the T/N . However, the fact that the expansion parameter is T/N is specified quite late, only in sec. 4.3.2, par.
1, p. 43. More problematic, the fact that T →∞ is specified only in footnote 37, p. 43 (though it is also said
that it is kept finite to act as a regulator, sec. 4.3.2, par. 2, p. 43). As explained above, taking a non-compact
continuous time makes the interpretation as a neural network difficult.

Authors’ response: In fact, we stated this in the abstract as well as in the introduction when discussing the
organization of the paper, and have now added a more detailed discussion earlier in the introduction, namely
that the appropriate expansion parameter is T/N as in the earlier work [2]. This statement also appears again
at the very start of section 4, where appropriate. This should suffice to introduce the expansion parameter to
the reader in advance of sec. 4.3.2. More intuition for the tradeoff between depth and width was also given on
page 50 as well as in the Discussion (page 60), and is elaborated on in more detail in the new appendix A.

3. sec. 2.1, p. 6, below eq. (2.2): How restricting is the assumption of taking all layers to have the same width?
Could we miss some effects for which relative changes in layer widths could be important (like autoencoders)?

Authors’ response: In the context of the previous point, γT/N is the relevant scale in the problem. If the
variations δN in N are small compared to N , then these variations will not matter. Technically however, we want
δN � γT so that the effect of δN/N can be neglected relative to γT/N . This is automatically satisfied in the
N →∞ limit, unless one also lets δN →∞. This is a logical possibility, but an extremely unnatural one which has
not been entertained by any previous works in the context of the infinite-width limit.

In the particular example of autoencoders, one would have to check how well this approximation is met, namely,
is the difference between the width of the wide and narrow layers small compared to the number of layers? If so,
then our theory should apply reasonably well within the bulk of the network, including for autoencoders. If this is
not the case – as would be generically true for autoencoders with a very narrow layer – then our theory would only
apply to the bulk of the network away from both the boundaries and the narrow layer. In short, the narrow layer
present in standard autoencoders is obviously outside the regime with which we are concerned, as detailed in several
places as mentioned above.

4. sec. 2 and 3: There seems to be a problem with the definition of g. First, in sec. 2.1, g is a function of h and
x, see eq. (2.3) or (2.13), and the shortcut gt := g(ht, xt) is introduced above (2.7). Later, it is written as g(t), see
(2.34): while it seems to be just a generalization of the previous shortcut, my interpretation of (2.34) is that it is
not the case, since below the equation it is written:

“(...) we retain the freedom to choose the diffusion coefficient g(t, x).
which is a different notation from which h has disappeared.
Second, below (3.3) it is written

“(. . . ) the term on the last line is the contribution from the common stochasticity KB

(
?g
∑
α z̃

α
)
.”

Since g depends on x and h (in principle) and both are double-copied (in eq. (3.3), both variables have an index α),
then why is g common to both copies?

Authors’ response: Following the standard convention, gt denotes the discrete case, while g(t) denotes the con-
tinuous case. However, g(t, x) is simply a typo and should be g(t); we are grateful to the referee for catching this.
More importantly, we are also very grateful to the referee for catching the issue with g seemingly being dependent
on the state of the network, despite being the same between two copies. This was poor notation on our part,
which we have now amended; as the referee intuits, g is treated as an external parameter which is independent of the
current state of the system. See the new comment below (2.3) (we have also remarked on this in the new appendix A).

5. sec. 3.1, p. 26, below (3.33): The authors claim that their computations apply to fully connected networks
(MLP). However, this seems to be a borderline case:

“(...) in order to study networks at the edge of stability, we will hence- forth consider the case with γ > 0.”
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whereas MLP are characterized by γ = 0, see below (2.16) p. 10.
Authors’ response: This is a typo: MLPs are characterized by γ = 1, not γ = 0, as stated below (3.39). Again

we thank the referee for catching this.

