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Abstract

We investigate macroscopic behaviors of fluctuating domain walls in nonequi-
librium open systems with the help of the effective field theory based on sym-
metry. Since the domain wall in open systems breaks the translational sym-
metry, there appears a gapless excitation identified as the Nambu-Goldstone
(NG) mode, which shows the non-propagating diffusive behavior in contrast
to those in closed systems. After demonstrating the presence of the diffu-
sive NG mode in the (2 + 1)-dimensional dissipative Josephson junction, we
provide a symmetry-based general analysis for open systems breaking the
one-dimensional translational symmetry. A general effective Lagrangian is
constructed based on the Schwinger-Keldysh formalism, which supports the
presence of the gapless diffusion mode in the fluctuation spectrum in the thin
wall regime. Besides, we also identify a term peculiar to the open system,
which possibly leads to the instability in the thick-wall regime or the nonlin-
ear Kardar-Parisi-Zhang coupling in the thin-wall regime although it is absent
in the Josephson junction.
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1 Introduction

A domain wall, codimension one object, is ubiquitous in nature from the condensed-
matter physics to the high-energy physics [1–5]. The sine-Gordon kink in the Josephson
junction [6], the magnetic domain wall in various magnets [7], the interface of two different
phases [8] separated by, e.g., the first-order phase transition (like liquid and gas), and
extended membrane-like objects in the string theory [9] all give the domain-wall realization
in diverse physical systems. There are several different reasons why the domain wall is
a stable object appearing in diverse systems: for instance, some of the domain walls are
topological solitons [4,5] showing a particle-like behavior, and others have the topological
charge supporting its stability.

A remarkable property of the domain-wall solution is that it breaks the one-dimensional
spatial translational symmetry. As a result, a fluctuation of the domain-wall position prop-
agates as a gapless mode in closed systems. The presence of the propagating gapless mode
is universal independent of the underlying microscopic model, and this gapless mode is
identified as the Nambu-Goldstone (NG) mode [10–12] associated with the translational
symmetry breaking. One way to describe the universal macroscopic dynamics of the
domain wall is to use the low-energy effective field theory (EFT) based on the symme-
tries [13–20]. Recent progresses in the nonrelativistic generalization of the NG theorem
enables us to establish a sophisticated EFT approach to the domain-wall dynamics based
on the spacetime symmetry breaking [21] and also to provide a unified view on the coupled
dynamics of the domain wall and other NG modes [22,23].

Turning our attention to nonequilibrium systems, we find qualitatively different domain-
wall dynamics from the aforementioned gapless propagating mode. In nonequilibrium
open systems, we often encounter the gapless diffusive fluctuation instead of the gap-
less propagating one. A familiar example of the domain-wall dynamics is a linear surface
growth between two different phases, which provides an example of the universality class in
nonequilibrium systems modeled by the Edwards-Wilkinson equation [24]. Besides, there
is another universal class driven by nonlinear fluctuations, which leads to the so-called the
Kardar-Parisi-Zhang (KPZ) universality class [25]. Recent experimental and theoretical
developments have demonstrated the presence of the KPZ universality class in various
low-dimensional systems [26–32]. Nevertheless, despite these developments, the universal
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domain-wall dynamics in nonequilibrium open systems has not been clarified so far in a
unified way with those in closed systems based on the symmetry-based EFT.

The main purpose of this paper is twofold: The first purpose is to elucidate the low-
energy dynamics of the magnetic flux in the (2 + 1)-dimensional dissipative Josephson
junction, which gives a canonical condensed-matter example of the domain wall. The
Josephson junction is a layer insulator sandwiched by two superconducting electrodes,
for which the dynamics of the phase difference between the two electrodes is modeled
by the sine-Gordon equation (see, e.g., Refs. [6, 33]). Moreover, the dissipative effect ef-
fects due to the environment (such as electrons or phonons) are inevitable in experimental
finite-temperature realizations, and the effective description is given by the dissipative
generalization of the sine-Gordon equation [33–37]. Thus, the dissipative Josephson junc-
tion serves as an ideal condensed-matter example of open systems where the domain-wall
solution, describing the position of the magnetic flux, appears as a sine-Gordon kink. The
second purpose of this paper is to investigate general consequences of the one-dimensional
translational symmetry breaking in open systems. In fact, it remains unclear what is the
universal property of the fluctuating domain wall in general nonequilibrium open systems
in sharp contrast to those in closed systems.

To accomplish twofold goals, we rely on the symmetry-based field-theoretical approach
to the nonequilibrium dynamics, whose basis is recently developed in constructing the EFT
for a dissipative fluid in closed systems [38–48] and generalized to describe the NG mode
in open systems [49–53] (see also Ref. [54] for a holographic realization of the NG mode
in open systems). In particular, we rely on the path-integral formalism from two different
viewpoints—a bottom-up view from the Martin-Siggia-Rose (MSR) formalism for classical
stochastic systems [55–57] and a top-down view from the Schwinger-Keldysh formalism
for quantum open systems [58–63]. In both views, a recent perspective of the symmetry
structure of open systems clarified in Refs. [49–53] is crucial. The notion of the symmetry
becomes a little complicated since the corresponding physical charge in open systems is
no longer conserved due to the dissipative coupling to the environment. Nevertheless, we
can still define the spontaneous symmetry breaking and the associated NG mode in open
systems [49–53]. The symmetry peculiar to open systems is different from the approximate
symmetry that is explicitly but weakly broken. Accordingly, the behavior of NG modes
discussed in this paper is also different from the gapped and overdamped pseudo-NG
modes associated with approximate translational symmetry breaking [64–66].

In the first part (Sec. 2), we take a bottom-up route, starting from the classical stochas-
tic description of the (2+1)-dimensional dissipative Josephson junction. Using the Fokker-
Planck (operator) and the MSR (path-integral) formalisms, we clarify the symmetry struc-
ture peculiar to the open systems, and then derive the effective theory for the domain-wall
fluctuation on the top of the sine-Gordon kink. The resulting energy spectrum of the
fluctuation in two regimes—thin-wall and thick-wall regimes—shows the appearance of a
diffusive pair mode; a gapless diffusion mode and its gapped partner. In the second part
(Sec. 3-4), we take a top-down route, relying on the symmetry-based Schwinger-Keldysh
formalism, which has been applied to the NG mode attached to the SSB for the time-
translational and internal (or on-site) symmetries in open systems [51, 53]. Based on the
symmetry and Schwinger-Keldysh requirements, we construct the most general effective
Lagrangian for open systems with the one-dimensional translational symmetry breaking.
The resulting effective Lagrangian demonstrates that the presence of a pair of the diffusive
NG mode is a universal result in the thin-wall regime, while it also has a peculiar term
possibly leading to a linear propagation and instability of the NG mode in the thick-wall
regime. We also find that the same peculiar term leads to the nonlinear cubic interaction
term in the thin-wall regime, which may induces induce the KPZ universality class [25–32].
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Our results show that the presence of the diffusive NG mode is a universal property of
the stable domain wall in nonequilibrium open systems, and there is a model-dependent
peculiar term that could induce the KPZ universality class.

The organization of the paper is in order: In Sec. 2, we investigate the fluctuation
dynamics of the domain wall in the dissipative Josephson junction. In Sec. 3, we briefly
review the Schwinger-Keldysh formalism in preparation to formulate the EFT for open
systems. In Sec. 4, we construct the effective Lagrangian of open systems with translational
symmetry breaking to investigate the universal property of the dissipative domain wall.
Sec. 5 is devoted to the summary and outlook. In Appendix A, we present an EFT for
the domain wall in finite-temperature closed systems in comparison to that given in the
main text.

2 Dissipative domain wall in Josephson junction

In this section, we investigate the domain-wall dynamics in the dissipative Josephson
junction with noise. While the subject of this section is interesting in its own right, it also
illustrates our general motivation and formulation on spontaneous translational symmetry
breaking and the resulting dynamics in open systems given in the subsequent sections.
We provide the model describing the dissipative Josephson junction with noise in Sec. 2.1.
To discuss the symmetry breaking of the stationary solution of the model, we introduce
the operator and path integral formalisms in Sec. 2.2 and identify a peculiar symmetry
structure in open systems in Sec. 2.3. In Sec. 2.4, we show that the stationary solution
spontaneously breaks the translational symmetry peculiar to open systems and investigate
the dynamics of the NG field associated with the symmetry breaking.

2.1 Dissipative sine-Gordon model with noise

The Josephson junction consists of two superconducting electrodes separated by a few
nanometer thin layers of the insulator. By applying a uniform magnetic field parallel to
the layer, a magnetic flux ϕ∈ [0, 2π] sticks to the insulator (see the left panel of Fig. 1). The
dynamics of the magnetic flux is described by the dissipative sine-Gordon equation [34,35]:

∂2t ϕ(t,x)−∇2ϕ(t,x) +m2 sinϕ(t,x) + α∂tϕ(t,x)− β∇2∂tϕ(t,x) = ξ(t,x), (1)

where we scaled the space and time length to make the coefficients of the first two terms
in on the left-hand side to be unity. The mass term comes from the Josephson current due
to the phase difference between the two superconducting electrodes, associated with the
magnetic flux. Compared with the sine-Gordon model in closed systems, we have three
additional terms α∂tϕ, β∇2∂tϕ and ξ, describing effects of the dissipation and noise. The
terms proportional to α and β captures the dissipative effect from quasi-particle tunneling
and the surface resistance of the superconductors, respectively, while ξ corresponds to a
bias current density [34, 35]. We also take account of the possible fluctuating property of
the bias current density ξ(t,x), whose stochastic property is assumed to be a Gaussian
white noise with no bias [36,37]:

⟨ξ(t,x)⟩ξ = 0, ⟨ξ(t,x)ξ(t′,x′)⟩ξ = Aδ(t− t′)δ2(x− x′), (2)

where ⟨· · · ⟩ξ represents the average over the noise ξ. The parameter A characterizes the
magnitude of the bias current noise, for which we do not assume the fluctuation-dissipation
relation.. Although the noise magnitude A is usually related to the friction magnitudes by
the fluctuation-dissipation relation, we do not assume such relations to carry out a general
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Figure 1: Left: A magnetic flux applied to a insulator layer by a uniform mag-
netic field in y-direction. Right: 2π-kink phase difference ϕ(t,x) induced by the
magnetic flux (m = 1.0).

analysis. In experimental realizations, these dissipative effects isare inevitable at a finite
temperature, and typically the noise magnitude A is proportional to the temperature of
the environment. Due to the terms proportional to α, β as well as the noise, Eq. (1)
describes an open system exposed to the dissipation.

The vital point for our subsequent analysis is that the noise-averaged Eq. (1) in the
mean-field limit, where the right-hand side is replaced by its averaged value 0, supports
the following sine-Gordon kink as the domain-wall solution:

ϕ̄(x− x0) = 4 arctan
[
em(x−x0)

]
, (3)

where we imposed the following boundary condition

lim
x→−∞

ϕ(t, x, y) = 0 and lim
x→∞

ϕ(t, x, y) = 2π. (4)

This solution describes a domain wall localized at position x0 as shown in the right panel
of Fig. 1. The imposed boundary condition (4) means that there is one magnetic flux line
piercing the sandwiched insulator along the y-direction (see Fig. 1). Thus, the (2 + 1)-
dimensional Josephson junction realizes the domain-wall solution (3) when we apply an
appropriate amount of the magnetic field parallel to the layer to impose the boundary
condition (4). In the following of this section, we will clarify the dynamics of the realized
domain wall based on the symmetry of the dissipative Josephson junction.

2.2 Operator and path integral formalisms for stochastic dynamics

The crucial point for the domain-wall dynamics is that the presence of the wall breaks a
spatial translational invariance. In closed systems, this spontaneous symmetry breaking
results in a gapless collective excitation identified as the NG mode, which dominates the
low-energy dynamics of the wall. However, since the dissipative sine-Gordon equation (1)
describes the open system exposed to the dissipation and noise that break the momentum
conservation, we need to be careful about what is the symmetry of our open system [49–53].

