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Abstract

We employ a recently developed variant of the functional renormalization group method
for spin systems, the so-called pseudo Majorana functional renormalization group, to in-
vestigate three-dimensional spin-1/2 Heisenberg models at finite temperatures. We study
unfrustrated and frustrated Heisenberg systems on the simple cubic and pyrochlore lattices.
Comparing our results with other quantum many-body techniques, we demonstrate a high
quantitative accuracy of our method. Particularly, for the unfrustrated simple cubic lattice
antiferromagnet ordering temperatures obtained from finite-size scaling of one-loop data de-
viate from error controlled quantum Monte Carlo results by ∼ 5% and we further confirm
the established values for the critical exponent ν and the anomalous dimension η. As the PM-
FRG yields results in good agreement with QMC, but remains applicable when the system
is frustrated, we next treat the pyrochlore Heisenberg antiferromagnet as a paradigmatic
magnetically disordered system and find nearly perfect agreement of our two-loop static
homogeneous susceptibility with other methods. We further investigate the broadening of
pinch points in the spin structure factor as a result of quantum and thermal fluctuations and
confirm a finite width in the extrapolated limit T → 0. While extensions towards higher loop
orders ` seem to systematically improve our approach for magnetically disordered systems
we also discuss subtleties when increasing ` in the presence of magnetic order. Overall, the
pseudo Majorana functional renormalization group is established as a powerful many-body
technique in quantum magnetism with a wealth of possible future applications.
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1 Introduction

A wide spectrum of magnetic phenomena occurs in systems described by a Heisenberg model
[1] in which spin-1/2 operators Si located on lattice sites i are coupled via isotropic exchange
interactions Ji j ,

H =
∑

i< j

Ji jSiS j . (1)

In spite of the apparent simplicity of Eq. (1), the calculation of measurable quantities remains a
notoriously difficult problem, particularly in the most realistic case of three spatial dimensions.
Numerical methods, while indispensable and of steadily increasing power, usually either suffer
from an intrinsic bias, are limited in the quantitative accuracy of their predictions or are unfeasible
for the treatment of generic three-dimensional (3D) systems.

Besides more established approaches such as quantum Monte Carlo (QMC) [2], exact diago-
nalization [3], and density-matrix renormalization group (DMRG) [4], new concepts like the func-
tional renormalization group [5, 6] are currently on the rise for spin systems, owing to their flex-
ibility and applicability to even complex coupling scenarios. While it is now possible to directly
treat the RG flow of spin-vertex functions [7], more established variants represent spin operators
in terms of auxiliary fermions. The pseudofermion functional renormalization group (PFFRG)
method [8–12] is particularly strong in calculating ground state spin correlations while a more re-
cent variant, the pseudo Majorana functional renormalization group (PMFRG) approach [13] can
even handle combined effects of quantum and thermal fluctuations. On the other hand, these meth-
ods are sometimes associated with the weaknesses that (i) they are in no simple way endowed with
a parameter that systematically controls the accuracy and (ii) rigorous benchmark tests with other
methods are rarely possible. The recent application of multiloop FRG extension [14, 15] to the
PFFRG [16, 17] has made an important step forward concerning (i) by systematically increasing
the loop order ` of diagrammatic contributions to the vertex flow.

In this work, we tackle (ii) by exploiting the PMFRG’s capability of treating finite tempera-
tures which opens up a plethora of further applications and opportunities for benchmarking. We
apply the PMFRG to two types of models; the first ones are unfrustrated 3D systems such as
the nearest-neigbor simple cubic lattice antiferromagnet where one expects a finite temperature
transition to a magnetically ordered state. Details of these second-order phase transitions such as
the critical temperature and -exponents are well studied from QMC [18] which treats unfrustrated
models in a completely unbiased and error-controlled way. For the PMFRG, probing universal
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finite-size scaling [19] behaviors provides an optimal testbed and allows us to demonstrate its
beyond-mean-field character in a quantitative and rigorous way. Overall, we find QMC results
very well reproduced, which concerns the values of critical temperatures Tc, the critical exponent
for the correlation length ν which we confirm via a scaling collapse, and the anomalous dimension
η. An interesting byproduct of our results is the insight that the system size parameter L which in
PMFRG limits the range of spin-correlations can be used for finite-size scalings in a similar way
as the box-size in QMC.

The surprisingly accurate PMFRG results for magnetically ordered systems motivate us to
move on to a second type of models where frustration effects are strong enough to suppress mag-
netic long-range order at low temperatures. As a paradigmatic geometrically frustrated system,
we investigate the nearest neighbor pyrochlore Heisenberg antiferromagnet [20], which is known
for its rich phenomenology related to spin ice systems. In this context, we also partially tackle the
aforementioned point (i) by extending the PMFRG with two-loop (` = 2) corrections but leave
even higher loop orders for future work. Since QMC is no longer applicable to such systems due
to the sign problem, possibilities for benchmark checks become rarer. Whenever comparisons are
possible, e.g. for the homogeneous susceptibility of the pyrochlore antiferromagnet, our results
show remarkable agreement with other numerical approaches. We also investigate long-standing
open problems in the field of quantum magnetism such as the fate of pinch point singularities [21]
in the pyrochlore Heisenberg antiferromagnet and the possibility of a magnetically disordered
low-temperature phase on the simple cubic lattice with second neighbor interactions [22–27].

Overall, our results demonstrate that for unfrustrated systems PMFRG are in quantitative
agreement with QMC, but has the additional advantage of being also applicable to frustrated sys-
tems where the high accuracy is expected to persist. Therefore, besides the results presented
below, we believe that our work has important implications for future investigations of quantum
magnetic systems, establishing the PMFRG as a flexible and powerful method, applicable to both
unfrustrated and frustrated systems. However, it is also worth emphasizing that this work does not
conclude the development of the PMFRG. Particularly, we expect that multiloop extensions with
` ≥ 3 yield further important insights into quantum magnets and may enable the exploration of
lower temperature regimes which are not reachable within our current implementation.

The paper is structured as follows: After a brief review of the PMFRG’s formalism in Sec-
tion 2, we study magnetic phase transitions on the simple cubic lattice using rigorous finite-size
scaling laws in Section 3. Subsequently, we turn to the strongly frustrated nearest-neighbor py-
rochlore model in Section 4 and investigate the static q = 0 spin susceptibility as well as pinch-
point-like features in the spin structure factor. Here, we also discuss improvements to the sus-
ceptibility introduced by two-loop corrections as well as measurements of the energy per site and
the specific heat capacity. Finally, we discuss the effects of two-loop corrections more broadly
in Section 5 and summarize our results in Section 6. Appendices are devoted to more technical
aspects.