6. Similarly, the authors write that they work for general activation functions. However, they make several hypotheses
that restrict a lot the domain of application:

(a) sec. 4, p. 31, eq. (4.13): The authors fix φ(h) = ϕ(h) = tanh(h) and perform a Taylor expansion, keeping
the first two non-trivial terms. At this stage, this is fine because it looks like the methods would generalize to
other functions by just replacing the Taylor expansion.

(b) sec. 4.1, p. 35, below eq. (4.36):

“This would lead (...) in the Taylor expansion.”

This paragraph is confusing because it looks like a choice, where it is really an assumption. As stated, more
comments appear elsewhere (below (4.48) maybe?), but the tone is confusing.

Authors’ response: There is no assumption here, we are merely being explicit about the order in the Taylor
expansion to which we work. We have discussed this in more detail below (4.48) and in the Discussion.
Nevertheless, we agree with the referee that the language below (4.48) can be confusing: tanh is a choice, but
the order in the Taylor series is an approximation. We have amended the text accordingly, and also added
further discussion about truncating the Taylor expansion in appendix A.1, see below.

(c) sec. 4.1, p. 37, below eq. (4.48), par. 1:

“Since φ(h) ∈ [−1, 1], we expect the next order term to be less important (...)”

which is a crucial assumption because it is not true for most activation functions. In particular, there is no
small parameter in the argument of φ(h) so it is not consistent to truncate its expansion to a finite order (see
for example the kind of computations with an exponential interaction in [1, p. 11]), except in the very specific
case above where the value of the function is bounded.

Authors’ response: We have replaced φ(h) ∈ [−1, 1] with tanh(h) ∈ [−1, 1] to make this more specific. However,
the boundedness of the activation function is not the point: rather, as we have now elaborated in the text,
the relevant feature is that the expectation value of h is 0 and its two-point function is small and decays
exponentially over time. Therefore it is only necessary to keep a few terms in the Taylor expansion around
h = 0. The only crucial assumption is that φ(0) = 0, which we have also elaborated on in appendix A, with
references to a more detailed discussion in [2].

(d) sec. 4.4: How legal is it to omit higher-order corrections from the Taylor expansions? The argument from
the previous point is approximately acceptable, but this looks more dubious for general activation functions.
I understand that it may be very difficult to include other interactions, but it is important to discuss what is
expected: would it be possible to classify the graphs according to the order of interactions they contain, or will
all graphs be mixed (I expect the second case since there is no expansion parameter)?

I would suggest to either work with more general activation functions by using a general Taylor expansion
instead of (4.13):

φ(h) = φ0 + hφ′(0) + h2φ′′(0) + · · · (1)

and to explain clearly the impact of the truncation in sec. 4.4, either to state in the abstract/introduction that
they work only with φ(h) = tanhh (or even more precisely with a cubic odd polynomial).

Authors’ response: Again, one expects that higher-order terms in the Taylor expansion of φ(h) do not matter
for any well-behaved function φ(h), i.e., a function that does not vary an enormous amount on the scale of
the square-root of the two-point function of h; see previous point. However the suggestion of the referee that
would could consider a general Taylor expansion is interesting, and we have included this in the discussion in
appendix A. We have also elaborated on the choice of activation function in the main text, specifically near
the beginning of section 2 where it is first introduced, cf. the new (2.2) and subsequent discussion.

7. sec. 5, p. 58, par. 3:
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“This leads to the question whether such a theory is renormalizable: we have shown that the infinite series of
corrections to the two-point function converge at weak coupling in T/N (...)”
This seems to be contradicted by the term in T 2/N found by the authors (which diverges as T,N →∞, with T/N
fixed), see (4.76).

Authors’ response: We have addressed this in detail in the several paragraphs following (4.76), and have also
added more discussion in the new appendix A. Let us summarize the discussion here: the diagram that näıvely
appears to scale as T 2/N in fact scales as (γTN )(

σb,eff

γ )4(γT ), cf. eq. (4.79). As we then explain, the weak coupling

regime is governed both by σ2
w/γ

2 and by σ2
b/γ

2. Accordingly, σb,eff/γ must be small enough so as to compensate for
the extra factor of γT for the perturbative expansion to be well-behaved, and thus this diagram effectively scales as
T/N , not T 2/N . In practice, σ2

b/γ
2 is usually set to the order of 10−2, and therefore, σ4

b/γ
4 ∼ 10−4, with network

depths on the order of at least 102. So this assumption is satisfied with a couple orders of magnitude to spare, and
even deeper networks can be accommodated by decreasing σ2

b .