We shall now clarify the notion of the symmetry and the NG mode in open systems.
For that purpose, it is useful to rely on operator and path-integral formalisms for the
stochastic equation of motion, which are known as the Fokker-Planck formalism and the
MSR formalism [55–57], respectively (see, e.g., Ref. [67] for a review). In particular, we
mainly employ the MSR formalism, which directly leads to the effective Lagrangian of the
NG mode associated with the domain wall.
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In preparation for moving to the Fokker-Planck operator formalism, we first introduce
a field variable χ(t,x) conjugate to ϕ(t,x) and decompose Eq. (1) as

∂tϕ(t,x) = χ(t,x), (5a)

∂tχ(t,x) = ∇2ϕ(t,x)−m2 sinϕ(t,x)− αχ(t,x) + β∇2χ(t,x) + ξ(t,x). (5b)

Then, we introduce the probability distribution for ϕ and χ as

P[t;ϕR(x), χR(x)] ≡
∏
x

⟨δ(ϕR(x)− ϕ(t,x))δ(χR(x)− χ(t,x))⟩ξ. (6)

Note that ϕR(x) and χR(x) denote c-number field configurations while ϕ(t,x) and χ(t,x)
are solutions of the stochastic equations of motion (5). Note that ϕR(x) is also in [0, 2π]
as well as the magnetic flux ϕ(t,x). Equation (6) defines the probability distribution
functional that the field variables {ϕ(t,x), χ(t,x)} realize a configuration {ϕR(x), χR(x)}
at a given time t.

Using the equations of motion (5), we can show that the time evolution of the proba-
bility distribution P[t;ϕR(x), χR(x)] is described by the Fokker-Planck equation

∂tP[t;ϕR(x), χR(x)] = −HFPP[t;ϕR(x), χR(x)], (7)

where we introduced the Fokker-Planck Hamiltonian as

HFP ≡
∫

d2x

[
δ

δϕR(x)
χR(x)

+
δ

δχR(x)

[
∇2ϕR(x)−m2 sinϕR(x)− αχR(x) + β∇2χR(x)

]
− A

2

δ2

δχR(x)2

]
.

(8)

Notice that the Fokker-Planck equation (7) looks similar to the Schrödinger equation
for the wave function in quantum theory. Motivated by this observation, we define field
operators by

ϕ̂R(x) = ϕR(x), χ̂R(x) = χR(x), χ̂A(x) = −i
δ

δϕR(x)
, ϕ̂A(x) = +i

δ

δχR(x)
. (9)

Introducing the commutation relation as [Â, B̂] = ÂB̂ − B̂Â, one finds that the above
operators, by definition, satisfy the canonical commutation relations

[ϕ̂R(x), χ̂A(x
′)] = [ϕ̂A(x), χ̂R(x

′)] = δ(2)(x− x′), (10)

where the other commutators vanish. Therefore, we can regard the Fokker-Planck equation
(7) as the analogue of the Schrödinger equation with imaginary time.

On the other hand, it should be also emphasized remarkable differences between the
Fokker-Planck equation and the ordinary Schrödinger equation. First, P[t;ϕR(x), χR(x)]
in the Fokker-Planck formalism describes the real-valued probability distribution while the
wave function in quantum theory does the complex-valued function, whose square gives
the probability distribution. Second, the Fokker-Planck Hamiltonian is not the Hermitian
operator in sharp contrast to the usual Hamiltonian in quantum theory. As a result, despite
the similar structure with quantum theory, the low-energy spectrum of the resulting NG
mode will be qualitatively different.

As in quantum theory, instead of the operator formalism, we can use the equivalent
path-integral (or Lagrangian) formalism known as the MSR formalism [55–57]. In fact,
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we can perform a systematic computation of the correlation function based on the path-
integral formula for the generating functional Z[jϕ, jχ] given by

Z[jϕ, jχ] ≡⟨ei
∫
dtd2x [jϕ(t,x)ϕ(t,x)+jχ(t,x)χ(t,x)]⟩ξ

=

∫
DϕRDχRDϕADχA eiSMSR[ϕR,χR,ϕA,χA]+i

∫
dtd2x [jϕ(t,x)ϕR(t,x)+jχ(t,x)χR(t,x)],

(11)

where jϕ and jχ are the source fields to compute correlation functions of stochastic vari-
ables ϕ(t,x) and χ(t,x). In the second line, we introduced the auxiliary fields ϕA and
χA to make ϕR and χR as solutions of the equations of motion (5) and performed the
integration over the noise. We also dropped a Jacobian factor since it does not play an
important role in the following analysis. The phase space MSR action iSMSR is given by

iSMSR =

∫
dtd2x

[
iχA∂tϕR − iϕA∂tχR −HFP

]
=

∫
dtd2x

[
iχA
(
∂tϕR − χR

)
− iϕA

(
∂tχR −∇2ϕR +m2 sinϕR + αχR − β∇2χR

)
− A

2
ϕ2A

]
.

(12)

Furthermore, integrating out the conjugate variables χR and χA, one can also find the
configuration space MSR action for the dissipative sine-Gordon model as follows:

iSMSR[ϕR, ϕA] =

∫
dtd2x

[
−iϕA

(
∂2t ϕR −∇2ϕR +m2 sinϕR + α∂tϕR − β∇2∂tϕR

)
− A

2
ϕ2A

]
.

(13)
Note that ϕR corresponds to the physical quantity describing the original magnetic flux,
whereas ϕA is an auxiliary field to make ϕR as a solution of the original Langevin equation.
In the noiseless limit A → 0, this action reduces to the Fourier expression of the delta
functional using the auxiliary field ϕA, which restricts field configurations of ϕR to be
those satisfying the deterministic dissipative sine-Gordon equation. In other words, the
last term in Eq. (13) captures the effect of the noise. Likewise, in the phase space action,
χR is the physical quantity while χA is an auxiliary field.

2.3 Translational symmetry

Based on the Fokker-Planck and MSR formalisms presented in the previous section, we
discuss spatial translational symmetries in the open system. In the MSR formalism, we
define the symmetry as the invariance of the MSR action (12) or (13) under the corre-
sponding transformation. The equivalent definition of the symmetry in the Fokker-Planck
formalism is given by the charge operator commuting with the Fokker-Planck Hamiltonian
(recall that the Fokker-Planck Hamiltonian generates the time translation).

We then investigate the symmetry of the dissipative Josephson junction. First of all,
note that the MSR action Eq. (12) and Eq. (13) does not have an explicit coordinate
dependence: namely, our model is invariant under the following transformation:

ϕR(t,x) → ϕ′R(t,x) = ϕR(t,x+ ϵA),

ϕA(t,x) → ϕ′A(t,x) = ϕA(t,x+ ϵA),

χR(t,x) → χ′
R(t,x) = χR(t,x+ ϵA),

χA(t,x) → χ′
A(t,x) = χA(t,x+ ϵA),

(14)
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associated with the spatial translation x → x′ = x − ϵA. The corresponding conserved
Noether charge is provided by

Pi,A ≡
∫

d2x
[
χR(t,x)∂iϕA(t,x) + χA(t,x)∂iϕR(t,x)

]
, (15)

with ∂i = (∂x, ∂y). In the Fokker-Planck formalism, the operator version of this Noether
charge generates the spatial translation. In fact, by the use of the commutation relation
(10), one can reproduce the infinitesimal transformation rule of, e.g., ϕR in Eq. (14) as

δϵA ϕ̂R(x) ≡ i
[
ϵA ·P̂A, ϕ̂R(x)

]
= ϵA ·∇ϕ̂R(x), (16)

and others follows in the same way. One can also check the spatial translational symmetry
as the commutativity of the Noether charge P̂i,A with the Fokker-Planck Hamiltonian

[ĤFP, P̂i,A] = 0. We refer to this symmetry as Pi,A-symmetry.

Although the operator P̂i,A gives a conserved charge generating the spatial translation

(14), this quantity does not represent a physical momentum because P̂i,A involves the
auxiliary fields ϕA and χA. As in the non-dissipative sine-Gordon model, the physical
momentum should be defined solely by the physical fields ϕR and χR as

P̂i,R ≡
∫

d2x χ̂R(x)∂iϕ̂R(x). (17)

In contrast to P̂i,A, the physical momentum P̂i,R, however, is not conserved because it

does not commute with ĤFP as

i
[
ĤFP, P̂i,R

]
=

∫
d2x

[(
−αχ̂R + β∇2χ̂R + iAϕ̂A

)
∂iϕ̂R

]
+ (surface term). (18)

The non-vanishing contribution results from the terms proportional to α, β, and A, and
thus, the presence of the dissipation and noise makes the physical momentum P̂i,R to
be nonconserved. This is because the physical momentum accompanied by the magnetic
flux ϕR diffuses into the environment and becomes a non-conserved quantity in the open
system. In other words, there is no Pi,R-symmetry in contrast to closed systems.

The above structure is a salient feature of open systems: the physical charge P̂i,R is not
conserved due to the dissipation and noise while there is a Pi,A-symmetry generated by the

conserved auxiliary charge P̂i,A. The crucial point here is that it is possible for a steady-
state solution to spontaneously break the present Pi,A-symmetry. Following the definition
in closed systems, we define the spontaneous Pi,A-symmetry breaking in the dissipative
Josephson junction systems by the existence of a certain physical order parameter field
ΦR(t,x) as follows:

∃ ΦR(t,x) such that ⟨δϵAΦR(t,x)⟩ = ⟨[iϵA · P̂A, Φ̂R(t,x)]⟩ ̸= 0, (19)

where ⟨· · · ⟩ denotes the path-integral average with the MSR action (13). One can find
that the condition for the order parameter field is simply given by ∂i⟨ΦR(t,x)⟩ ̸= 0, so that
it precisely indicates the inhomogeneity of the steady-state solution. Since the mean-field
solution (3) indeed breaks the translational symmetry associated with the conserved charge
P̂x,A, we can investigate the domain-wall dynamics in open systems from the perspective
of the symmetry breaking. Although the origin of the two kinds of charges and symmetry
structures may be unclear so far, we will see that they naturally arise from the underlying
quantum theory based on the Schwinger-Keldysh formalism in Sec. 3.
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2.4 Effective Lagrangian for the domain-wall fluctuation

Let us investigate the domain-wall dynamics of the dissipative sine-Gordon model using
the configuration space MSR action (13). First of all, the equations of motion in the MSR
formalism are given by

0 =
δSMSR[ϕR, ϕA]

δϕA(t,x)
= −∂2t ϕR +∇2ϕR −m2 sinϕR − α∂tϕR + β∇2∂tϕR + iAϕA, (20a)

0 =
δSMSR[ϕR, ϕA]

δϕR(t,x)
= −∂2t ϕA +∇2ϕA −m2ϕA cosϕR + α∂tϕA − β∇2∂tϕA. (20b)

To solve these equations, we employ a mean-field approximation in which the solution
satisfies SMSR[ϕR, ϕA] = 0. This condition comes from the fact that the generating func-
tional without the external fields satisfies Z = 1 because of Eq. (11). With the use of
Eq. (20a), the MSR action turns into SMSR[ϕR, ϕA] =

∫
dtd2xAϕ2A/2, which leads to

ϕA = 0 in the mean-field approximation. As is expected, with the boundary condi-
tion lim

x→−∞
ϕR(t,x) = 0 and lim

x→∞
ϕR(t,x) = 2π corresponding to Eq. (4), one finds the

stationary domain-wall solution in the mean-field approximation, given by

ϕR(t,x) = ϕ̄(x− x0) = 4 arctan(em(x−x0)), ϕA(t,x) = 0. (21)

Thus, identifying the order parameter field as ϕR(t,x), we find that the domain-wall
solution spontaneously breaks Px,A-symmetry. From the path-integral viewpoint, this
solution gives a saddle-point solution describing the domain wall.