2 Pseudo-Majorana functional renormalization group

In this section, we briefly sketch the PMFRG approach. For a more in-depth introduction, we refer
the interested reader to Ref. [13] and to our Appendices. Using the SO(3)Majorana representation
of spins S x

i = −iηy
i η

z
i , S y

i = −iηz
iη

x
i , Sz

i = −iηx
i η

y
i with {ηαi ,ηβj } = δi jδ

αβ [28, 29], the
PMFRG can be applied to Heisenberg systems [Eq. (1)]. At its core lies the solution of a (trun-
cated) system of functional renormalization group flow equations [5, 30] which are differential
equations for the irreducible vertices as functions of a cutoff parameter Λ. In the present case, a
smooth cutoff is chosen which modifies the bare Green’s function as G0,Λ(ωn) = ΘΛ(ωn)G0(ωn)

with ΘΛ(ωn) =
ω2

n
ω2

n+Λ2 where ωn is a Matsubara frequency. However, we note that we found neg-
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ligible dependence of our results upon the choice of the cutoff function ΘΛ(ωn). Grouping site-,
flavor- and frequency indices together as 1 ≡ (i1,α1, iωn1

), the one-loop flow equations for the
interaction correction to the free energy Fint, the self energy Σ and the four-point vertex Γ are

d
dΛ

FΛint =
1
2

Tr
�

ĠΛG0,Λ
�

GΛ
�−1
ΣΛ
�

, (2a)

d
dΛ
ΣΛ1,2 = −

1
2

∑

1′,2′
ĠΛ1′,2′Γ

Λ
1′2′,1,2 , (2b)

d
dΛ
ΓΛ1,2,3,4 = XΛ1,2|3,4 − XΛ1,3|2,4 + XΛ1,4|2,3 , (2c)

XΛ1,2|3,4 =
∑

1′,...,4′
ĠΛ1′,2′G

Λ
3′,4′Γ

Λ
1,2,1′,3′Γ

Λ
2′,4′,3,4. (2d)

Here, GΛ is the cutoff modified version of the two-point Green’s function G1,2 = 〈η1η2〉 and
ĠΛ1,2 the single-scale propagator. In Eq. (2d), Katanin-type corrections [31] are included via the
replacement ĠΛ1,2 →

d
dΛGΛ1,2 instead. With certain approximations to the additional flow equation

for the six-point vertex, two-loop contributions can also be added, see Appendix B for details.
These equations are then solved numerically for the initial conditions ΓΛ→∞1,2,3,4 = Vi1α1,i2α2,i3α3,i4α4

,
where the interaction V is determined by the exchange couplings Ji j in the present case.

Since the Majorana spin representation introduces no unphysical states, Eq. (2) can be used
to study arbitrary temperatures. However, as discussed in Ref. [13] the artificial degeneracy of
original spin states leads to a spurious Curie-type 1/T divergence of certain frequency components
of vertices. The truncation of the flow equation causes these divergencies to affect the flow of
frequency components related to spin correlations. Hence, unphysical results are obtained at T = 0
and small Λ. Below we demonstrate that this problem is significantly alleviated at finite (and
not too low) temperatures, such that our approach can still be faithfully applied in temperature
regimes where quantum and thermal fluctuations compete. The physical solution in the zero-cutoff
limit Λ = 0 allows for the computation of temperature-dependent observables such as spin-spin
correlations and -susceptibilities on the Matsubara axis,

χi j(iνn) =

∫ β

0

dτe−iνnτ
¬

Sz
i (τ)S

z
j (0)

¶

,

χq (iνn) =
1
N

∑

i, j

eiq(ri−r j)χi j(iνn). (3)

The free energy per site f can be found via Eq. (2a). Hence, temperature dependent thermo-
dynamic quantities such as the energy per site, entropy and specific heat capacity are available via
derivatives of f (T ). Alternatively, the energy can be determined from the expectation value of the
Hamiltonian, which can be written in terms of equal time spin-spin correlators [17]

〈H〉=
∑

i< j

Ji j




Si(0)S j(0)
�

(4)

with



Si(0)S j(0)
�

=
∑

nχi j(iνn). Technical details of the numerical implementation are found in
Appendix C.

3 Simple cubic lattice

We start by investigating the capability of the one-loop PMFRG in systems with well established
magnetic long-range order. To this end, we study the Heisenberg model [Eq. (1)] on the sim-
ple cubic lattice and set the nearest-neighbor antiferromagnetic coupling to J1 = 1. With no
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Figure 1: (a) Néel susceptibility from one-loop PMFRG in the antiferromagnetic nearest-
neighbor Heisenberg model on the simple cubic lattice for temperatures around T = 0.9
and varying cutoff length L = 6, 8,10,12, 14. The number of positive Matsubara fre-
quencies is Nw = 32. (b) Length-dependence of the susceptibility from (a); the critical
temperature can be identified from a pure power-law behavior (no curvature in log-log
plot). Adjacent curves have a temperature difference of ∆T = 0.01, except of the black
curve which has additionally been inserted for T = 0.905. (c) Scaling collapse for the
data using the established critical exponents ν and η from the classical 3D Heisenberg
universality class, the same with mean-field exponents is shown in (d).
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further-neighbor couplings present, this model is unfrustrated and can be treated with the Quantum
Monte-Carlo method (QMC). Sandvik [18] found magnetic Néel order with an ordering wavevec-
tor qN = (π,π,π) below a critical temperature T QMC

c = 0.946(1). Finite-size scaling of the static
Néel susceptibility χN computed for a cubic-box geometry with a linear size of up to LQMC

box ≤ 16
and periodic boundary conditions confirmed that the transition is in the classical 3D Heisenberg
universality class with correlation length critical exponent ν = 0.71 and anomalous dimension
η = 0.035 known from Monte-Carlo simulations of numerically less demanding classical sys-
tems [32]. The critical exponents were further refined using the conformal bootstrap method, see
e.g. [33]. The same critical exponents can also be accessed within a FRG treatment of a classical
bosonic order parameter field theory [34, 35].

In the following, we benchmark the one-loop PMFRG against the well-controlled QMC re-
sults. In contrast to QMC, the PMFRG treats formally infinite (translational invariant) systems but
introduces a cutoff-length L. Correlations between lattice sites with a distance larger than L are
neglected by setting the associated irreducible vertices Γ to zero. Consequently, convergence in L
cannot be expected if the system features large or even divergent correlation length scales as, for
example, close to a phase transition. While this effect has never been systematically studied in the
context of PFFRG, here we turn it into an advantage and demonstrate that in the spin-FRG context
L can be used for finite-size scaling, just as the box size LQMC

box in the context of QMC.
Our PMFRG results for the static (end-of-flow) Néel-susceptibility χN around T = 0.9 and

cutoff-lengths L = 6, 8,10, 12,14 are shown in Fig. 1(a). As expected, the missing convergence
of χN with L (except possibly at the largest T ) indicates the presence of a correlation length larger
than Lmax = 14. Although this number seems modest we are treating about 4/3πL3

max ' 11494
sites correlated to a reference site, almost three times the maximal number of sites considered in
the QMC analysis of Ref. [18].