8. It seems that a lot of content in sections 2 and 3 has been reproduced from [45] and it is not always easy to
understand what are the new contributions from the authors. Hence, I would suggest stating clearly what are the
new results and formula of this paper. Moreover, if section 2 is strongly inspired from [45], it could be made a bit
shorter (though it is useful to have it self-contained), see the comments below.

Authors’ response: We have substantially expanded the text around “we shall draw heavily...” to indicate the
main additions that we make relative to the formalism in [45,46], and had already stated twice in the introduction
that the core of the formalism is not new and that we build on these previous works. We believe that these statements
should collectively be sufficient to acknowledge previous work and to clarify our contributions. As the referee points
out, it is useful to have everything self-contained, and we have presented a coherent and complete exposition for both
pedagogical clarity as well as to establish our notation, and for this reason we prefer not to shorten the exposition;
see below.

9. While I appreciate papers where computations are spelled out in a clear way and where the reader can easily
follow each step, I found that it was slightly too explicit in the current paper. In particular, given the absence of
figures and motivations for some conceptual aspects, this makes the paper looks quite unbalanced. Also since the
paper is very long and seems to take materials from other sources like [45], I would suggest reducing the length of
some computations. Here are a few examples:

(a) sec. 2.2, p. 13 eq. (2.22): the second and third lines are just completing the square, this is so trivial that it
can be omitted.

(b) sec. 4, p. 33, eq. (4.28): it would be much simpler to just take the Fourier transform of (4.24).

(c) sec. 4, p. 34, e. (4.30): second equality is not necessary (the only change compared to the next line is i = −1/i).

Authors’ response: We thank the referee for these suggestions to streamline some of the algebraic manipulations,
and have implemented these suggestions.

10. sec. 1: The authors indicate that this paper is part of the NN-QFT correspondence, it is hard to how it is related
to earlier papers such as [7-9] which stated the correspondence clearly.

Authors’ response: We have discussed this in considerable detail in the introduction, where we have already de-
voted significant space to the relation to previous work. Additionally however, following the excellent suggestion of
referee 1, we have added a new appendix A in which the elements of the correspondence (i.e., the precise mappings)
are clearly enumerated, which we believe has substantially improved the presentation.

11. sec. 1, p. 3, par. 2: From the opening sentence
“In this work, we explicitly construct (...)”

it looks like the authors are building this field theory for the first time. However, it appears that it was done before
in [44-45], which could be cited there.

Authors’ response: We have modified this sentence to more clearly acknowledge these important works.

12. sec. 2: I think it would be useful to summarize in words the method followed in sec. 2 to build the field theory
(introducing auxiliary fields, etc.) at the beginning of the section, such that the reader has an idea of where the
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paper is going. Currently, it looks a lot like a series of formal manipulations and it is hard to get an intuition of why
we do this and where we want to stop.

Authors’ response: We thank the referee for this excellent suggestion, and have added a roadmap at the begin-
ning of section 2 to make it easier for the reader to follow and to give an idea of where the lengthy derivations are going.

13. sec. 2.1, p. 6: The starting point of the whole paper is equations (2.1) and (2.2) which are stated without any
motivation or intuition. Given how central it is to the paper and how other points are over-detailed (like completing
a square), it would be very useful to spend some time introducing the model. In particular, how it is related to
recurrent or fully connected networks? What is the interpretation of the different parameters A,B, etc.? At the top
of p. 7, there is a brief note on MLP, however, this is not sufficient to completely characterize MLP; in fact more
information is given below (2.16) after modifying (2.2) to (2.16): hence, I think it would be very useful to show how
the MLP emerges as a concrete example. Figures could also help.