We then consider the fluctuation on the top of the saddle point domain-wall solu-
tion (21). To parametrize the fluctuation around the realized domain wall, we introduce
field variables πR(t,x) by promoting x0 to a dynamical field, and πA(t,x) as follows:

ϕR(t,x) = ϕ̄
(
x+ πR(t,x)

)
, ϕA(t,x) = ϕ̄′

(
x+ πR(t,x)

)
πA(t,x), (22)

with ϕ̄′(x) ≡ ∂xϕ̄(x). One can regard Eq. (22) as a field redefinition useful to analyze the
fluctuation around the domain-wall solution located at x = 0. As we will see later, the
fluctuation fields πR and πA include a gapless mode, so that we refer to these fields as
NG fields. We put a little complicated prefactor of πA to assign it to the same dimension
as πR. The reason for this choice will be clarified from the underlying Schwinger-Keldysh
viewpoint around Eq. (67). We also note that ϕ̄(x) satisfies

ϕ̄′′(x) = m2 sin ϕ̄(x). (23)

Substituting the parametrization (22) into the original MSR action (13), we can derive
the effective action for the fluctuation (πR, πA) as

iSMSR[πR, πA] = i

∫
dtd2x

[
L(2) + L(int)

]
. (24)

Here, we introduced the quadratic (interacting) part of the effective Lagrangian as L(2)

(L(int)) based on the expansion with respect to the fluctuation fields πR and πA. From the
direct computation with the help of Eq. (23), we obtain the quadratic part as

L(2) = −ϕ̄′(x)2πA
[
∂2t + α∂t −∇2 − β∂t∇2

]
πR

+ 2ϕ̄′(x)ϕ̄′′(x)πA(∂xπR + β∂t∂xπR) + βϕ̄′(x)ϕ̄′′′(x)πA∂tπR +
iA

2
ϕ̄′(x)2π2A.

(25)

One may think that this quadratic part L(2) looks more complicated than the original
MSR action. In fact, even if we neglect the interaction terms, the coefficients appearing
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in L(2) are x-dependent, which makes the further analysis difficult. This difficulty results
from the fact that the effective Lagrangian (25) still keeps a bunch of gapped excitations
[recall that Eq. (25) is obtained just by the field redefinition without focusing on the low-
energy regime]. However, it is possible to drastically simplify the analysis by focusing only
on the gapless mode. In the following, we consider two different regimes, in which such
simplification is available; that is, the thin-wall and the thick-wall regimes.

2.4.1 Low-energy spectrum in thin-wall regime

We first consider the thin-wall regime, which corresponds to the usual low-energy limit of
the domain-wall dynamics. One can regard this regime as the case where the length scale
of the domain-wall fluctuation of our interest is sufficiently larger than the thickness of
the wall.

Let us then investigate the low-energy spectrum for the domain-wall fluctuation. The
vital point here is that x-dependent coefficients such as ϕ̄′(x)2 takes the nonvanishing value
only near the domain-wall position x = 0. For this reason, we rely on the ansatz that
the NG fields πR and πA are localized at the domain-wall position x = 0 as π̃R/A(t, y) ≡
πR/A(t, x = 0, y) (see, e.g., Ref. [22]). This ansatz enables us to simplify the action (25)
to the low-energy MSR effective action for the NG fields π̃R and π̃A as

iSthin =

∫
dtdy 8m

[
−iπ̃A(t, y)

(
∂2t + γ∂t − β∂t∂

2
y − ∂2y

)
π̃R(t, y)−

A

2
π̃A(t, y)

2 +O(π4)

]
= −1

2

∫
dtdy

(
π̃R(t, y) π̃A(t, y)

)( 0 iG−1
A;⊥

iG−1
R;⊥ 8mA

)(
π̃R(t, y)
π̃A(t, y)

)
+O(π4), (26)

with the effective damping constant γ ≡ α +m2β/3. In the second line, we introduced
the inverse of the retarded/advanced Green’s function G−1

R/A;⊥ as

G−1
R;⊥ = 8m[∂2t + γ∂t − β∂t∇//∂y2 −∇//∂y2] and G−1

A;⊥ = 8m[∂2t − γ∂t + β∂t∇//∂y2 −∇//∂y2].
(27)

Besides, from the lower-right component of the matrix in Eq. (26), we can also find the
symmetric Green’s function GRR;⊥, which describes the correlation function of the original
stochastic variables ϕ. In the Fourier space, it is given by

GRR;⊥(ω, ky) = 8mAGR;⊥(ω, ky)GA;⊥(ω, ky) =
A

8m

1

(ω2 − k2y)
2 + ω2(γ + βk2y)

2
. (28)

We note that the cubic interaction term, corresponding to the nonlinear term in the KPZ
equation, disappears in the thin-wall regime. We will revisit this point in Sec. 4.6 from a
general EFT viewpoint.

The above result enables us to clarify the low-energy spectrum of the NG fields π̃R
and π̃A. We can find the pole location of the retarded Green’s function by solving

0 = G−1
R;⊥(ω, ky) = 8m(−ω2 − iγω − iβωk2y + k2y). (29)

This allows us to identify the dispersion relation of the NG fields π̃R and π̃A as

ω(ky) = −i
γ + βk2y

2
± i

√(
γ + βk2y

2

)2

− k2y =

− i

γ
k2y +O(k4y),

−iγ − i(β − γ−1)k2y +O(k4y).
(30)

10
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Figure 2: The dispersion relation (30) (left) and the symmetric Green’s func-
tion (28) (right) of the NG mode in the thin-wall regime with (γ, β,A,m) =
(0.25, 0.5, 1.0, 1.0).

Figure 2 shows the dispersion relation and the symmetric Green’s function for π̃R and
π̃A. We clearly see that π̃R and π̃A describe a pair of the gapless mode (NG mode) and
its gapped partner. In sharp contrast to the NG mode in closed systems, the dispersion
relation only has the negative imaginary part in the low-wavenumber limit. The absence
of the real part indicates that the NG mode associated with the domain wall in open
systems diffuses without propagation. This is a salient feature of the NG mode in open
systems [49–53].1

One can also confirm the consistency with the usual propagating NG mode in the
closed system. In fact, when we consider the smaller value for the dissipative couplings
α and β, the relaxational gap for the gapped partner becomes smaller. At the vanishing
the dissipative coupling with α = β = 0, Eq. (29) eventually reproduces the gapless linear
dispersion relation for (a pair of) the propagating NG mode. This is consistent with the
result for the zero-temperature domain wall in closed systems (see, e.g., Ref. [21] for a
symmetry-based approach for the domain-wall dynamics at zero temperature).

2.4.2 Low-energy spectrum in thick-wall regime

Let us next consider the opposite of the thin-wall regime, called the thick-wall regime. In
this regime, we consider the dynamics of the fluctuation carrying the momentum larger
momentum larger than m. In other words, for fluctuations under consideration, the wall
thickness m−1 is sufficiently large, and they feel as if there is a constant slope continuing
endlessly. This is a spatial analogue of the slow-roll inflation in cosmology [71,72].

One can take the thick-wall regime by approximating the domain-wall configuration
as

ϕ̄′(x) =
4memx

1 + e2mx
≃ 2m. (31)

Then, we can drastically simplify the effective Lagrangian (25) by setting all higher deriva-

1The propagator (29) has the same form as that of the telegraphic equation. Therefore, the similar
spectrum has been discussed in various systems (see, e.g., Refs. [68–70] for recent discussions on the
transverse wave in liquids).
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tives like ϕ̄′′(x) to zero. The resulting effective action in the thick-wall regime is

iSthick =

∫
dtd2x 4m2

[
−iπA(t,x)

(
∂2t +α∂t−β∂t∇2−∇2

)
πR(t,x)−

A

2
πA(t,x)

2+O(π4)

]
.

(32)
Note that πR(t,x) and πA(t,x) in the thick-wall regime have a dependence on the spatial
coordinate x in contrast to that in the thin-wall one. From the effective action, we can
read off a set of the Green’s function and the dispersion relation as before. For instance,
one finds the retarded Green’s function in the Fourier space as

G−1
R (ω,k) = 4m2(−ω2 − iαω − βωk2 + k2), (33)

from which we can identify the dispersion relation of the NG mode as

ω(k) = −i
α+ βk2

2
± i

√(
α+ βk2

2

)2

− k2 =

 − i

α
k2 +O(k4),

−iα− i(β − α−1)k2 +O(k4),
(34)

with k = (kx, ky). Therefore, even in the thick-wall regime, there appear a gapless NG
mode and its gapped partner as in the thin-wall one. We see that the translational
symmetry along the x-direction effectively recovers for the NG field in the thick-wall
regime, and furthermore, the dispersion relation in the present case becomes isotropic
including the wavenumber kx. We, however, note that the configuration of the original
phase variable breaks the translational symmetry even in the thick-wall regime.

2.5 Underdamped Langevin dynamics in Josephson transmission line

Before closing this section, we investigate the dynamics of the kink in the Josephson
transmission line (JTL), which is a one-dimensional Josephson junction system obtained
after a dimensional reduction along y-direction (recall the left panel of Fig. 1). A magnetic
flux stuck (or kink) in the JTL areis often referred to as a “fluxon,” and its dynamics has
been studied from the viewpoint of the soliton [34–36]. In the present setup, the particle-
like behavior of the fluxon is understood as a localized field configuration described by the
dimensionally reduced thin-wall effective action

iSJTL =

∫
dt 8m

[
−iqA(t)

(
∂2t + γ∂t

)
qR(t)−

A

2
qA(t)

2 +O(q4)

]
, (35)

where we introduced the localized position of the fluxon qR/A(t) by the dimensional re-
duction of the NG fields along the y-direction as qR/A(t) ≡ π̃R/A(t, y = 0).

To investigate the fluxon dynamics, we apply a time-dependent external electric current
to the JTL. Recalling that ξ(t,x) in Eq. (1) describes the bias current density, we find the
effect of the non-vanishing averaged current is captured by adding the following term in
the original MSR action (13) (without the y-direction due to the reduction):

iSext = i

∫
dtdxϕA(t, x)J(t), (36)

where J(t) is a normalized bias current. To apply the analysis for the fluctuations around
the steady state so far, we assume that the applied external current J(t) is sufficiently
small so as to perturb the position of the domain wall without collapsing it. After the
same procedure to derive the low-energy effective action, this term is expressed in terms

12
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of qR(t) and qA(t) as

iSext = i

∫
dtdx

[
ϕ̄′(x)J(t)qA(t) + ϕ̄′′(x)J(t)qA(t)qR(t) +O(q3)

]
= i

∫
dt
[
2πJ(t)qA(t) +O(q3)

]
, (37)

where we used the thin-wall ansatz to obtain the second line. Thus, the fluxon dynamics
driven by the external current is described by

iSJTL+ext = −i

∫
dt
{
qA(t)

[
8m
(
∂2t + γ∂t

)
qR(t)− 2πJ(t)

]
− 4imAqA(t)

2 +O(q3)
}
. (38)

An intuitive understanding of the real-time fluxon dynamics is possible by translating
back the MSR action (38) into the stochastic equation of motion. This translation is also
useful to solve the initial value problem for the fluxon dynamics. Indeed, the quadratic
action in Eq. (38) is identical to the MSR action of the simple Brownian motion driven
by the external force [73]. As a result, the corresponding stochastic equation of motion
for the fluxon is given by the underdamped Langevin equation:(

∂2t + γ∂t
)
q(t) =

π

4m
J(t) + ξ(t), (39)

with the Gaussian white noise ξ(t)

⟨ξ(t)⟩ξ = 0, ⟨ξ(t)ξ(t′)⟩ξ =
A

8m
δ(t− t′). (40)

Suppose that we apply the external current J(t) at time t > 0 with the initial condition for
the fluxon as q(0) = ∂tq(0) = 0. Then, one immediately find the solution of the Langevin
equation as

q(t) = q̄(t) +
1

γ

∫ t

0
dt′
(
1− e−γ(t−t

′)
)
ξ(t′) with q̄(t) =

π

4mγ

∫ t

0
dt′
(
1− e−γ(t−t

′)
)
J(t′).