In Fig. 1(b), we determine the critical temperature from the expected behavior χN (T = Tc , L)/L2

∝ L−η, which singles out the data trace for the critical temperature T = Tc from the condition of
vanishing curvature 1. We find Tc = 0.905(5), about 5% smaller than the QMC reference value
T QMC

c = 0.946(1). In principle η could be estimated independently from the slope of the Tc-data
trace. In practice, this is difficult due to the limited system sizes in a quantum simulation and the
numerically small value of η = 0.035, so that we are content with showing consistency between
the measured and predicted slope (dashed line). In contrast, the value of the correlation length
exponent ν is easier to confirm. In Fig. 1(c) we check the anticipated finite-size scaling behavior
for temperatures T in the vicinity of Tc [18],

χN (L, T )∝ |T − Tc|−ν(2−η)g± (L|T − Tc|ν) . (5)

Using Tc as obtained above, our PMFRG data collapses into two branches of the scaling function
g± for T ≷ Tc . Importantly, the quality of this collapse decreases when mean-field exponents
are used, see Fig. 1(d). This indicates the beyond mean-field nature of the PMFRG, despite the
fact that fluctuations of the order parameter are not fully included due to the truncation of the six-
point and higher vertices. We emphasize, however, that the strength of the PMFRG lies within its
capability to treat microscopic models of frustrated quantum magnets, and is not meant to compete
with established high-precision methods to extract critical exponents from effective field theories,
see the discussion above.

In this spirit, we proceed by involving additional couplings between next-nearest and next-
next-nearest neighbouring sites, J2,3. Here, J2 (J3) is a coupling between sites separated along the
face (body) diagonal of an elementary cube. The J1-J3 Heisenberg model is unfrustrated and can
again be studied with QMC [27]. The PMFRG susceptibility for the case J3 = 0.4 known to enter

1For all scaling plots, we re-define L = [3/(4πn)N]1/3 using the number N of sites correlated to the reference site.
The number of sites in unit volume is denoted by n, n = 1 for cubic- and n = 16 for the pyrochlore lattice. This
smoothens edge-effects for small L and yields better scaling plots.
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Figure 2: Scaling plot of the cubic lattice susceptibility similar to Fig. 1, but for the
J1-J3 model with J3 = 0.4 (a) and the frustrated J1-J2 model with J2 = 0.1 (b). PMFRG
estimates for the critical temperatures follow from the unique crossing points of the data
traces.

a Néel ordered phase, is shown in Fig. 2(a) and indicates a critical temperature Tc = 1.875, again
about 5% different from the QMC value T QMC

c = 1.7675.
Finally, we frustrate the system by a next-nearest neighbor coupling J2. In the classical case,

Monte-Carlo simulations [36] (with unit spin length) have found the phase diagram in Fig. 3, see
blue symbols. Increasing J2 from zero, the ordering temperature for Néel order decreases until
it reaches Tc ' 0.3 at J2 = 0.25 from where on a striped antiferromagnetic order with wave
vector (0,π,π) and equivalent types take over and the ordering temperature increases again. In
the quantum case of S = 1/2 spins, where QMC suffers from the sign problem, the phase diagram
has been studied with a variety of methods like spin-wave theory [22, 23], spherically symmetric
Green’s function approximation [24], differential operator technique [25], coupled cluster method
[26] and the PFFRG [27]. Despite all these efforts, no consistent picture of the phase diagram
has emerged. The qualitative question is if quantum fluctuations suppress the classical magnetic
order around J2 = 0.25 in favor of an intervening paramagnetic phase at T = 0. The PFFRG, for
example, qualitatively reproduces the classical result with a finite break-down scale of the flow
(see below) for all J2, see brown curve in Fig. 3 2. The coupled cluster method, which infers
ground state properties from extrapolation of observables found for finite-size clusters, shows
some indication for a tiny paramagnetic phase around J2 ' 0.275.

In this challenging setting, we now demonstrate the capability of the PMFRG to tackle frus-
trated systems by studying small J2 = 0.1, for which, according to the scaling plot in Fig. 2(b),
Néel order is detected below Tc = 0.435. This surprisingly small value of Tc (at half the temper-
ature estimated from the break-down scale of the PFFRG flow in Ref. [27]) might hint towards
a larger paramagnetic region in the J2/J1-phase diagram of the model than previously thought.
Indeed, repeating the calculation of Tc for various J2 between zero and 0.1, we extrapolate the ob-
served linear-in-J2 behavior of Tc to find it vanishing around J2,c ' 0.19 (red dots and red dashed
line). Although this extrapolation has to be taken cautiously, it seems to indicate the onset of a
quantum disordered phase significantly below the estimated value J2,c ' 0.275 from the coupled
cluster method of Ref. [26]. Interestingly, the scaling approach of the PMFRG susceptibility fails
for larger J2 where no line-crossings could be observed for the expected ordering wave vectors,

2In PFFRG, a paramagnetic phase is found by adding a finite J3 > 0, see Ref. [27]
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Figure 3: Finite temperature phase diagram of the simple cubic J1-J2 Heisenberg anti-
ferromagnet. The data for the classical model with unit spin length is reproduced from
Ref. [36] (blue), the transition to the Néel phase for J2 < 0.25 is second order, while
the striped phase for J2 > 0.25 is reached via a first order transition. The PFFRG result
reproduced from Ref. [27] is shown in brown. The one-loop PMFRG results (red dots)
for ordering temperatures are only available for the second-order transition and at not
too small temperatures; extrapolation to larger J2 (red dashed line) yields J2,c ' 0.19 at
T = 0.

despite the susceptibilities growing significantly with decreasing temperature (data not shown).
We take this as an indication that the first-order transition observed in the classical case [36] is still
governing the quantum model. We leave it to future work to analyze first-order transitions within
the PMFRG and to further investigate the exciting possibility that the paramagnetic quantum phase
in the J1-J2 cubic lattice antiferromagnet might be larger than previously thought.

To summarize this section, our results indicate that one-loop PMFRG is suitable to study finite-
temperature magnetic phase transitions in 3D frustrated and unfrustrated Heisenberg systems. Al-
though critical temperatures are a few percent off from QMC reference values, the susceptibility
data shows the expected scaling behavior at second-order phase transitions, a strong indication for
the beyond-mean-field nature of the PMFRG. In particular, there is no breakdown of the flow or
any divergence in the susceptibility at any temperature treated. This is expected in the exact (or
at least beyond-mean-field/RPA) treatment of an effectively finite-sized system which should not
show any spontaneous symmetry breaking. The observed scaling behavior provides a significantly
more accurate and rigorous approach to detect magnetic phase transitions than previous PFFRG
works where kinks in the renormalization group flow have been used as a signature for ordering.
Furthermore, estimates for critical temperatures within PFFRG are complicated by the presence
of unphysical states. Instead, critical temperatures were previously based on the approximate (i.e.
mean-field-like) relation Tc = πΛc/2 between critical temperature and the divergence in the cut-
off scale which may introduce errors, particularly in the presence of strong quantum fluctuations.
We thus firmly believe that it is advantageous to obtain finite ordering temperatures for frustrated
models from PMFRG instead as it does not have this limitation and operates at explicitly finite
temperatures. In section Section 5, we will revisit the applicability of this approach under the
addition of two-loop corrections.
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4 Pyrochlore lattice