Authors’ response: This is also a good point: we have added a statement emphasizing that (2.1) is formally the
most general SDE one can write down in this context. We have also replaced (2.2) with what was previously (2.16),
as indeed the latter is the more standard convention in the literature with which we work. Additionally, we have
substantially expanded upon the subsequent explanation for the various component appearing in this expression,
including the reduction to an MLP.

14. sec. 2.1, p. 6: It is not clear if the last hidden state hT corresponds to the output layer or not. The output layer
is not a hidden layer, so it seems that hT should not be the last layer, but then how do we read the output values?

Authors’ response: As we have stated previously (both here and in the paper), we are studying phenomena in the
bulk of the network away from the boundaries (since, as the referee has already pointed out, the boundaries break
time-translation invariance). We have elaborated on footnote 8 to make this more clear (i.e., the real input layer
may be thought of as h−1, while the real output layer may be thought of as hT+1; both are immaterial to the analysis).

15. sec. 2.1, p. 6, eq. (2.2): Why introduce this functional form for f instead of (2.16) which is used in most of
the paper? The form (2.2) for f does not seem important for sec. 2.1 and using a unique form would simplify the
discussion and reduce information overload. Moreover, the comment below (2.16) seems to indicate that the latter
is more common in the literature.

Authors response: See point 13 above.

16. sec. 2.1, p. 6: It is not clear if the last hidden state hT corresponds to the output layer or not. The output layer
is not a hidden layer, so it seems that hT should not be the last layer, but then how do we read the output values?

Authors’ response: This is a duplicate of point 14.

17. sec. 2.2, p. 10, eq. (2.16): What is the intuition for / interpretation of the new parameter γ? Is it a fixed
number (real, positive?), a statistical variable, a matrix? The paragraph below (2.23) seems to indicate that it is an
arbitrarily fixed real “constant”, but this should be explained earlier.

Authors’ response: We have elaborated on the roles and interpretations of the various parameters when intro-
ducing the update function (2.2), including γ, just below it; see point 13. Some additional intuition is given in the
new appendix A.

18. sec. 2.2, p. 10, eq. (2.18): This equation would be better below (2.15).
Authors’ response: We agree and have implemented this suggestion.

19. sec. 2.2, p. 12, eq. (2.24): I am quite confused by the phrase:
“introducing the N2-local field variables A, etc.”

A(t1, t2) :=
σ2
A

N

∑
j

hj(t1)hj(t2). (2)

Indeed, it looks like A, etc., are each a single bi-local field: they depend on two times t1, t2 ∈ [0, T ], and the sum over
j = 1, . . . , N means that there is a single component. Given the sentence, I would have expected to see (still) bi-local
matrix fields Aij(t1, t2) = hi(t1)hj(t2), as one sees for the general use of the Hubbard-Stratonovich transformation
[2, sec. 21.6] (though given the structure of the Lagrangian it makes sense to introduce a single bi-local field).
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Authors’ response: We apologize for the poor phrasing in this case. We have replaced N2-local with bi-local.

20. sec. 2.2, p. 12, footnote 15: I am confused by the statement of the footnote: it says that
“(. . . ) N should be sufficiently large for the Gaussian distributions to be valid (...)”

but below (2.29) it is written that:
“(. . . ) up to this point, the result (2.28) is exact, subject to working with the ensemble average 〈Z〉X,b.”

The first sentence and the last part of the second seem to indicate some approximation, which seems to be in tension
with saying that it is “exact”. Maybe the interplay between the two sentences could be clarified.

Authors’ response: Here, we are using the customary language in the field of large-N QFT, where once the limit
of large N has been explicitly stated, it is no longer repeatedly referred to as an approximation and is taken for
granted. However we have removed the “subject to working with the ensemble average” in the event that this may
have caused confusion.