(41)

Note that q̄(t) coincides with the averaged position as q̄(t) = ⟨q(t)⟩ξ, and thus, it is not a
stochastic variable.

We shall then discuss experimental observables resulting from the fluxon dynamics.
For that purpose, we recall the following relations between the phase variable ϕ(t, x) and
the Josephson current I(t, x) and voltage V (t, x) (see, e.g., Ref. [6]):

I(t, x) = Ic sinϕ(t, x), V (t, x) =
1

2e
∂tϕ(t, x), (42)

where Ic is the critical current of the Josephson junction and e the elementary charge. The
relation between the phase variable and the NG field (position variable) in the Langevin
picture is also given by ϕ(t, x) = ϕ̄

(
x+ q(t)

)
; the same one for the R-type variables [recall

Eq. (22)]. By expanding this relation on the top of the averaged motion, we can express
the experimental observables I(t, x) and V (t, x) in terms of the fluxon position as

I(t, x) ≃ Ic
[
sin ϕ̄

(
x+ q̄(t)

)
+ δq(t)ϕ̄′

(
x+ q̄(t)

)
cos ϕ̄

(
x+ q̄(t)

)]
, (43)

V (t, x) ≃ 1

2e

[
ϕ̄′
(
x+ q̄(t)

)
∂tq(t) + ϕ̄′′

(
x+ q̄(t)

)
δq(t)∂tq̄(t)

]
, (44)

where we introduced δq(t) ≡ q(t)− q̄(t) and neglected the higher-order O(δq2) terms.
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Figure 3: Solutions of the Langevin equation (39) (left panel) and the voltage at
a given position x = −3.0 (right panel) a constant bias current with a parameter
set (m, γ, J,A) = (1.0, 0.2, 0.8, 0.5). Black lines shows the averaged result while
the colored (red, green, and blue) ones are three sample solutions.

With the help of Eq. (41), we can compute correlation functions for the Josephson
current I(t, x) and voltage V (t, x). For example, we find the averaged current and voltage
as

⟨I(t, x)⟩ξ ≃ Ic sin ϕ̄
(
x+ q̄(t)

)
, ⟨V (t, x)⟩ξ ≃

1

2e
ϕ̄′
(
x+ q̄(t)

)
∂tq̄(t), (45)

and their mean square variances at a large time t≫ γ−1 as

⟨δI(t, x1)δI(t, x2)⟩ξ ∼
AI2c t

8mγ2
ϕ̄′
(
x1 + q̄(t)

)
ϕ̄′
(
x2 + q̄(t)

)
cos ϕ̄

(
x1 + q̄(t)

)
cos ϕ̄

(
x2 + q̄(t)

)
,

⟨δV (t, x1)δV (t, x2)⟩ξ ∼
At

32e2mγ2
[∂tq̄(t)]

2ϕ̄′′
(
x1 + q̄(t)

)
ϕ̄′′
(
x2 + q̄(t)

)
, (46)

where we introduced the deviation of the Josephson current and voltage from their average
values as

δI(t, x) ≡ I(t, x)− ⟨I(t, x)⟩ξ, δV (t, x) ≡ V (t, x)− ⟨V (t, x)⟩ξ. (47)

The overall time-linear dependence of the variances in Eq. (46) is a manifestation of the
Brownian motion of the fluxon.

The above results enable us to predict the spatiotemporal profile of the Josephson
current and voltage, which can be measured in experiments by using a few parameters
(the low-energy coefficients) m, γ, and A. For example, Fig. 3 demonstrates the fluxon
position and the resulting voltage at a fixed position driven by the constant bias current
J(t) = const. Since the fluxon motion induce the voltage localized at its position, the
voltage takes a nonvanishing value when the fluxon passes through the position at which
the measurement is performed [74,75].

3 Primer to Schwinger-Keldysh EFT for open system

In the previous section, we have analyzed the low-energy spectrum of the domain-wall
fluctuation in the dissipative Josephson junction. Starting from the stochastic sine-Gordon
model, we have found that there is a notion of the symmetry and the corresponding
conserved charge even though the physical charge is not conserved due to the dissipation.
The derived effective Lagrangian (25) describes the dynamics of the fluctuation πR/A on
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Figure 4: (Left) An open system realized through the interaction with the envi-
ronment. (Right) Closed time contour in the Schwinger-Keldysh formalism.

the top of the domain-wall configuration. Considering two simple regimes (thin-wall and
thick-wall regimes), we have shown the appearance of the NG mode in open systems: a
pair of the diffusive gapless mode and gapped partner.

In the remaining part of the present paper, we investigate the universality of the
obtained results, i.e., the consequences following just from the translational symmetry
breaking in open systems, which is independent of the details of the microscopic model.
To perform a model-independent analysis, we rely on the symmetry-based construction of
a general effective Lagrangian based on the Schwinger-Keldysh formalism. This section
is devoted to the preparation for writing down the general low-energy effective action in
open systems.

3.1 Towards low-energy effective action for open quantum system

Let us begin with a brief review of the basics of the Schwinger-Keldysh effective field
theory for open quantum systems (see, e. g., Ref. [76] for details). Suppose that the open
systems under consideration is realized as a subsystem of the closed total system. The
total system then contains two kinds of dynamical degrees of freedom: system variables
ψ and environment variables σ (see the left panel of Fig. 4). The goal of the Schwinger-
Keldysh EFT for open systems is to describe n-point real-time correlation functions of
low-energy observables Ô(t,x) composed of the system variable ψ. The simplest example
is an expectation value of the physical quantity Ô(t,x) given by

⟨Ô(t,x)⟩ ≡ Tr
[
ρ̂0Ô(t,x)

]
= Tr

[
ρ̂0Û

†(t,−∞)Ô(−∞,x)Û(t,−∞)
]
, (48)

where ρ̂0 denotes an initial density operator at t = −∞ and Û(t,−∞) does the time
evolution operator of the total system from time t = −∞ to time t. Note that the time
evolution is generated by the unitary operator Û(t,−∞) since the total quantum system
is assumed to be closed.

To systematically compute general n-point correlation functions for the system variable
ψ, it is useful to introduce the closed-time-path generating functional. The closed-time-
path generating functional is defined by putting the system in the presence of the different
background fields ja (a = 1, 2) for the forward and backward time evolutions as (see the
right panel of Fig. 4)

Z[j1, j2] ≡ Tr
[
ρ̂0Û

†
j2
(∞,−∞)Ûj1(∞,−∞)

]
=

∫
Dψ1Dψ2Dσ1Dσ2 exp

(
iStot[ψ1, σ1; j1]− iStot[ψ2, σ2; j2]

)
ρ0(ψ, σ),

(49)

where Ûj(∞,−∞) denotes the time-evolution operator with the external field j(t,x), and
ρ0(ψ, σ) is the initial probability weight determined by ρ̂0. Here, Stot[ψ, σ; j] is a total
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microscopic action, which can be decomposed into the following three pieces

Stot[ψ, σ; j] = Ssys[ψ; j] + Senv[σ] + Scoupling[ψ, σ], (50)

where Ssys[ψ; j] and Senv[σ] are the actions for the system and environment sectors while
Scoupling[ψ, σ] describes the coupling between them. We assume the external field j to be

coupled only with the system variable ψ. Due to the two time-evolution operators Ûj1 and

Û †
j2
, the number of fields for the path-integral expression in Eq. (49) is doubled as given

by, e.g., ψ1 and ψ2.
By integrating out the environment variables σ, we obtain the following path-integral

formula for the generating functional of the system:

Z[j1, j2] =

∫
Dψ1Dψ2 exp

(
iSopen[ψ1, ψ2; j1, j2]

)
, (51)

where we defined the microscopic action for the open system Sopen as a sum of the original
system action Ssys[ψ; j] and the influence functional Γ[ψ1, ψ2] [77, 78]:

Sopen[ψ1, ψ2; j1, j2] = Ssys[ψ1; j1]− Ssys[ψ2; j2] + Γ[ψ1, ψ2], (52)

where the influence functional Γ[ψ1, ψ2] is defined as

eiΓ[ψ1,ψ2] ≡
∫

Dσ1Dσ2 exp
(
iSenv[σ1]+iScoupling[ψ1, σ1]−iSenv[σ2]−iScoupling[ψ2, σ2]

))
ρ0(ψ, σ).

(53)
We assume that the environment is large enough so that its energy spectrum can be re-
garded as continuous. Then, the influence functional Γ[ψ1, ψ2] generally have an imaginary
part, which describes the dissipative dynamics of the system variable.2

To further focus on the low-energy dynamics of the system variables ψa, we introduce
the low-energy Wilsonian effective action. The Wilsonian effective action is formally de-
fined by identifying low-energy degrees of freedom π such as NG fields and the high-energy
gapped degrees of freedom Ψ, separating the field ψ into ψ = {π,Ψ}, and integrating out
Ψ as follows:

exp
(
iSeff [π1, π2; j1, j2]

)
≡
∫

DΨ1DΨ2 exp
(
iSopen[π1,Ψ1, π2,Ψ2; j1, j2]

)
, (54)

where we introduced the doubled NG field (gapped field) as π1 and π2 (Ψ1 and Ψ2). The
NG fields π often corresponds to a collective excitation, whose explicit expression in terms
of the microscopic variables ψ could be complicated. Thus, the first-principle derivation
of Seff [π1, π2; j1, j2] sketched above is difficult to accomplish in practice.

Despite the difficulty of the direct derivation, we have a practically sufficient symmetry-
based approach to construct the Wilsonian effective action. The crucial point here is
that the effective action Seff [π1, π2; j1, j2] has to respect the symmetry of the action
Sopen[ψ1, ψ2; j1, j2], which allows us to formulate the systematic construction of Seff [π1, π2; j1, j2].
Thus, we need to pay attention to the symmetry structure of open systems, which is a little
complicated due to the field doubling and the presence of the influence functional [49–53].
Moreover, the effective action Seff [π1, π2; j1, j2] must satisfy not only the symmetry con-
straints but also some basic conditions resulting from the structure of the closed-time-path
generating functional (49). In the following, we will briefly summarize these conditions
(see, e.g., Refs. [40, 41] for a detailed discussion in the case of the closed system).

2The large volume limit of the environment makes the recurrence time to diverges so as to induce the
dissipation of physical charges of the system into the environment [78].
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3.2 Symmetry structure in open system

Suppose that the total microscopic action Stot[ψa, σa; ja = 0], including the environment
variable, enjoys a continuous global G-symmetry, which acts on the system and environ-
ment fields as

ψa → ψa + ϵaδψa, σa → σa + ϵaδσa, (55)

where ϵa (a = 1, 2) denotes independent infinitesimal transformation parameters. For
simplicity, we drop the external source from now on, whose inclusion is straightforward.
Then, one finds iStot[ψ1, σ1; j1 = 0] − iStot[ψ2, σ2; j2 = 0] is invariant under the doubled
symmetry G1×G2, whose transformation parameters are given by ϵ1 and ϵ2, respectively.