While the previous section demonstrated the PMFRG’s applicability to systems ordering mag-
netically, strongly frustrated and magnetically disordered models are also treatable. A prominent
example of a geometrically frustrated lattice is the pyrochlore network [20], defined by a four-site
basis arranged within an fcc lattice. Here, each site is placed at the vertex of an arrangement of
corner-sharing tetrahedra where the edges are given by nearest-neighbor bonds [37]. The classical
nearest-neighbor antiferromagnetic Heisenberg model features an extensive ground state degen-
eracy as the lowest energy can be achieved by any state fulfilling the constraint of a vanishing
magnetization within each individual tetrahedron, often referred to as a spin-ice rule [38–40]. The
quantum versions of models with such a degeneracy are often believed to evade magnetic long-
range ordering at low temperatures and, as such, are promising candidates as hosts for quantum
spin liquids. Recent studies confirm the non-magnetic ground state of the nearest neighbor spin-
1/2 pyrochlore antiferromagnet but suggest a spontaneous breaking of C3 and inversion symme-
try [41–43] possibly indicating a valence-bond solid. Yet, the predictions of magnetic monopole
and emergent photon excitations resulting from an underlying U(1) gauge structure remain a fas-
cinating research perspective for related models [44]. Arising from the local nature of the ground
state constraint, an interesting feature is the observation of non-analytical points in the classical
spin structure factor, so-called “pinch-points” (also referred to as “bow-ties”), at T = 0 within the
hhl-plane [45–47].

Being well-suited to treat quantum systems at finite temperatures, we now investigate the
performance of the PMFRG in the case of the nearest-neighbor quantum spin-1/2 pyrochlore
antiferromagnet. In order to verify the quantitative reliability of our results, we start comparing
the static component of our spin susceptibility χ ≡ χ(q = 0) against DMRG [43] and diagram-
matic Monte-Carlo [48] as well as the Padé approximant of the high-temperature series expansion
(HTSE) in Fig. 4 [49, 50]. On the one-loop level our results differ from other methods by ∼ 10%
at T ∼ J1 with further increasing differences for lower temperatures, indicating a smaller accuracy
than the one-loop results in Sec. 3. However, under the additional inclusion of two-loop (` = 2)
contributions our results are found to be in perfect agreement with all other methods, remaining
consistent with DMC even at temperatures as low as T ' 0.2.

Figure 5 shows the energy per site ε and the specific heat capacity c = dε
dT as functions of

the temperature. It can be seen that the energy computed from the PMFRG susceptibility via
Eq. (4) is generally consistent with the one derived from the PMFRG free-energy and HTSE,
although acquiring an unphysical negative slope (i.e. negative heat capacity) around T ® 0.3. This
is likely a first indicator of the aforementioned low-temperature divergence in the PMFRG flow
discussed above and in Ref. [13]. The energies obtained via the free energy, by contrast, retain
a positive slope down to lower temperatures but will ultimately behave similar due to the free
energy’s indirect coupling to the four-point vertex. Despite this observation, we stress that the
energy is not to be understood as a measure of accuracy in the variational sense and as such is not
bounded from below by the true energy. While a temperature below T ' 0.2J1 is currently not
accessible, the finite temperature energy compares well with a recent many-variable Monte Carlo
(mVMC) study at T = 0 (dashed black line).

Finite-width pinch-points

The spin susceptibility of the pyrochlore features bow-tie patterns in the hhl-plane, connected to
the existence of the classical ground state ice rule [47]. In Fig. 6 we show the static susceptibility
[Eq. (3)] from two-loop PMFRG at T = 0.2 in the hhl-plane, which features a pronounced peak
structure around q = (0, 0,4π) (and symmetry-related points) where one would classically expect
the pinch points. In the classical case, the width of these peaks along the [00l]-direction is known
to vanish analytically in the T → 0 limit whereas thermal fluctuations at T > 0 lift the non-
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Figure 4: Uniform (q = 0) susceptibility for the Pyrochlore antiferromagnet from
PMFRG as a function of temperature in comparison with diagrammatic Monte Carlo
(DMC) [48], density-matrix renormalization group [43] (DMRG, cluster sizes 32 and
48) and the Padé approximant of the high temperature series expansion [49].

Figure 5: Energy per site (a) and specific heat capacity (b) as a function of temperature
for one-loop (` = 1) in blue and two-loop (` = 2) in red. An estimate of the energy
per site within PMFRG is accessible either from a derivative of the free energy (solid),
Eq. (2a), or through the expectation value of H in terms of equal time spin-correlators
(dashed). Additionally shown is the ground state energy estimate from mVMC [42] and
the specific heat capacity from DMRG and canonical typicality on a 48- and 32-site
cluster, respectively [43].
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Figure 6: (a) Two-loop static susceptibility of the antiferromagnetic Heisenberg model
on the pyrochlore lattice in the [hhl]-plane (qx = qy = h) at T = 0.2 and (b) full-width
at half maximum along of the pinch-point as a function of temperature. The inset shows
the cut along the [00l] line of the susceptibility from (a).

analyticity of the pinch points. The associated finite width σ ∼
p

T of the broadened peaks is a
measure for how much the ice rule is violated at finite temperatures [21, 51, 52].

In a quantum system, thermal- and quantum fluctuations compete. Using the PMFRG, we
measure the full-width at half maximum (FWHM) of the peak along the [00l]-direction, see
Fig. 6(b). Although at low temperatures, we observe a straight line in a plot over

p
T , an ex-

trapolation to T = 0 results in a finite width at T = 0 where two-loop PMFRG predicts a slightly
smaller value than one-loop. It can be concluded that while the qualitative applicability of the
classical ice rule remains visible in the overall structure of the susceptibility, a full

p
T -law with-

out a constant offset is only correct for the classical model. Quantum effects not only broaden the
peak at T = 0 [53], but remain strong enough at finite temperatures to increase deviations from
the classical ice rule ground state.

5 Effect of two-loop contributions

As discussed above, deviations from exact results at low temperatures stem from the truncation
of the flow equations. In an attempt to partially correct the introduced errors, the two-loop cor-
rections represent certain contributions from the neglected six-point vertex, and the full multiloop
expansion can be more generally understood as a systematic way to iteratively recover all diagrams
contained in the parquet approximation [14, 16, 17, 54]. However, the effects of each additional
loop order and the overall properties of loop-convergence are highly nontrivial for a purely in-
teracting model such as the Heisenberg Hamiltonian and require a careful case-based numerical
analysis.