21. sec. 2.2, p. 12, eq. (2.32): The input xi(t) vectors seem to be fixed and independent of hi and z̃i and are not
integrated over in the path integral (see previous equations), so what is the meaning of computing the expectation
values? Moreover, the authors could note that the auxiliary fields B and U have a slightly different role compared to
A and W since they are built out of non-dynamical variables but still introduced as new fields in the path integral.

Authors’ response: Indeed the referee is correct that x(t) is an external variable, as stated in footnote 10. This
implies that the product in question simply moves outside the expectation value; we have added a new footnote 18
to avoid any confusion on this point.

Regarding the second comment, while there is a sense in which B and U are slightly different from A and W
insofar as the former deal with external data, we do not believe this distinction is particularly meaningful as far as
our analysis is concerned; for example, W and U play formally the same role in (4.3).

22. sec. 2.3, p. 19-10, eq. (2.44) to (2.46): The paragraph above (2.44) is not very clear. Moreover, it would be
helpful to explain in more detail how one arrives at the Gaussian measure (2.46) starting from the non-Gaussian
measure (2.35).

Authors’ response: We have removed the potentially confusing remark “pursuant to our self-averaging assump-
tion” to make clear that (2.44) is just the statement that the values are drawn from a bivariate Gaussian distribution
(we assume that by (2.35), the referee means (2.44)). In any case, (2.46) is merely a rewriting of (2.44) in the standard
form for a bivariate normal distribution. We have elaborated on the line between (2.45) and (2.46) to make this clear.

23. sec. 3: Can you provide more intuition for using a double copy? I am quite confused by how to interpret it,
especially in the context of neural networks.

For example, I don?t understand eq. (3.2): the parenthesis says
“(...) between two identically-prepared copies of the system (...)”

but one still considers different trajectories. So by “identically prepared”, do you mean “same parameters for the
path integral” but then we consider different trajectories (= solutions) finishing at different times?

Authors’ response: We have added text at the beginning of section 3 to provide more intuition for the double-copy
method, namely, we fix h(0) to be the same for both copies, which have initially identical weights and biases as the
latter have not yet been integrated out. We have also referred the reader to previous work by the Google Brain team
and others, where a similar idea is used.

24. sec. 3.1, p. 22, footnote 22: Writing [h(1), h2(s)] is superfluous: it is obvious that hα(t) is a real function and
not an operator (which have not been used at all in this paper) and having a commutator here is more confusing
than enlightening.

Authors’ response: We have implemented this suggestion.

25. sec. 3.2, p. 27, eq. (3.23): The symbol d(t) is ambiguous: the previous definition of d in had d(t1, t2) = d(τ),
and below in (3.24) we have τ = t?s.

Authors’ response: We thank the referee for catching this confusing typo. d(τ) should be d(t1, d2), and we have
changed d(t) (previously used as a shorthand for the case t1 = t2) to d(t, t) for clarity.
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26. sec. 3.2, p. 27, eq. (3.24): The symbol T is already used to denote the upper limit of t, so it would be clearer
to introduce another symbol.

Authors’ response: Indeed, we did not mean to overload notation here; we have changed this lightcone coordinate
to u.

27. sec. 3.2, p. 28, above eq. (3.32): This is confusing because it sounds that all solutions to the time-independent
Schrödinger equation are bound states in the present case, however, the sentence below (3.38) seems to indicate that
scattering states are also possible. It would help to clarify this point and maybe discuss the properties of V ′′ (which
allows it to have bound states) below (3.32).

Authors’ response: We are of course not saying that all solutions to the time-independent Schrödinger equation
are bound states, but the solution that we are looking for is; we have added text below (3.31) to avoid this confusion.
We have also rewritten the text between (3.37) and (3.39) to make the logic more clear. Additionally, while we have
streamlined our presentation to focus only on the necessary elements of the argument, we have now referred the
reader to the quite detailed discussion in [36] on this point should they desire more information about the potential.

28. sec. 3.2, p. 27, below eq. (3.38): I am confused by this paragraph and (3.38): the first sentence that the solution
(3.38) is not the ground state, but the paragraph concludes by saying that it characterizes the edge of stability which
in turn is a condition on the ground state, see below (3.33).