From the above observation, one may expect that the action Sopen[ψ1, ψ2] is also in-
variant under (G1 × G2)-transformation. However, this is not true because there is a
contribution coming from the influence functional Γ[ψ1, ψ2]. Due to the elimination of
the environment variable, Γ[ψ1, ψ2] generally induces mixing between the system fields
with different subscripts a = 1, 2. As a result, the action Sopen[ψ1, ψ2] is only invari-
ant under the diagonal subgroup of G1 × G2 generated by the transformation (55) with
ϵ1 = ϵ2(≡ ϵA) [49–53]:

Sopen[ψ1, ψ2] = Sopen[ψ1 + ϵAδψ1, ψ2 + ϵAδψ2]. (56)

We call this symmetry as the GA-symmetry, or the A-type G-symmetry. In other words,
the nondiagonal part of G1 ×G2 generated by ϵ1 = −ϵ2 is not the symmetry of the open
system. This explicit symmetry breaking represents the violation of the conservation law
for the physical charges: the physical charges of the open system are exposed to the
irreversible dissipation into the environment.

The crucial point here is that the open system still enjoys the GA-symmetry despite
the violating conservation law for the physical charges. As a result, a steady state of the
open system can further break the remaining GA-symmetry down to its subgroup HA.
Here, we define the spontaneous GA-symmetry breaking by the presence of the physical
order parameter field ΦR(t,x) ≡ [Φ1(t,x) + Φ2(t,x)]/2 as follows:

∃ ⟨ΦR(t,x)⟩ such that ⟨δΦR(t,x)⟩ ̸= 0, (57)

where δΦR represents the GA-transformation of the order parameter, and ⟨· · · ⟩ denotes
the path-integral average. We note that the order parameter field ΦR(t,x) could be a
composite operator of the system variable. In the classical stochastic limit of quantum
open systems, this definition agrees with that introduced in Eq. (19) in the previous
section.

In short, the possible symmetry structure in the open system is summarized as follows:

G1 ×G2 → GA (Explicit breaking by environment)

→ HA (Spontaneous breaking by stationary solution).
(58)

To grasp this symmetry structure, it may be useful to recall the result obtained in the
previous section: the sine-Gordon model without the dissipation and noise has the doubled
translational symmetry generated by the physical momentum Pi,R and the auxiliary mo-
mentum Pi,A. The presence of the dissipation and noise makes Pi,R nonconserved quantity,
so that it explicitly breaks the nondiagonal part of the doubled translational symmetry.
Besides, the domain-wall configuration further breaks the remaining translational symme-
try, or Px,A-symmetry, generated by Px,A.
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3.3 Requirements to Schwinger-Keldysh effective action

Due to the symmetry structure of open systems, it is convenient to employ the Keldysh
basis, in which the the doubled field is expressed as the sum and difference of the original
ones. For example, we introduce the doubled NG fields in the Keldysh basis as

πR(t,x) ≡
π1(t.x) + π2(t,x)

2
, πA(t,x) ≡ π1(t,x)− π2(t,x), (59)

where π1 and π2 are the NG fields embedded in the order parameter field in the original
(or 12) basis. This basis is useful because it separates the full dynamics into its classical
part (averages) described by R-type fields, and its quantum part (fluctuations) described
by A-type fields. As we elaborate shortly, we will focus on the classical stochastic regime
of the NG field, which is defined by the effective Lagrangian at composed of the terms
up to two πA. It is worth emphasizing that this truncation does not mean the original
model needs to be the classical stochastic systems (like the dissipative Josephson junction
discussed in the previous section).

Resulting from the structure of the Schwinger-Keldysh formalism, there are additional
requirements to the low-energy Schwinger-Keldysh effective action. Following the discus-
sion developed in Refs. [40, 41] in the analysis on closed systems, we require the effective
action Seff [πR, πA] to satisfy the following conditions (see Refs. [40, 41] for derivation in
detail):

1. Unitarity condition The generating functional Z[j1, j2] satisfies Z[j1 = j, j2 = j] =
1 with the initial density operator ρ̂0 satisfying Tr ρ̂0 = 1. To respect this property,
the effective action is assumed to satisfy

Seff [π1 = π2 = π] = Seff [πR, πA = 0] = 0. (60)

Since Z[j1 = j, j2 = j] = 1 follows from the unitarity of the time-evolution operator

Û †
j Ûj = 1 for the total system, we call this as the unitarity condition.

2. Conjugate condition Taking complex conjugate of the generating functional, one
finds Z[j1, j2]

∗ = Z[j2, j1]. To respect this condition, we require the effective action
to satisfy

(Seff [π1, π2])
∗ = −Seff [π2, π1] ⇔ (Seff [πR, πA])

∗ = −Seff [πR,−πA]. (61)

3. Convergent condition In order to have a well-defined (or convergent) Z[j1, j2], the
imaginary part of the effective action is assumed to satisfy the following condition:

ImSeff [πR, πA] ≥ 0. (62)

Notice that these conditions are quite general; i.e., they follow from the unitarity of the
time-evolution operator, the self-adjointness and normalization condition of the initial
density operator ρ̂0, and the stability of the steady state. We, however, note that there
could be a class of open systems violating some of these properties: for instance, the
convergent condition could be violated if open systems under consideration has have no
stable steady state. Thus, it may be fair to say that we focus on a simple class of open
systems satisfying the above requirement like the dissipative Josephson junction system
discussed in Sec. 2.
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4 General analysis based on Schwinger-Keldysh EFT

In this section, we consider a general open system whose steady state spontaneously breaks
the translational symmetry along the x-direction as in the dissipative sine-Gordon model
with noise discussed in Sec. 2. We construct the most general effective action based only on
the symmetry-breaking patterns and the Schwinger-Keldysh constraints introduced in the
previous section. After identifying the NG fields in Sec. 4.1, we summarize the symmetries
of the system in Sec. 4.2. Then, using the power counting scheme specified in Sec. 4.3,
we write down the Wilsonian Schwinger-Keldysh effective action of the translational NG
fields in Sec. 4.4. Restricting two simple regimes (thin-wall and thick-wall regimes), we
investigate the dispersion relations of the resulting NG fields in Sec. 4.5. We also discuss
the peculiar coupling term that could induce the KPZ universality class in Sec. 4.6.

4.1 NG field and material coordinate field

Let us consider a steady state of (d + 1)-dimensional open systems that spontaneously
breaks the A-type spatial translational symmetry along the x-direction, which we call the
Px,A-symmetry. In that situation, regardless of detailed information on the underlying
microscopic theory, we have an order parameter characterizing the broken Px,A-symmetry.
In other words, following a general condition of spontaneous GA-symmetry breaking in
Eq. (57), we consider a condensate of the scalar order operator Φ(t,x) with x-coordinate
dependence:3

⟨ΦR(t,x)⟩ = Φ̄(x) with ∂xΦ̄(x) ̸= 0. (63)

This condition matches with the definition of the spontaneous symmetry breaking (19)
discussed in the previous section.

Relying on the existence of the inhomogeneous condensate (63), we introduce the
doubled NG fields π1(t,x) and π2(t,x) as embedded fluctuations on the top of the steady-
state configuration:

Φ1(t,x) = Φ̄(x+ π1(t,x)) and Φ2(t,x) = Φ̄(x+ π2(t,x)). (64)

This embedding motivates us to define the doubled material (or Lagrangian) coordinate
fields X1(t,x) and X2(t,x) as

X1(t,x) = x+ π1(t,x) and X2(t,x) = x+ π2(t,x), (65)

which enables us to interpret the NG fields π1(t,x) and π2(t,x) as the doubled one-
dimensional displacement vectors in elastic theory [79]. In the following analysis, it is
useful to introduce these variables in the Keldysh basis as

XR(t,x) ≡
X1(t,x) +X2(t,x)

2
= x+ πR(t,x), (66a)

πA(t,x) = X1(t,x)−X2(t,x). (66b)

with πR(t,x) and πA(t,x) defined in Eq. (59). While we will use the NG field πR to
investigate the spectrum of the domain-wall fluctuation, the material coordinate field XR

will be more useful to construct the effective action by virtue of their simple transformation
rules. This is because the material coordinates behave as a scalar even under the act of
broken Px,A-transformation, as we will see shortly. We also note that πA(t,x) is expected

3Although it is interesting to consider the inhomogeneous spinful condensate as discussed in Ref. [21]
for the zero-temperature case, the consideration of that is beyond the scope of the present paper.
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to be accompanied by the derivative of the order parameter Φ̄′(x + πR(t,x)). This is
indeed the case if all πA(t,x) appears by expanding Eq. (64) on the top of the averaged
position as

Φ1(t,x)− Φ2(t,x) = Φ̄′(x+ πR(t,x))πA(t,x) +O(π3A), (67)

where we can neglect the higher-order O(π3A) terms in the classical stochastic limit. Note
that this corresponds to the second equation in Eq. (22) in the dissipative Josephson
junction.

4.2 Symmetries of the system

We assume that the underlying open system action Sopen enjoys symmetry under the
A-type spacetime translation and spatial rotation, but not necessarily the Lorentz boost
nor Galilean boost. Then, the effective action Seff [πR, πA] is also invariant under the
act of these symmetries, defined by the diagonal parts of those transformations given in
Eq. (56). Since the condensate fields Φ1 and Φ2 are assumed to be scalar quantities, the
A-type translation and rotation act on the material coordinate field XR and the NG field
πA as {

XR(t,x) → X ′
R(t,x) = XR(t+ ϵ0A,x+ ϵA),

πA(t,x) → π′A(t,x) = πA(t+ ϵ0A,x+ ϵA),
(68)

and {
XR(t,x) → X ′

R(t,x) = XR(t,R−1
A x),

πA(t,x) → π′A(t,x) = πA(t,R−1
A x),

(69)

with RA ∈ SO(d)A. It is worth emphasizing that the material coordinate XR and the
A-type NG field πA behave as scalars under the transformations while the R-type NG
field πR transforms nonlinearly under the spatial translation along the x-axis as

πR(t,x) → π′R(t,x) = πR(t,x+ ϵA) + ϵ1A. (70)

This nonlinear transformation rule is a manifestation that πR defines the NG field corre-
sponding to the broken Px,A-symmetry. Thus, it is convenient to construct the effective
action in terms of XR and πA instead of πR and πA to be consistent with the symmetries.

4.3 Power counting scheme

While there appears an infinite number of terms allowed even under the constraints re-
sulting from both the symmetry and the structure of the Schwinger-Keldysh formalism,
they can be systematically organized using an appropriate power counting scheme. As
usual for the Schwinger-Keldysh EFT, we here employ a double expansion scheme: one
for a derivative expansion justified in the low-energy limit, and the other for a fluctuation
expansion assuming the smallness of the fluctuation (see, e.g., Refs. [40,41] for the detailed
discussion on the fluctuation expansion).

To implement the double expansion schemes, it is useful to introduce two bookkeeping
small parameters p and ℏA: p denotes a typical momentum scale at the scale of inter-
est, and thus, assumed to be small at a low-energy regime, and ℏ does the (effective)
Planck’s constant attached to the A-type fields, which represents the magnitude of the
fluctuation A does the magnitude of the fluctuation attached to the A-type fields. Using
these parameters, we employ the power counting scheme defined by

∂nµπR(t,x) = O(pn, ℏ/A0), ∂nµπA(t,x) = O(pn, ℏ/A1), (71)
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with µ = 0, 1, · · · , d and n = 0, 1, 2, · · · , where µ = 0 denotes the temporal index. We
regard the momentum scale of the domain-wall fluctuation πR as small. In the effective
action, not only the NG fields but also the coordinate x can explicitly appear through XR.
Note that we also count the coordinate x and its derivative as

x = O(p0, ℏ/A0), ∂µx = δ1µ = O(p0, ℏ/A0). (72)

It should be emphasized that we do not assign a specific order to the derivative itself
because its power counting is defined together with the objects on which it acts. We can
translate our power counting scheme (71) in terms of the material coordinate XR as

∂nt XR = O(pn, ℏ/An), ∂ni XR =

O(p0, ℏ/A0) (n = 0, 1),

O(pn, ℏ/A0) (n ≥ 2).
(73)

The power counting of the spatial derivative acting on XR is a little complicated because
the vector ∂iXR contains an O(p0, ℏ/A0) term. Accordingly, to write down all possible

terms in the effective action, we will use (∇XR)
2 − 1 = O(p1, ℏ/A0) as a building block

instead of (∇XR)
2, which allows us to keep XR as the only scalar in O(p0, ℏ/A0).