Our results in Sec. 3 demonstrate that one-loop PMFRG allows one to accurately determine
critical temperatures and scaling behavior for second order magnetic phase transitions in 3D quan-
tum magnets. On the other hand, in strongly frustrated systems that remain magnetically disor-
dered at low temperatures such as the pyrochlore model investigated in the last section, one-loop
results are less accurate but two-loop corrections yield substantial improvements. What remains
to be discussed is how two-loop PMFRG performs when applied to magnetically ordered systems.

To demonstrate the two-loop flow behavior in this case, we specifically consider the fer-
romagnetic (J1 = −1) nearest neighbor pyrochlore Heisenberg model but emphasize that the
results below are typical for systems that order magnetically. While as usual the susceptibil-
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Figure 7: (a) Ferromagnetic Heisenberg model on the pyrochlore lattice for T = 0.5,
well below the critical temperature Tc = 0.685 observed in Fig. 8: Flow of the uniform
susceptibility χΛ obtained in the one-loop (thick) and two-loop (thin) PMFRG as a func-
tion of the cutoff Λ for different maximum vertex lengths L. (b) Two-loop contribution
to the right hand side of the flow equation for Γ where a ladder diagram (with external
site indices k, j) is inserted into the RPA channel (with external site indices i, j).

ity flows smoothly as a function of the cutoff Λ (see Fig. 7), the one-loop susceptibility scales
strongly with system size yielding a critical temperature Tc ' 0.685 in good agreement to QMC
(TQMC

c = 0.7182 [52]), see the crossing lines in Fig. 8. However, for ` = 2, no such scaling
and, hence, no magnetic order is found. The large quantitative difference between one-loop and
two-loop in the magnetically ordered case suggests the necessity for higher loop order corrections,
which we leave for future work.

Initially, it may appear surprising that the detection of magnetic order is problematic at second
loop order. However, a similar observation has been made in a recent multiloop PFFRG study [16],
where magnetic ordering tendencies in the flow are found to be strongly suppressed at ` = 2 but
recovered at `= 3.

A deeper understanding of this behavior can be obtained by inspecting the diagrammatic con-
tributions in different loop orders. First recall that the four-point vertex flow is generated by dif-
ferent coupling channels with distinct physical meanings. Particularly, the random-phase approx-
imation (RPA) terms enable the formation of magnetic long-range order, while all other channels
(here, for simplicity referred to as “ladder channels”) induce quantum fluctuations. In multi-loop
schemes these channels are inserted into each other, leading to a nested diagram structure, see
Fig. 7 for an example. The nesting is subject to the rule that a contribution from a particular
channel cannot be inserted into the same channel again, as this would yield an overcounting of
diagrams.

With this multiloop construction in mind, the RPA diagrams which in magnetically ordered
systems dominate the one-loop flow are dressed by ladder diagrams in two-loop. This strongly
suppresses magnetic order and explains our observation in Fig. 7. In turn, the third loop order
nesting can again be performed with RPA diagrams which would strengthen ordering effects.
Overall, one may, hence, expect an even-odd-effect of magnetic ordering tendencies in loop order.
We believe that this type of behavior is characteristic for systems where one coupling channel
(here, the RPA channel) dominates the physical behavior. The more systematic improvement upon
increasing ` observed for the magnetically disordered antiferromagnetic pyrochlore Heisenberg
model can then be interpreted as a consequence of the fact that in this case all channels contribute
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Figure 8: PMFRG (` = 1) results for the ferromagnetic Heisenberg model on the py-
rochlore lattice indicating a phase transition at Tc ' 0.685 in good agreement with the
QMC value T QMC

c = 0.7182 from Ref. [52].

more equally. In both situations, an increase of loop order should eventually yield more accurate
results but possibly not in a monotonous way. The case `≥ 3, however, is beyond the scope of the
present work and will be left for future studies.

6 Conclusion

In this work, we applied the PMFRG to unfrustrated and frustrated 3D Heisenberg quantum spin
systems and demonstrated, based on a variety of different physical quantities, an astonishing quan-
titative accuracy of this technique. Rigorous benchmark tests were performed by comparing our
results for the unfrustrated simple cubic lattice antiferromagnet with error controlled QMC data.
We found that the PMFRG can keep up with QMC’s performance for these systems, producing
errors of about 5% for the critical ordering temperatures and showing overall consistency for the
critical exponents ν and η. A special methodological feature of our scaling strategy is its reference
to a cutoff length L for spin correlations in an infinite system but not to the size of a box containing
the simulated spins.

We have also investigated frustrated systems such as the nearest neighbor pyrochlore antifer-
romagnet and the J1-J2 simple cubic lattice antiferromagnet. While possibilities for quantitative
comparisons with other methods become rarer we found promising indications that the PMFRG’s
performance persists for magnetically disordered frustrated systems, at least when including two-
loop corrections. Particularly, we demonstrated this for the two-loop static and homogeneous
susceptibility of the nearest neighbor pyrochlore antiferromagnet where our data is within the er-
ror bars of DMC over nearly the entire simulated temperature range. Energies per site, which
are no standard outputs of functional renormalization group approaches and are, therefore, rarely
studied, likewise, show good accuracies and seem consistent with the ground state energies from
other methods. We also made first attempts to characterize ground state phases, e.g., an extrap-
olation of the width of pinch-points in the nearest neighbor pyrochlore antiferromagnet clearly
shows a residual broadening in the limit T → 0 as has previously been found with various other
approaches [16, 53, 55]. Furthermore, ordering temperatures drop surprisingly fast in the simple
cubic lattice antiferromagnet upon adding second neighbor interactions J2, possibly indicating a
non-magnetic ground state regime.
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Our work opens up a variety of possibilities for future applications of the PMFRG. Having al-
ready implemented a two-loop scheme, the natural next step is the inclusion of higher loop orders
with ` ≥ 3. We expect that this eventually increases the accuracy of our approach further, espe-
cially towards lower temperatures. However, our results for magnetically ordered systems where
one-loop scaling behavior is erased in a two-loop extension, implies a non-trivial behavior in loop
order ` such that convergence in ` might turn out to be technically challenging. Note that similar
observations have already been made with PFFRG [16, 17]. We argued that the accuracy in loop
order for magnetically ordered systems might be subject to an even-odd effect while magnetically
disordered systems are expected to be more well-behaved as a function of `.

An important advantage of the PMFRG over the PFFRG is that it allows the detection of
second order phase transitions in a completely unambiguous and rigorous way via finite-size scal-
ing. We, therefore, believe that the investigation of critical behaviors within PMFRG represents
a promising future research direction. Interestingly, the absence of finite-size scaling in the J1-J2
simple cubic Heisenberg model at J2 > 0.25 within one-loop PMFRG is consistent with a first
order transition in the corresponding classical model. The systematic detection of first-order tran-
sitions from the PMFRG is currently beyond the capabilities of the method and requires further
investigation. Eventually, at zero temperature, the detection of quantum criticality in two dimen-
sions remains an open problem, particularly for Heisenberg models where the Mermin-Wagner
theorem forbids any magnetic order at finite temperatures.