Authors’ response: See previous point. Precisely at the edge of stability, when (3.38) is saturated, y(τ) is the
ground state with E = 0. We apologize for the previously confusing wording.

29. sec. 4, p. 30, par. 1:
“(. . . ) deviations from Gaussianity require the addition of corrections terms, corresponding to the fact that

higher cumulants no longer vanish. In the language of QFT, these correspond to loop corrections to the leading
order or tree-level result above.”
This sentence is strange: for a free (Gaussian) QFT, cumulants (connected) Green functions vanish since the Green
functions are given purely by disconnected two-point functions following Wick theorem. Thus, interactions give
non-vanishing contributions to the cumulants. I am sure that the authors are aware of these facts, but this is not
how the paragraph reads.

Authors’ response: This is indeed what the statement says. We have replaced the word “correction” with “inter-
action”, in the hopes that this is more clear.

30. sec. 4.1, p. 40, below eq. (4.48), par. 2:
“(...) we shall see that the weak coupling condition (...)”

Just to be sure, the “weak coupling” means T/N?
Authors’ response: No: at the beginning of that same paragraph, we explicitly say “weak ’t Hooft coupling

σ2
w,eff < γ2”. We have consistently referred to σ2

w (or, equivalently, the effective variance, cf. (4.48)) as the (’t Hooft)
coupling, and to T/N as the expansion parameter. This has been previously stated in the abstract, introduction,
and the very beginning of section 4. Nonetheless, it has also been further clarified in the new appendix A.

31. sec. 4.1, p. 37, below eq. (4.48), par. 3:
“While this can be done analytically, the resulting expression is exceedingly lengthy and not particularly enlight-

ening, so we refrain from including it here.”
In view of all the details given in the paper, why omit here a formula?

Authors’ comments: As we have said, the expression is both very lengthy and not at all enlightening. If the
expression were reasonably short and simple, we might indeed have included it even though it is certainly not a
central result, but this is not the case. In contrast, the reason we have included the similarly lengthy expres-
sions on pages 72-73 is because these are actually part of the main result. We do not believe that writing-out these
expressions would improve the paper, which after all is already 8 pages longer than the (already long) original version.

32. sec. 4.2, p. 40:
“(...) the double-line notation here closely resembles that introduced by ?t Hooft (...)”

This is not a resemblance, this is exactly the same idea (a matrix field has two indices so a ribbon propagator; an
n-tensor field has n strands).
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Authors’ response: It is true that the strands in ’t Hooft’s notation stand for indices, and hence an n-tensor field
has n strands. In our case however, the ribbons are there because the W and W̃ fields are bi-local (see point 19
above). We do not have matrix fields; the double-lines denote different times, not different indices. Furthermore, we
do not have the same relationship between the genus of the surface on which a ribbon diagram can be embedded and
the order in perturbation theory exhibited in ’t Hooft’s notation. We regard the close resemblance as interesting,
but it would be misleading to identify them.

33. sec. 4.4.2, p. 50, below eq. (4.76):
“Therefore, we will obtain a factor of δ(ω = 0) when inverse Fourier transforming the product c(ω)2.”

The factor δ(0) appears already before the Fourier transform since c(ω) ∼ δ(ω), so c(ω)2 ∼ δ(0)δ(ω).
Authors’ response: Agreed, this was poor phrasing; we have corrected the wording, and thank the referee for

catching this.

There are a few minor typos:
1. sec. 2.1, p. 7, eq. (2.5): Missing index on h and x in the arguments of f and g.
2. sec. 4, p. 30, eq. (4.10): 〈z̃it)〉 〈z̃i(t)〉.
3. sec. 4.1, p. 33, between eq. (4.26) and (4.28): there are various typos, most instances of x should be replaced

by t except f(x)→ f(ω).
4. sec. 4.3.1, p. 42, eq. (4.53): there is an extra comma after dτ ′′

Authors’ response: We thank the referee for spotting these typos, and have corrected them along with a few
additional typos documented in the list of changes.
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