4.4 Constructing the effective action

Based on the above preparation, we now construct the effective action of the translational
NG fields in open systems within the double expansion for p and ℏ/A. In this paper, we

restrict ourselves to construct the effective action up to the second order with respect to
both p and ℏ/A. We refer to this regime as a classical stochastic regime because the resulting

effective action corresponds to the MSR action describing the stochastic dynamics of the
NG fields.

Since only πA increases the order ℏ/A in our power counting scheme, we first expand

the effective action for ℏ/A as

Seff [πR, πA] =

∫
dtddxLeff(t,x), (74)

with

Leff(t,x) = πA(t,x)F1[XR(t,x)] +
i

2
πA(t,x)F2[XR(t,x), ∂µ]πA(t,x) +O(ℏ/A3), (75)

where we introduced a function F1[XR(t,x)] ofXR and its derivatives and a linear operator
F2[XR(t,x), ∂µ] that includes the derivative acting on πA on their right side.4 Here, note
that the effective Lagrangian at least contains one πA to satisfy the unitarity condition (60),
and the first-order term with respect to πA is real and the second-order term is pure
imaginary due to the conjugate condition (61). The first-order term gives the deterministic
part of the equation of motion, while the second-order term describes the intensity of the
noise added to the deterministic contribution, as we have shown in the MSR action (25)
in Sec. 2.

We shall write down F1 and F2 relying on the derivative expansion. Let us first consider
all possible terms up to O(p2) included in the single A-type field sector, or F1-term, which

4Since we are considering the effective action, we can give the first-order term for πA without the
derivative term acting on πA with the help of the integration by parts.
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we identify as follows:

O(p0) : f(XR),

O(p1) : γ(XR)∂tXR, λs(XR)[(∇XR)
2 − 1], (76)

O(p2) : ft(XR)∂
2
tXR, fs(XR)∇2XR, ftx(XR)∂t(∇XR)

2, fx(XR)∂iXR∂jXR∂i∂jXR,

λt(XR)(∂tXR)
2, λtx(XR)(∂tXR)[(∇XR)

2 − 1], λx(XR)[(∇XR)
2 − 1]2,

where summations over repeated spatial indices (i = 1, 2, . . . , d) are assumed. Here,
f, γ, fα, and λα with α = t, s, x, tx are certain real functions of XR. We can obtain
F1 by summing up all the terms in Eq. (76).

Let us continue to write down the second-order terms in the expansion with ℏ/A. Using

the same strategy as above, we find 14 independent terms up to O(p2). In particular, only
five of them are identified to have a quadratic term for the NG fields πR and πA when we
expand them with respect to πR. The parent terms of them are given by

O(p0) : A(XR),

O(p2) : κt(XR)∂
2
t , κs(XR)∇2, κtx(XR)∇XR ·∇∂t, κx(XR)∂iXR∂jXR∂i∂j ,

(77)

where A and κα (α = t, s, x, tx) denote certain real functions of XR that satisfy the
convergent condition. The other 9 terms have the same form as O(p) and O(p2) terms in
Eq. (76) and are given by replacing each coefficient functions accordingly.

Although we have written down all the terms up to O(p2, ℏ/A2) consistent with the

symmetries, the resulting effective action is too general: We have not imposed the condition
ensuring that the domain-wall solution satisfies πR = πA = 0, or equivalently XR = x and
πA = 0. In fact, the equation of motion reads

0 =
δSeff

δπA(t,x)
= F1[XR(t,x), ∂µ] +O(πA), (78)

which does not, in general, leads to the solution XR = x and πA = 0 because of the term
f(XR). We then impose f(XR) = 0, which is equivalent to eliminate the tadpole term
appearing in the effective Lagrangian.

By expressing the material coordinates by the NG fields πR and πA, we eventually
obtain the most general effective Lagrangian up to O(p2, ℏ/A2) as

Leff =
[
−γ(x+ πR)∂tπR + λs(x+ πR)[2∂xπR + (∇πR)

2]− ft(x+ πR)∂
2
t πR

+ fs(x+ πR)∇2πR + 2ftx(x+ πR)∂t∂xπR + fx(x+ πR)∂
2
xπR

+ λt(x+ πR)(∂tπR)
2 + 2λtx(x+ πR)∂tπR∂xπR + 4λx(x+ πR)(∂xπR)

2
]
πA

+
i

2
πA

[
A(x+ πR) + κt(x+ πR)∂

2
t + κs(x+ πR)∇2 + κtx(x+ πR)∂t∂x

+ κx(x+ πR)∂
2
x + F̃2

]
πA +O(p3, ℏ/A3),

(79)

where F̃2 is the sum of the terms in F2 other than those in Eq. (77). For later convenience,
we added a negative sign for γ(x+πR)∂tπR and ft(x+πR)∂

2
t πR. We note that the functional

forms of the coefficient functions ℓm ≡ {fα, γ, λα, A, κα} cannot be fixed specified within
the EFT approach. These functions serve as low-energy coefficients (or functions) of the
effective theory, which contains. Their functional forms are, in principle, determined from
microscopic information of the system; for example, in particular, the configuration of the
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inhomogeneous condensate Φ̄(x). Nevertheless, the coefficient functions are not completely
arbitrary within the EFT approach, and as we discuss later, their sign would be somewhat
constrained by the stability of the steady state. It is worth emphasizing that the effective
Lagrangian (79) captures the general nonlinear interaction between the fluctuation (or NG
fields) at the low-energy O(p2) classical stochastic regime.

4.5 Dynamics of the NG mode

The resulting effective Lagrangian captures the low-energy fluctuation around the inho-
mogeneous condensate Φ̄(x). To investigate the low-energy spectrum of the NG field, we
pick up the quadratic-order part for πR and πA by expanding the effective Lagrangian (79)
with respect to the NG fields as

Leff = L(2)
eff + L(int)

eff +O(p3, ℏ/A3), (80)

where we find the quardratic part of the effective Lagrarngian as

L(2)
eff =

[
−γ(x)∂tπR + 2λs(x)∂xπR − ft(x)∂

2
t πR + fs(x)∇2πR + 2ftx(x)∂t∂xπR + fx(x)∂

2
xπR

]
πA

+
i

2
πA

[
A(x) + κt(x)∂

2
t + κs(x)∇2 + κtx(x)∂t∂x + κx(x)∂

2
x

]
πA, (81)

By comparing the present result with Eq. (25), one identifies the low-energy coefficient
functions in the dissipative Josephson junction as

γ(x) = αϕ̄′(x)2 − βϕ̄′(x)ϕ̄′′′(x), ft(x) = fs(x) = ϕ̄′(x)2, λs(x) = ϕ̄′(x)ϕ̄′′(x),

ftx(x) = βϕ̄′(x)ϕ̄′′(x), A(x) = Aϕ̄′(x)2,
(82)

where the others not shown in this equation are identified as zero.5 Thus, the low-energy
coefficients in the dissipative sine-Gordon kink is are completely controlled by the func-
tional form of the domain-wall solution ϕ̄(x). As in the model analysis in Sec. 2, the
x-dependence of the low-energy coefficients makes further analysis difficult, and we will
consider two simplified situations in the following analysis: the thin-wall regime and the
thick-wall regime.

4.5.1 Low-energy spectrum in thin-wall regime

As in the previous analysis given in Sec. 2, we rely on the ansatz that the NG fields are
localized at the domain-wall position x = 0, and introduce the localized NG fields π̃R and
π̃A as

π̃R/A(t,x⊥) ≡ πR/A(t, x = 0,x⊥) with x⊥ = (x2, x3, · · · , xd). (83)

Here, we define the averaged low-energy coefficients ℓ̄m = {f̄α, γ̄, λ̄α, Ā, κ̄α} as

ℓ̄m =

∫ ∞

−∞
dx ℓm(x). (84)

It should be noted that some of ℓ̄m could vanish through the averaging procedure: For
instance, recall λ̄s in the dissipative Josephson junction is zero though it is present before
performing the integration. In the following analysis, we assume that all the coefficient
ℓ̄m does not vanish to find the most general low-energy spectrum. We also assume the

5The term βϕ̄′(x)2πA∂t∇2πR in Eq. (25) is regarded as O(p3, ℏ/A1) in our power counting so that there

is no term in Eqs. (79) and (81) that can match it.
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positivity of some low-energy coefficients f̄t, f̄s, and γ̄. We expect that this is the case for
a large class of models since the first two coefficients are often proportional to the squared
condensate while the last one represents the dissipative constant. However, we cannot
show this assumption model-independently, and thus, the positivity of these coefficients
should be identified as our another assumption.

Substituting the above ansatz into Eq. (81), we obtain the effective Lagrangian at the
quadratic order as

L(2)
thin = π̃A(t,x⊥)

[
− f̄t∂

2
t − γ̄∂t + f̄s∇2

⊥
]
π̃R(t,x⊥) +

i

2
π̃A(t,x⊥)

[
Ā+ κ̄t∂

2
t + κ̄s∇2

⊥
]
π̃A(t,x⊥)

= −1

2

(
π̃R(t,x⊥) π̃A(t,x⊥)

)( 0 G−1
A;⊥

G−1
R;⊥ G−1

K;⊥

)(
π̃R(t,x⊥)
π̃A(t,x⊥)

)
, (85)

where we defined ∇⊥ ≡ ∂/∂x⊥.
6 Here, we also introduced the inverse of the Green’s

functions for the localized NG fields π̃R and π̃A as

G−1
R;⊥(t,x⊥) = f̄t∂

2
t + γ̄∂t − f̄s∇2

⊥, (86a)

G−1
A;⊥(t,x⊥) = f̄t∂

2
t − γ̄∂t − f̄s∇2

⊥, (86b)

G−1
K;⊥(t,x⊥) = −i

[
Ā+ κ̄t∂

2
t + κ̄s∇2

⊥
]
. (86c)

The retarded Green’s function (86a) allows us to extract the low-energy spectrum of the
localized NG modes by solving

0 = G−1
R;⊥(ω,k⊥) = −f̄tω2 − iγ̄ω + f̄sk

2
⊥ with k⊥ = (k2, k3, · · · , kd). (87)

As a result, we find the dispersion relation of the localized NG modes as

ω(k⊥) =
−iγ̄ ± i

√
γ̄2 − 4f̄tf̄sk2

⊥

2f̄t
=


−i
f̄s
γ̄
k2
⊥ +O(k4

⊥),

−i
γ̄

f̄t
+ i

f̄s
γ̄
k2
⊥ +O(k4

⊥).

(88)

The dispersion relation derived here shows the essentially same behavior as that derived
in Sec. 2 [recall Eq. (30)]. Likewise, the low-frequency and low-wavenumber part of the
symmetric Green’s function also shows the same behavior as demonstrated in Fig. 1. Here,
we used our assumption, or the positivity of some low-energy coefficients f̄t, f̄s, and γ̄.
Thus, we conclude that the appearance of the paired mode—one gapless diffusion and one
gapped diffusion—is universal in the thin-wall regime of the realized domain wall in open
systems.

4.5.2 Low-energy spectrum in thick-wall regime

In the thick-wall regime, the fluctuation (NG field) cannot see that the slope (or derivative)
of the condensate is changing. From For this reason, we simply replace all coefficient func-
tions in the effective Lagrangian (81) with constants. From the symmetry viewpoint, this
replacement is understood as a consequence of the invariance under XR → XR − ϵ, which
results from the emergent uniformity of the steady state in the thick-wall regime. This
invariance is a symmetry about the reassignment of the material coordinate XR, rather

6The action in the thin wall regime describes the motion of the membrane-like object. In closed
systems, it can be represented by the Nambu-Goto action with an induced metric on the membrane (see,
e.g., Ref. [21]). However, the domain-wall effective action in open systems does not allow such an expression
because we cannot express the dissipative term in terms of the induced metric.
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than a spatial translational symmetry, which prohibits the appearance of XR without
derivatives in the effective Lagrangian.