Concluding this work with a broader perspective, we emphasize that the PMFRG inherits the
same methodological flexibility that already characterizes the PFFRG. This means that the method
is amenable to arbitrary lattice geometries and two-body spin interactions. The implementation of
spin-anisotropic couplings also requires only moderate adjustments. In this situation, applications
to models for real magnetic materials beyond the ideal systems studied here are well within reach.
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A Inclusion of the RPA

In order to investigate the PMFRG’s behaviour regarding a magnetic phase transition, we consider
the contributions of the RPA channel in the (one-loop) PMFRG flow equations. We can do this
mostly in analogy to Ref. [10], except that we now explicitly consider finite temperatures. In the
RPA approximation for PMFRG, we restrict ourselves to diagrams with internal Majorana bubbles,
i.e. site summations. As a result, the flow equations for the three types of vertices as presented in
Ref. [13] decouple from each other. As seen in Eq. (26) the only vertex which is nonzero initially
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is the spin vertex Γc = Γx y x y ,

d
dΛ
ΓΛc i j(s, t, u) = T

∑

ω

ġΛ(ω)gΛ(ω+ s)
∑

k

�

ΓΛc ki (s,ω+ω1,ω+ω2) Γ
Λ
c k j

�

s,ω−ω3,ω−ω4

�

+ (ω1↔ω2,ω3↔ω4)
�

. (6)

Since the vertices of type Γa and Γb are vanishing, it follows that the self energy must be zero as
well and thus

gΛ(iωn) =
ωn

ω2
n +Λ2

,

ġΛ(iωn) = −
2Λ
ωn

g2(iωn). (7)

Using that ΓΛ→∞c i j = −Ji j does not depend on any frequencies, we note that no dependence on t and
u is generated from Eq. (6). The dominant contribution is the static component ΓΛc i j(s = 0)≡ ΓΛc i j
for which

d
dΛ
ΓΛc i j = −4Λ

∑

k

ΓΛc kiΓ
Λ
c k j T

∑

ω

(gΛ(ω))3

ω
,

d
dΛ
ΓΛc (k) = −4ΛΓΛc (k)

2T
∑

n

ω2
n

(ω2
n +Λ2)3

,

(8)

where in the second step a Fourier transform to momentum space has been performed. The Mat-
subara sum may be evaluated exactly using the poles zp ≡ iωn = ±Λ to obtain

T
∑

n

ω2
n

(ω2
n +Λ2)3

=
∑

zp=±Λ
Res

�

z2

(z2 −Λ2)3
nF (z)

��

�

�

�

z=zp

=
sech2

�

βΛ
2

��

sinh(βΛ) + βΛ
�

βΛ tanh
�

βΛ
2

�

− 1
��

32Λ3
. (9)

Inserting this result into Eq. (8), the differential equation with ΓΛ→∞c (k) = −J(k) has the exact
solution

ΓΛc (k) = −
8J(k)Λ

2J(k) tanh
�

βΛ
2

�

+ βJ(k)Λsech2
�

βΛ
2

�

+ 8Λ
,

�

ΓΛ=0(k)
�−1
= −

1
4T
−

1
J(k)

, (10)

in the simplified case of a single site per unit cell.
Below a critical temperature T RPA

c = 1
4 J(k), the RPA-vertex from Eq. (10) diverges before the

end of the flow at Λ= 0 is reached. This result exactly equals the one derived in Ref. [10], except
here, no identification of Λc with Tc is necessary as Eq. (10) has been derived directly for arbitrary
temperatures. Figure 9 shows the flow of the RPA vertex in a nearest-neighbor cubic lattice where
TRPA

c = 1.5.
Interestingly, our full PMFRG solution is in stark contrast to bare RPA: While we could show

here that the RPA’s individually diverging contributions are contained in the PMFRG, no diver-
gence at finite Λ is observed, in favor of a finite and smoothly flowing susceptibility as shown
in Fig. 7. This beyond mean-field nature of the PMFRG, a result of the additional contributions
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Figure 9: RPA solutions as a function of the cutoff Λ from Eq. (10) for the nearest-
neighbor cubic lattice for different temperatures. The solution for the critical temperature
T RPA

c = 6
4 = 1.5 (green) diverges exactly at Λ = 0, while at lower temperatures, the

divergence is shifted to finite cutoffs.

from other channels, is quite surprising: In the closely related PFFRG formalism, a divergence of
the RPA channel is often observed and, in particular, serves as the main indicator for the onset of
magnetic order. In Section 3, we demonstrated that the absence of such an RPA-like divergence
is extremely beneficial: The finite susceptibility which becomes physical at Λ = 0 can be used
in combination with a finite-size scaling analysis to obtain a more accurate estimate of critical
temperatures.

B Two-loop contributions within PMFRG

As detailed in previous works [54, 57], the one-loop FRG truncation can be extended by the in-
clusion of two-loop corrections using approximations based on the flow equation of the six-point
vertex.

We start from the general form of the FRG flow equations, as found in Eq. (7.71) of Ref. [5]
and expand the summations, neglecting all contributions from vertices with an odd number of legs
as well as the eight-point vertex. For Majorana systems, the exchange statistics implies Z = −1 so
that

d
dΛ
Γ 6 Λ

1,2,3,4,5,6 =
1
2

Tr
�

S1,2,3,4|5,6ĠΛΓ 4, Λ
5,6 GΛΓ 6, Λ

1,2,3,4 (a)

+ S1,2|3,4,5,6ĠΛΓ 6, Λ
3,4,5,6GΛΓ 4, Λ

1,2 (b)

+ S1,2|3,4|5,6ĠΛΓ 4, Λ
5,6 GΛΓ 4, Λ

3,4 GΛΓ 4, Λ
1,2

�

(c)

+O(V 4
int). (11)

Bold quantities are matrices defined as
�

Γ 6, Λ
1,2,3,4

�

5,6
= Γ 6, Λ

5,6,1,2,3,4.
This expression further contains the symmetrization operator S which ensures that the deriva-

tive of the six-point vertex is fully antisymmetric. Formally, it can be written as a sum over all
permutations of indices with the appropriate sign together with a prefactor to prevent overcount-
ing of already antisymmetric terms. For instance, the symmetrization S1,2,3,4|5,6 in term (a) of
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Figure 10: Two-loop approximation for the six-point vertex.

