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We thank the Referee for the interesting remarks and appropriate comments. Firstly, we would
like to address the statements that were mentioned among the weaknesses of our work and try to
clarify. We hope that, with the following explanation, the message we wanted to convey about our
approach to the problem of the detection of phase transitions will be more transparent.

Concerning the possibility of applying the same method to non-BKT transitions, we would like to
emphasize that the anomaly detection scheme does not set any limit on the nature of the transition.
Indeed, in Ref. [10] the authors made use of the same protocol for the mapping of a phase diagram
which contains several kinds of phase transitions. The differences among them can be observed in
the behaviour of the loss in the proximity of the critical point. As an empirical rule according to
the cases that we tested, we observed a much sharper increase of the loss for a second-order phase
transition with respect to the BKT case as one could expect due to the exponentially slow opening
of the gap in the latter case. As we pointed out in the manuscript, we chose the BKT transition
for its elusive essence that makes it very difficult to be detected especially for small system’s sizes
and without numerically demanding scalings. Even though our method is unable to automatically
distinguish between different kind of phase transitions, this is actually a sign of its very general
ability of recognizing the changes in the underlying structures of the data that manifest along a
phase transition, no matter if they are abrupt or very smooth as in our case.

As regards the training of the network in the phases with non-power law correlations, we agree
with the Referee that this is a very important point. With this work we made a proof of concept by
training only on one side of the phase diagram. This allowed us to earn the physical interpretation
about the behaviour of the conformal structures in the data that the machine is learning.

Notwithstanding, we are working to improve the method also in the direction of giving a better
estimation of the critical point by exploiting the loss profile from the other phase. According to our
preliminary tests with the available data, we found that the loss resulting from the training on the
other side is quite symmetric to the ones of Fig. 4 in the proximity of the transition. This information
could be used to pinpoint the critical values of the phase transitions. This is beyond the purpose
of the present work, as it requires a more careful analysis and, more concretely, the generation of a
large amount of data also in the ordered phase, that we leave for a future development.

We also would like to comment on the suggestion of the Referee about the Level Spectroscopy
approach to detect the BKT phase transition. This would imply to look at some crossings between
the eigenvalues of the ES as a function of the control parameter, which we plotted in Fig. 1 for the
XXZ and the BH model.

First, let us remark that it is pretty evident that an additional knowledge of which is the right
crossing is crucial, since there are plenty of them scattered around and a wrong choice might easily
lead to widely wrong predictions of the critical point.
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Figure 1: ES of the XXZ (left) and BH model (right) as a function of the control parameter. In the
legend the first digit identifies the symmetry number (6N in the notation of the manuscript) and
the second digit is the sorting index (k in the manuscript).

Second, while for the XXZ model the additional SU(2) symmetry at the transition point forces
the ES to arrange into precise multiplets and thus a lot of crossings to happen at the same coupling
value (A/J = —1) even for finite system sizes, this is definitely not the case for the BH model.

Actually, according to the deep analysis of Ref. [21], in the latter the transition is associated to
a precise value of the ratio ng = gg:g?i = 1 (see Section 5.1 of our manuscript and Eq. (3) of [21] for
the notation). While this implies a Se;ies of crossings in the thermodynamic limit for the eigenvalues

k+1 and €k, Vk in correspondence to the same true critical value Ug, the same behaviour is not
anymore guaranteed for finite sizes, as it can be clearly seen in the right panel Fig. 1 for & = 0.
Indeed, by looking at the left panel of Fig. 2 (i.e., the analogue of Fig. 3 of [21] with our data), the
empirical n does not reach the critical nc before the true transition point at finite size: the above
mentioned crossings can then be avoided via the spoiling of the ES parabolic structure in the gapped
phase (see Fig. 3 in our Manuscript).

In the left panel of Fig. 2 we show a possible extrapolation towards the thermodynamic limit of
both the Us(L) values correspondent to ne = 1/4 (in blue) and to the k = 1 crossing mentioned
above (in orange). Unluckily, while the two extrapolations nicely agree with each other, they notice-
ably miss the critical value Uz ~ 3.39.J (in red) established in the literature [41]. This is probably
due to the typical very slow logarithmic scaling around BKT transitions and to the missing analysis
of finite-bond effects in our data.

Finally let us stress that, if we would have instead blindly taken the lowest-lying ES crossing (as
it might seem somehow physical to do), we would have followed the one between &} and €1, instead,
and this would have erroneously lead to the green scaling line in the right panel of Fig. 2.

Conversely, we want to stress that our method is completely agnostic about the model-dependent
value of ¢ at the transition and about the symmetry number labelling of the eigenvalues which are
both fundamental ingredients of the detection through the level spectroscopy.

Let us thank again the Referee for pointing out this analysis, this material will be available in
the PhD thesis of Daniele Contessi.

Here below, we answer to the points indicated by the Referee:

1. As mentioned by the Referee in number 2), we already dealt with the increase of the loss
outside the training region in Fig. 5 in the Appendix. Despite the loss starts to rise outside
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Figure 2: In the left panel the n ratio as a function of the interaction for the BH model for different
system’s sizes. In the right panel, three different extrapolations to the thermodynamic limit of the
predicted critical coupling: the blue line according to the critical nc = 1/4 method explained in the
text, the orange line following the crossing between £2 and €1, and the green line following the first
visible crossing between &} and £1;.

the training region, its level remains very low until the changes in the data induced by the
phase transition become relevant. In order not to misinterpret the low increase outside the
training as a false phase transition, one can vary the window of the training as in Fig. 5 and
locate the position of the actual knee of the curve preceding the sharp rise. Even for very
different training windows, the region of the latter sharp increase in the losses appears to be
the same.

2. See previous point.
3. As explained above, this is a very interesting point that we leave for a future work

4. We fully agree with the Referee and the problem of the interpretability of the network is a hot
topic also for the machine learning community. Unfortunately, grasping some understanding
about what is happening in the latent space after performing a highly complex, non-linear
function on the input is rather difficult excluding the cases where the latent space dimension is
trivially small. In the mentioned article [arxiv 2106.13485] the latent dimension is taken to be
one and the authors are actually very careful in claiming that there seems to be a correlation
between the single latent variable and the central charge of the CFT. In our case there is
even no order parameter to check for correlation with. However we are right now working on
the implementation of a new architecture based on some very recent techniques developed for
automatic feature selection. Our preliminar results seem promising in the directions indicated
by the Referee. They will be hopefully the subject of a more technical work.

5. See the third paragraph of page 3 and point 4.

Additional corrections

During the Review process of our manuscript, we became aware of some typos that we corrected in
the Resubmission phase. We indicate them below, together with some new references, in order to



keep track of the changes:

1. There was a missing overall minus sign in the right hand side term of Eq. (3)

2. We added Refs.[19,43] as well as a note added for Ref.[52]