The resulting form of the retarded Green’s function is found as

G−1
R (ω,k) = −ftω2 − iγω + fsk

2 + fxk
2
x − 2iλskx − 2ftxωkx, (89)

with k = (kx,k⊥). Note that the isotropy is not fully recovered even in the thick wall
regime because the slope takes a non-zero constant value, so that anisotropic terms can
survive.7 It should be mentioned, nonetheless, that these anisotropic terms would not
appear easily due to the discrete symmetry discussed in the last paragraph of Sec. 4.6.
Noting the presence of the anisotropy in the momentum space, we introduce the polar angle
θ measured from the kx-direction, which expresses the momentum along the x-direction
as kx = |k| cos θ. Solving G−1

R (ω,k) = 0, we find the anisotropic dispersion relation of the
NG mode given by

ω(k) =


−2λs

γ
|k| cos θ − i

fsγ
2 + (fxγ

2 + 4ftxλsγ − 4ftλ
2
s) cos

2 θ

γ3
|k|2 +O(|k|3),

−i
γ

ft
+ 2

(
λs
γ

− ftx
ft

)
|k| cos θ +O(|k|2).

(90)

In contrast to the thin-wall regime, the dispersion relation (90) with nonvanishing λs
supports the propagating gapless mode with the momentum kx(= |k| cos θ), along which
the translational symmetry is broken. This propagating mode does not appear in the model
analysis in Sec. 2 because the coefficient λs vanishes in the dissipative sine-Gordon model
in the thick-wall regime (see also the discussion in the subsequent section). Furthermore,
it is also remarkable that this mode could cause instability even with γ > 0 since the
dispersion relation can have a positive imaginary part at the soft momentum region. Since
the maximum imaginary part appears when the momentum is along x-direction (θ = 0), we
see that the instability along, at least, x-direction takes place when the following condition
is satisfied:

(fs + fx)γ
2 + 4ftxλsγ − 4ftλ

2
s ≤ 0, (91)

where we used the assumption on the positive damping coefficient γ > 0.
Figure 5 shows the dispersion relation (90) for three different values of λs—two for

the stable regimes and the other for the unstable regime—at three different polar angles
θ = 0, π/4, and π/2 measured from the direction along which the translation symme-
try is broken. One clearly sees that the dispersion relation is anisotropic, and the the
lowest panel shows a possible appearance of the unstable mode along x-direction while
the perpendicular direction does not support that. The anisotropic and potentially un-
stable behavior is remarkable in the sense that it does not appear in the case of the
internal/time-translational symmetry breaking, nor the translational symmetry breaking
in closed systems [53,80] (see also Appendix A for the discussion of the domain-wall EFT
in finite-temperature closed systems).

4.6 Kardar-Parisi-Zhang coupling constant λ̄s

The peculiar behavior of the thick-wall dispersion relation is caused by the coefficient λs.
While it vanishes at the quadratic part of the effective Lagrangian in the thin-wall, we
lastly remark that this coefficient λs may play an important role even in the thin-wall
regime via the interaction term.

7This is the same as the thick-wall regime of Sec. 2.4.2, where the wall thinness m is not taken to zero.
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Figure 5: The dispersion relation at three different polar angles in (a)-(b) stable
regimes (upper panels) and (c) an unstable regime (lower paner).

In the thin-wall regime, the quadratic part of the effective Lagrangian given by Eq. (85)
is equivalent to the following stochastic equation of motion:

[−f̄t∂2t − γ̄∂t + f̄s∇2
⊥]π̃(t,x⊥) = ξ(t,x⊥), (92)

with a noise ξ(t,x⊥) obeying

⟨ξ(t,x⊥)⟩ξ = 0, ⟨ξ(t,x⊥)ξ(t
′,x′

⊥)⟩ξ = [Ā+ κ̄t∂
2
t + κ̄s∇2

⊥]δ(t− t′)δ(d−1)(x⊥ − x′
⊥).
(93)

By further focusing on the long-time and long-distance limit, we keep only the leading-
derivative part, or set f̄t, κ̄t, and κ̄s to zero. As a result, the above equation reduces to a
linearized stochastic differential equation called the Edwards-Wilkinson equation, which
describes the linear surface growth [24].

Let us then investigate the effects of nonlinear fluctuation. To incorporate this, we
first expand Eq. (79) and keep all the cubic interaction terms in the original effective
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Lagrangian, which results in

Lint,(3)
eff = πA

[
πR

(
−γ′(x)∂t + 2λ′s(x)∂x − f ′t(x)∂

2
t + f ′s(x)∇2 + 2f ′tx(x)∂t∂x + f ′x∂

2
x

)
πR

+λs(x)(∇πR)
2 + λt(x)(∂tπR)

2 + 2λtx(x)∂tπR∂xπR + 4λx(x)(∂xπR)
2
]
+O(p3, ℏ/A2).

(94)

Here, we wrote down only the F1-term to illustrate the leading-order effect of the nonlinear
fluctuation. We further simplify these terms by putting an assumption on the low-energy
coefficients as ℓm(x = +∞) = ℓm(x = −∞). This assumption enables us to drastically
reduce the number of cubic interaction terms in the thin-wall regime thanks to∫

dx ℓ′m(x) = ℓm(x = +∞)− ℓm(x = −∞) = 0. (95)

Thus, the terms proportional to ℓ′m(x) in Eq. (94) vanish, so that we only have the two
cubic nonlinear interaction terms in the thin-wall regime as

Lint,(3)
thin = π̃A

[
λ̄s(∇⊥π̃R)

2 + λ̄t(∂tπ̃R)
2
]
+O(p3, ℏ/A2). (96)

Let us then focus on the long-time and long-distance limit again, and briefly discuss the
possible universality class of the derived effective Lagrangian of Eqs. (85) and (96). First
of all, we find −π̃Aγ̄∂tπ̃R as the leading temporal derivative term by assuming that γ̄ does
not vanish. Owing to this term, we can drop the O(∂2t )-terms in the effective Lagrangian
for the long-time dynamics, which means that we miss the gapped partner of the gapless
diffusion mode. Besides, the nonvanishing Ā allows us to further drop all derivative terms
controlling the magnitude of the frequency and wavenumber dependence of noise. We also
note that we keep the leading-order terms in our double expansion scheme with respect
to ℏ and p and A. As a consequence, we find the following reduced effective Lagrangian:

Lthin = π̃A
[
− γ̄∂t + f̄s∇2

⊥+(∇⊥π̃R)
2

/////////////
]
π̃R+λ̄sπ̃A(∇⊥π̃R)

2 +
i

2
Āπ̃2A. (97)

This effective Lagrangian precisely matches with the MSR effective Lagrangian for the
KPZ equation defined by the nonlinear stochastic partial differential equation

−γ̄∂tπ̃(t,x⊥) + f̄s∇2
⊥π̃(t,x⊥) + λ̄s

(
∇⊥π̃(t,x⊥)

)2
= ξ(t,x⊥), (98)

where ξ(t,x⊥) denotes the Gaussian white noise satisfying

⟨ξ(t,x⊥)⟩ = 0, ⟨ξ(t,x⊥)ξ(t
′,x′

⊥)⟩ = Āδ(t− t′)δ(d−1)(x⊥ − x′
⊥). (99)

We thus specify that the term proportional to λ̄s corresponds to the nonlinear term in
the KPZ equation. Based on this result, we speculate that the original effective theory
defined by Eqs. (85) and (96) belongs to the same universality class as those described
by the KPZ equation [25]. In other words, the constructed effective theory is capable of
capturing both the linear surface growth of the Edwards-Wilkinson equation [24] and the
possible emergence of the KPZ universality class induced by the term proportional to λ̄s.

8

In summary, the symmetry-based effective theory provides a derivation of the universal
low-energy dynamics of the fluctuating domain wall, which is equivalent to the stochastic
surface growth equation. The result of this section implies that the universality class of

8Investigating the universality class with the help of the dynamic renormalization group approach is an
interesting issue, but beyond the scope of this paper.
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the domain-wall dynamics could be controlled by the presence of λ̄s since it gives the KPZ
nonlinear coupling. This is a remarkable property of open systems with spontaneous sym-
metry breaking since the cubic interaction proportional to the KPZ coupling λ̄s is absent
in the effective theory of the NG mode in closed systems (see Appendix A). However,
it should be also emphasized that the appearance of the KPZ coupling is not guaran-
teed: for. For example, the KPZ coupling vanishes if the underlying dynamics respects
the inversion symmetry.is invariant under the discrete transformation that exchanges the
two different steady states separated by the domain wall. This exchanging transforma-
tion is typically realized as a sign inversion of the condensation field, which leads to the
transformations XR → −XR and πA → −πA. This is because the inversion symmetry,
acting on the dynamical variables as XR → −XR and πA → −πA,The invariance of the
action to these transformations restricts λs(x) to be the odd function λs(x) = −λs(−x),
so that the averaged coupling λ̄s is shown to be zero. In the Josephson junction system,
the MSR action (13) is invariant under the discrete transformations, ϕR → 2π − ϕR and
ϕA → −ϕA. (Recall that ϕR corresponds to a phase, and ϕR = 0 and ϕR = 2π are equiva-
lent.) This explains why the effective theory investigated in Sec. 2 lacks the KPZ coupling
in the thin-wall regime. (recall the dissipative sine-Gordon equation respects the inversion
symmetry).

5 Summary and outlook

In this paper, we have investigated the low-energy dynamics of the fluctuating domain
wall in nonequilibrium open systems with the symmetry-based EFT. In Sec. 2, we have
discussed the dissipative Josephson junction in (2 + 1)-dimensions, and introduced the
notion of the symmetries in open systems and the MSR formalism to exploit them. We
have then derived the MSR action for the fluctuations around the sine-Gordon kink, which
describes a pair of the diffusive gapless mode and its gapped partner. Based on the
constructed effective Lagrangian, we have also discussed experimental observables in the
JTL. Section 3 has been devoted to the introduction of the low-energy Wilsonian effective
action in the Schwinger-Keldysh formalism as preparation for discussing the universal
consequences resulting from the translational symmetry breaking in open systems. In
Sec. 4, we have derived the most general effective Lagrangian for the NG mode and its
partner associated with the one-dimensional translational symmetry breaking in open
systems. The thin-wall regime of the constructed effective theory confirmed that the
emergence of the diffusive NG mode is a model-independent general consequence of the
translational symmetry breaking. Moreover, we have also found a remarkable property of
the possible term proportional to λ̄s, which is absent in the two simplified regimes of the
Josephson junction system. We have shown that the term is peculiar to open systems,
which could generate the KPZ nonlinear coupling in the thin-wall regime or cause the
instability in the thick-wall regime. As a result, the macroscopic dynamics of the thin
domain wall were likely to be controlled by the presence/absence of the KPZ coupling λ̄s.