Eq. (11) contains a summation over all permutations of the numbers 1 to 6 as well as a prefactor
1

4!2! since the expression is already antisymmetric in the first four and the last two indices. If we
define the outer derivative ∂Λ which only acts on the explicit Λ-dependence of two-point Green’s
functions(treating ΣΛ as a constant), we may write this as

d
dΛ
Γ 6 Λ

1,2,3,4,5,6 =
1
2

∑

1′,...,4′

�

∂Λ
�

GΛ1′2′G
Λ
3′4′
�
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2′,3′,3,4,5,6Γ
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4′,1′,1,2

�

+
1
6

∑

1′,...,6′
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GΛ1′2′G
Λ
3′4′G

Λ
5′6′
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S1,2|3,4|5,6Γ
4, Λ
2′,3′,1,2Γ

4, Λ
4′,5′,3,4Γ

4, Λ
6′,1′,5,6

�

+O(V 4
int) (12)

The defining step of the two-loop scheme is to promote the partial derivative to a full one which,
in particular, also acts on vertex functions. The error generated by this step is of order O(V 4) in
the interaction and thus no larger than the error already present [54, 57]. The resulting equation
can be integrated as a function of Λ and leads to a self-consistent equation for Γ 6 for which in first
iteration, we get

Γ 6 Λ
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1
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�

+O(V 4
int). (13)

Figure 10 shows the diagrammatic form of this equation. While the first term is of fourth order
in the interaction and will not be considered explicitly, we note that some of its contributions are
precisely those generated by the Katanin substitution as detailed in Ref. [57].

In the same way, some of the derived two-loop contributions are equivalent to Katanin cor-
rections of the one-loop flow equations. Naturally, the next step will be to identify these terms
and omit them to prevent overcounting. Doing so requires explicitly evaluating all permutations
generated by the symmetrization operator S. Initially, now using the shorthand notation Γ 4 → Γ ,
we thus have

d
dΛ
ΓΛ1,2,3,4 ≡ Γ̇

Λ 1L
1,2,3,4 + Γ̇

Λ 2L
1,2,3,4

Γ̇Λ 2L
1,2,3,4 = −

1
12

∑

1′,2′
ĠΛ1′,2′

∑

β1,...,β6

��

GΛβ1β2
GΛβ3β4

GΛβ5β6

�

S1′,2′|1,2|3,4Γ
Λ
β2,β3,1′,2′Γ

Λ
β4,β5,1,2Γ

Λ
β6,β1,3,4

�

.

(14)

Here, Γ̇Λ 1L
1,2,3,4 refers to the three one-loop terms in Eq. (2c), which do not originate from the six-

point vertex.
Expanding the symmetrization naïvely generates 6! = 720 permutations, however many of

these are equivalent. Most importantly, all trivial permutations that exchange two indices on the
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Figure 11: One-loop and two-loop bubble functions from Eqs. (2d) and (16).

same vertex are divided out by definition of S. This means we only need to consider 720
2!·2!·2! = 90

terms. Since we do not want to include terms which are given by the Katanin correction to the
one-loop procedure, we will then neglect all diagrams in which a single vertex is contracted by
the single-scale propagator, i.e. those where 1′ and 2′ appear on the same vertex. Hence, only 72
diagrams remain, 24 for each the s, t and u channel.

It is helpful to note that t and u channels are given by re-labeling external indices of the s-
channel, i.e. the first of the terms in Eq. (2c). Thus, we only need to consider the s-channel, which
is defined by a pairing of either the indices 1 and 2 on one of the vertices or 3 and 4. Using the
freedom to relabel internal site indices in the summation, only two distinct diagrams remain, one
where 1 and 2 appear together on a vertex and the other two appear separately on the other two
vertices and vice versa. In close analogy to the previous one-loop notation, we may then define

Γ̇Λ 2L
1,2,3,4 = Y Λ1,2|3,4 − Y Λ1,3|2,4 + Y Λ1,4|2,3 (15)

Y Λ1,2|3,4 = −
∑

1′,...,4′
GΛ1′,2′G

Λ
3′,4′

�

ΓΛ1,2,4′,2′X
Λ
3,3′|4,1′ + Γ

Λ
1′,3′,3,4XΛ2′,1|4′,2

�

, (16)

where Y Λ1,2|3,4 defines the s-channel of the two-loop bubble function and is antisymmetric under
permutations of the first and last two indices as visible from Fig. 11. Since Eq. (16) takes an
analogous expression as the one-loop equations, using pre-computed one-loop bubble functions,
computing the two-loop contributions amounts the same numerical complexity as the one-loop
terms and thus approximately doubles the numerical effort.

B.1 Parametrization

As usual, an efficient implementation requires the explicit parametrization of vertices in analogy
to Ref. [13]. This parametrization is equivalent for both the one-loop (X ) and the two-loop bubble-
functions Y so that for brevity we shall only write the results for X explicitly. It is evident from
their definitions that the bilocal property of vertices carries over to X and Y due to the local
nature of propagators. In the case of vertices, it is possible to re-arrange indices such that they
are always of the form ΓΛii j j , however, for X and Y only the first and last two indices may be
interchanged and hence we need to distinguish two distinct types of bubble-functions upon real-
space parametrization

XΛi j ≡ XΛii| j j

X̃Λi 6= j ≡ XΛi j|i j , X̃Λii = XΛii . (17)
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Physically, XΛi j corresponds to an RPA-type contribution in which a summation over all sites oc-
curs. This can be seen from Fig. 11, where after external site indices are inserted, the propagators
carry an internal site index k which may differ from both i and j in contrast to X̃ i j . Furthermore,
energy conservation implies X (ω1,ω2|ω3,ω4)∝ δω1+ω2+ω3+ω4,0 and equally for Y which al-
lows the usual definition via only three exchange frequencies s, t, u. Subsequently, summations
over flavors may be computed explicitly by making use of the global SO(3) symmetry to distin-
guish three X -types Xa, X b, X c and four X̃ -type vertices X̃a, X̃ b, X̃ c , X̃d . Here, the labels a . . . d are
defined as sets of flavor indices:

a ≡ x x |x x b ≡ x x |y y c ≡ x y|x y d ≡ x y|y x . (18)

All other combinations of flavors are either zero (e.g. the types x x |yz), or may be transformed
into the ones above via global SO(3) rotations (e.g. zz|x x → x x |y y). The d type channels need
to be defined since the first and last two indices may no longer be permuted separately for X̃ type
vertices. This finally allows us to write Eq. (16) as:

Γ̇Λ 2L
a i j (s, t, u) = Y Λa i j(s, t, u)− Ỹ Λa i j(t, s, u) + Ỹ Λa i j(u, s, t) (19a)

Γ̇Λ 2L
b i j (s, t, u) = Y Λb i j(s, t, u)− Ỹ Λc i j(t, s, u) + Ỹ Λc i j(u, s, t) (19b)

Γ̇Λ 2L
c i j (s, t, u) = Y Λc i j(s, t, u)− Ỹ Λb i j(t, s, u) + Ỹ Λd i j(u, s, t) (19c)

where Ỹ Λd ii(s, t, u) = −Ỹ Λc ii(s, u, t) = −Y Λc ii(s, u, t) and the definitions of Ya etc. are given in
Appendix B.2.

B.2 Symmetries

For the numerical implementation of the X , X̃ , Y and Ỹ -terms, symmetries of the transfer frequen-
cies s, t and u are crucial. In analogy to Ref. [13], the identities summarized in Table 1 can be
proven.