There are several prospects from the present paper. While we have focused on the
domain-wall dynamics in the dissipative Josephson junction, the similar domain-wall dy-
namics driven by the electric current plays an important role in magnetic materials (see,
e.g., Ref. [81]). In this case, a nontrivial coupled dynamics of the domain-wall fluctuation
and spin wave is expected to take place as is the case for closed systems [22], which arises
as an interplay of the one-dimensional translational symmetry and spin-rotational sym-
metry. The use of the Landau-Lifshitz-Gilbert equation [82, 83] allows us to investigate
their coupled dynamics.
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It is also interesting to generalize our formulation into higher-dimensional or periodic
variants of the translational symmetry breaking. While we mainly restrict ourselves to
the one-dimensional domain wall, we can apply our formulation to the higher-dimensional
system as well as the periodic configuration. While the effective theory of them—e.g.,
two-directional translational symmetry breaking by a vortex string [84–88] and skyrmion
crystal [89–93]—has been attracting much attention, a little is known for their open sys-
tem counterparts. Combining with the recent development of experimental techniques
in, e.g., ultracold-atomic and magnetic systems, we can investigate their possible uni-
versal nonequilibrium dynamics in open systems. For that purpose, it is important to
theoretically classify the dynamic universality class of the NG modes in open systems by
taking into account the possible interaction term like KPZ coupling with the help of the
dynamical renormalization group method [94–96].
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A Effective Lagrangian for domain wall in closed systems

In this appendix, we construct the effective field theory of the domain wall in finite-
temperature closed systems and present qualitative differences with the result in open
systems. The complete analysis requires consideration of the hydrodynamic mode [38–44],
but we here only focus on the domain-wall degrees of freedom. There are two main
sources making the distinction between open systems and closed systems: the symme-
try structure and additional Schwinger-Keldysh constraint corresponding to the Kubo-
Martin-Schwinger (KMS) condition [97, 98]. After explaining these two new ingredients,
we construct the leading-order general effective Lagrangian and investigate the energy
spectrum.

Symmetry structure of closed system. First of all, we define closed systems as
the systems in which the physical (or R-type) charges obey the conservation laws. In
other words, we do not separate the system and environment so that the closed-time-path
generating functional takes the form of the second line in Eq. (49) (we consider both ψ
and σ as dynamical degrees of freedom). Then, one finds that Stot[ψ1, σ1] − Stot[ψ2, σ2]
enjoys two symmetries defined by Eq. (55) with independent parameters ϵ1 and ϵ2. Thus,
it is tempting to say that the system enjoys the doubled symmetry G1 × G2, but this is
not true.
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To see this, we turn our attention to the initial density operator ρ0(ψ, σ), which defines
a boundary condition for ψ1, σ1 and ψ2, σ2. The crucial point here is that the nondiagonal
part of G1 × G2 defined by ϵ1 = −ϵ2 = ϵA/2 breaks this boundary condition. Since the
initial state breaks the symmetry while the action Stot[ψ1, σ1] − Stot[ψ2, σ2] preserves it,
we can interpret this as a variant of the spontaneous symmetry breaking. Thus, the non-
diagonal symmetry in the Schwinger-Keldysh formalism is always spontaneously broken
even if the system respects a conservation law for the physical charge.

In summary, the possible symmetry structure in the closed system is given by

G1 ×G2 → GA (Spontaneous breaking by boundary condition)

→ HA (Spontaneous breaking by stationary solution),
(100)

instead of Eq. (58) in open systems. In contrast to open systems, we now regard the first
part G1 × G2 → GA as the spontaneous symmetry breaking, and thus the low-energy
effective theory needs to respect the nondiagonal part of G1 ×G2 as well as the diagonal
one. This symmetry structure is what the effective field theory of a dissipative fluid
respects (see, e.g., Refs. [40, 41]).

Suppose that the closed system under consideration realizes a stationary state, which
breaks the diagonal part of one-dimensional spatial translational symmetry along the x-
direction. In other words, the system supports the inhomogeneous condensate (63), from
which we defines the doubled NG fields and material coordinate fields as embedding [recall
the discussion around Eqs. (64)-(66)]. Now, we need to respect the spontaneously broken
nondiagonal part of G1 × G2. This is accomplished by requiring the shift symmetry for
πA since πA transforms nonlinearly as πA → πA + ϵA under that symmetry. As a result,
the invariant building blocks used to construct the EFT of the closed-system domain wall
are given by

XR(t,x), ∂tπA(t,x), ∂iπA(t,x) and their derivatives. (101)

Possible terms appearing in the closed system domain-wall EFT is clearly restricted com-
pared with the open system one; πA needs to be accompanied by the derivative. As for the
power-counting scheme, we employ the same one with that defined in the main text, which
forces us to be careful since the spatial derivative of XR(t,x) contains the mixed-order
contribution. We, however, focus only on the leading-order part to illustrate qualitative
differences with the open system result in the main text.

Dynamical KMS symmetry. If we assume that the initial density operator is given by
a thermal density operator, there is another Schwinger-Keldysh constraint for the closed
system, called the KMS condition [97, 98]. The KMS condition is the identity, which
holds for closed systems staying initially in the thermal state. Since the closed-time-path
generating functional for such systems also satisfies a variant of the KMS condition, the
low-energy effective theory needs to be a consistent theory reproducing the KMS condition.

To respect the KMS condition for the generating functional at the classical stochastic
level, we require the corresponding dynamical KMS symmetry acting on the NG field as
follows [40,41]: {

πR(t,x) → π′R(t,x) = πR(−t,x),
πA(t,x) → π′A(t,x) = πA(−t,x)− iβ∂tπR(−t,x),

(102)

where β ≡ 1/T denotes the inverse temperature characterizing the initial thermal density.
Note that this symmetry involves the temporal inversion, and as a result, it defines Z2
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symmetry. Thus, in addition to three requirements introduced in Sec. 3.3, we assume
that the effective action for the closed system domain wall remains invariant under the
dynamical KMS transformation (102) as follows:

• KMS condition : Seff [π
′
R, π

′
A] = Seff [πR, πA] + (surface term). (103)

A remarkable property of the dynamical KMS symmetry is that it mixes the A-type field
and the time-derivative of the R-type field. As a result, the effective action needs to
contain them in a consistent manner. The dynamical KMS symmetry (103) guarantees
the classical stochastic version of the KMS condition for the closed-time-path generating
functional.

Constructing the general effective Lagrangian. Let us then write down the general
effective Lagrangian in the classical stochastic limit. Here, we restrict ourselves to the
leading-order result in the derivative expansion.

We start from the terms with O(ℏ/A2) terms. Owing to the shift symmetry for πA,

possible leading-order derivative terms are (∂tπA)
2 and (∂iπA)

2. We here neglect the
former term because it has to be accompanied by the O(ℏ,//p3,A) term to satisfy the

dynamical KMS symmetry, which is beyond O(p2) regime of our interest. One can also
say that neglecting (∂tπA)

2 term gives a consistent truncation with the dynamical KMS
symmetry. On the other hand, the presence of (∂iπA)

2 together with the KMS symmetry
leads to an O(πA) term proportional to ∂iπA∂t∂iπR = ∂iπA∂t∂iXR, whose coefficient is
related with each other. In short, we find two terms

−κ(XR)∂iπA∂t∂iXR + iTκ(XR)∂iπA∂iπA, (104)

which represents the fluctuation-dissipation partner terms related by the KMS symmetry.
Let us now write down other O(ℏ/A) terms. Using the building blocks (101), we can

construct all possible terms up to O(p2) terms. It is remarkable that the dynamical KMS
symmetry also eliminates an apparently possible term γ(XR)∂tπA since it does not respect
the KMS symmetry. As a result, the leading-order effective Lagrangian in closed systems
is identified as

Leff = ft(XR)∂tXR∂tπA − f(XR)∂iXR∂iπA − 1

2
fs(XR)[(∇XR)

2 − 1]∂iXR∂iπA

− κ(XR)∂iπA∂t∂iXR + iTκ(XR)∂iπA∂iπA

= ft(x)∂tπR∂tπA − fs(x)∂xπR∂xπA − κ(x)∂iπA∂t∂iπR + iTκ(x)∂iπA∂iπA

− f(x)∂xπA − f(x)∂iπR∂iπA − f ′(x)πR∂xπA +O(π3),

(105)

where we kept the quadratic fluctuation term in the second line. Note that the term
proportional to f(XR) generates the tad-pole term, and thus, the elimination of that
leads to f(x) = const.9 We emphasize that the closed system effective Lagrangian cannot
support terms like γ(XR) and λ(XR) appearing in the open system counterpart. Thus,
one sees that the dissipative term γ(XR) and the KPZ terms λ(XR) are peculiar to the
symmetry broken state in the open system.

Energy spectrum. Based on the identified effective Lagrangian (105), we can immedi-
ately find the energy spectrum for the fluctuation. As in the main text, we demonstrate
them in the two simple regimes; the thin-wall and thick-wall regimes.

9Furthermore, the dynamical KMS symmetry also requires f ′(x) = 0, which is equivalent to the condi-
tion from the elimination of the tad-pole term.

31



SciPost Physics Submission

Let us first start with the thin-wall regime. In the thin-wall regime, we have the
dimensionally reduced effective Lagrangian given by

L(2)
thin = f̄t∂tπ̃R∂tπ̃A − f̄∂i⊥π̃A∂i⊥π̃R − κ̄∂iπ̃A∂t∂iπ̃R + iT κ̄∂i⊥π̃A∂i⊥π̃A

=
i

2

(
π̃R π̃A

)( 0 i[f̄t∂
2
t − f̄∇2

⊥ + κ̄∂t∇2
⊥]

i[f̄t∂
2
t − f̄∇2

⊥ − κ̄∂t∇2
⊥] −2T κ̄∇2

⊥

)(
π̃R
π̃A

)
, (106)

where we introduced low-energy coefficients with overbar after performing x-integration
of the corresponding coefficient functions. Investigating the pole of the retarded Green’s
function, we find the dispersion relation of the fluctuating domain wall as

ω(k⊥) =
±
√
4f̄ f̄tk2

⊥ − κ̄2k4
⊥ − iκ̄k2

⊥

2f̄t
= ±cs⊥|k⊥| −

i

2
D⊥k

2
⊥ +O(k3), (107)

where we introduced cs⊥ ≡
√
f̄/f̄t and D⊥ ≡ κ̄/f̄t on the rightmost side. Note that we

now have the propagating NG mode in closed systems in sharp contrast to the purely
diffusive NG mode in open systems discussed in the main text.

We next consider the thick-wall regime. In this case, we can show the constant low-
energy coefficient f(x) = const. vanishes with the help of the thermodynamic consider-
ation. In fact, the term proportional to f(x) = const. leads to the linear term in the
thermodynamic potential, which spoils the thermodynamic stability. Thus, if the system
stays in a stable equilibrium state, f(x) = 0 holds in the thick-wall regime. As a result,
we obtain the leading-order effective Lagrangian as

L(2)
thick = ft∂tπR∂tπA − fs∂xπR∂xπA − κ∂iπA∂t∂iπR + iTκ∂iπA∂iπA

=
i

2

(
πR πA

)( 0 i[ft∂
2
t − fs∂

2
x + κ∂t∇2]

i[ft∂
2
t − fs∂

2
x − κ∂t∇2] −2Tκ∇2

)(
πR
πA

)
.

(108)

From the retarded Green’s function, we obtain the dispersion relation anisotropic in
the momentum space. Introducing the momentum in the cylindrical coordinate as k =
(|k| cos θ,k⊥), we identify the dispersion relation as

ω(k) =
±
√
4ftfsk2 cos2 θ − κ2k4

2ft
= ±cs|k| cos θ −

i

2
Dk2 +O(k3). (109)

Note that the low-momentum behaviors of the spectrum are qualitatively different depend-
ing on its direction. In fact, one sees that the leading low-momentum behavior is linear
(ω ∼ kx) along the modulation direction while it is quadratic perpendicular to the modu-
lation (ω ∼ k2

⊥).
10 This is a general feature of the effective field theory of one-dimensional

modulating phase appearing in, e.g., the smectic-A phase of liquid crystals [99, 100], the
Fulde-Ferrell-Larkin-Ovchinnikov phase of superconductors [101, 101, 102], and the spi-
ral phase of chiral magnets [103–108]. The obtained result gives a generalization of the
anisotropic dispersion for the finite-temperature one-dimensional modulation phase.
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