Operation XΛµ, i j(s, t, u) X̃Λµ, i j(s, t, u)

1↔ 2 Xa/b(s, t, u) not allowed

↔−Xa/b(s, u, t)

T ◦ (1, 3)↔ (2,4) s↔−s s↔−s , i↔ j

T ◦ (1, 2)↔ (3,4) t↔−t , i↔ j t↔−t

T ◦ (1, 2)↔ (4,3) u↔−u , i↔ j u↔−u , i↔ j

Table 1: Transformations of the frequency arguments under time reversal T and specific
permutations of indices in XΛ i j

1,2|3,4 and X̃Λ i j
1,2|3,4. The exchange 1↔ 2 would change X c

to the form X x y y x and X̃ to X ji|i j . Hence, the resulting symmetries take the slightly
different form in Eq. (23). Equivalent relations hold for XΛ→ Y Λ and X̃Λ→ Ỹ Λ.

Finally, we prove an identity which eliminates the need of implementing a flow equation for
the d-type-bubble functions. With the starting equation Eq. (20a) being a result of global SO(3)
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symmetry as proven in Ref. [13] we have:

ΓΛ, µ
x x x x =Γ

Λ, µ
x x y y +ΓΛ, µ

x y x y + Γ
Λ, µ
x y y x (20a)

⇒ XΛ, µ
x x |x x =XΛ, µ

x x |y y+XΛ, µ
x y|x y + XΛ, µ

x y|y x (20b)

⇒ Y Λ, µ
x x |x x =Y Λ, µ

x x |y y +Y Λ, µ
x y|x y + Y Λ, µ

x y|y x , (20c)

where µ≡ (i1, i2, i3, i4, ω1,ω2,ω3,ω4) refers to an arbitrary fixed set of site and frequencies, not-
ing that no use of permutation symmetry is made in the following. To demonstrate that Eqs. (20b)
and (20c) follow from Eq. (20a), the latter is inserted into the definitions of the one-loop and two-
loop channel functions Eqs. (2d) and (16). Using that propagators are diagonal and computing the
flavor summation first before any site or frequency parametrization is applied, we obtain

XΛ, µ
α1α2|α3α4

∼
∑

β1,β3

Γ
Λ, ν
α1α2|β3β1

Γ
Λ, ρ
β1β3|α3α4

. (21)

Here, for convenience of notation, the propagators are kept only implicitly. After inserting external
flavor labels on the left, the summation can be carried out so that

XΛ, µ
x x |x x ∼ Γ

Λ, ν
x x x xΓ

Λ, ρ
x x x x + 2ΓΛ, ν

x x y yΓ
Λ, ρ
x x y y

XΛ, µ
x x |y y ∼ Γ

Λ, ν
x x y yΓ

Λ, ρ
x x x x + Γ

Λ, ν
x x x xΓ

Λ, ρ
x x y y + Γ

Λ, ν
x x y yΓ

Λ, ρ
x x y y

XΛ, µ
x y|x y ∼ Γ

Λ, ν
x y y xΓ

Λ, ρ
x y x y + Γ

Λ, ν
x y x yΓ

Λ, ρ
x y y x

XΛ, µ
x y|y x ∼ Γ

Λ, ν
x y x yΓ

Λ, ρ
x y x y + Γ

Λ, ν
x y y xΓ

Λ, ρ
x y y x . (22)

Equation (20b) may then be proven by inserting these expressions into it and subsequently using
Eq. (20a) on all occurring instances of Γ ν and Γρ to verify the equivalence of the left and right
hand side. This procedure may be repeated for the definition of the two-loop contributions to
finally prove Eq. (20c).

As a result of this symmetry, we do not need to compute XΛc i j(s, u, t) and Y Λc i j(s, u, t) for t > u
and in particular no flow equation is required for X̃Λd and Ỹ Λd since Eq. (20b) can be written as

XΛc i j(s, u, t) =
�

−XΛa i j + XΛb i j + XΛc i j

�

(s, t, u) (23a)

X̃Λd i j(s, t, u) =
�

X̃Λa i j − X̃Λb i j − X̃Λc i j

�

(s, t, u). (23b)

Explicit parametrization of bubble functions

Using the one-loop bubble functions X and X̃ from Ref. [13], the two-loop bubble functions
can be given explicity. In the equations below, the propagator is iGΛi (ω) =

ω
ω2+ωγi(ω)+Λ2 , with

γi(ω) = iΣi(ω). While the site index is kept here for generality, it can be dropped in the case of
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lattices consisting of equivalent sites only.

Y Λa i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
�

�

ΓΛa, ki (s,ω+ω1,ω+ω2) X̃
Λ
a, k j

�

ω−ω4, s,ω−ω3

�

+ΓΛa, k j

�

s,ω−ω3,ω−ω4

�

X̃Λa, ki (ω+ω2, s,ω+ω1)
�

+2(ΓΛa → Γ
Λ
b , X̃Λa → X̃Λc )

�

(24a)

Y Λb i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
�

�

ΓΛb, ki (s,ω+ω1,ω+ω2) X̃
Λ
a, k j

�

ω−ω4, s,ω−ω3

�

+ΓΛb, k j

�

s,ω−ω3,ω−ω4

�

X̃Λa, ki (ω+ω2, s,ω+ω1)
�

+(ΓΛb → Γ
Λ
a , X̃Λa → X̃Λc ) + (X̃

Λ
a → X̃Λc )

�

(24b)

Y Λc i j = −T
∑

ω

∑

k

Gk(ω)Gk(s+ω)
�

ΓΛc, ki (s,ω+ω2,ω+ω1) X̃
Λ
b, k j

�

ω−ω4, s,ω−ω3

�

+ΓΛc, k j

�

s,ω−ω4,ω−ω3

�

X̃Λb, ki (ω+ω2, s,ω+ω1)

−ΓΛc, ki (s,ω+ω1,ω+ω2) X̃
Λ
d, k j

�

ω−ω4, s,ω−ω3

�

−ΓΛc, k j

�

s,ω−ω3,ω−ω4

�

X̃Λd, ki (ω+ω2, s,ω+ω1)
�

(24c)

Ỹ Λa i j = −T
∑

ω

Gi(ω)G j(s+ω)
�

�

ΓΛa, ji

�

ω−ω3, s,ω−ω4

�

X̃Λa, ji (ω+ω2,ω+ω1, s)

+ΓΛa, ji (ω+ω1, s,ω+ω2) X̃
Λ
a, ji

�

ω−ω4,ω−ω3, s
� �

+2(ΓΛa → Γ
Λ
c , X̃Λa → X̃Λd )

�

−T
∑

ω

G j(ω)Gi(s+ω)
�

�

ΓΛa, i j (ω+ω2, s,ω+ω1)X
Λ
a, i j

�

ω−ω4, s,ω−ω3

�

+ΓΛa, i j

�

ω−ω4, s,ω−ω3

�

XΛa, i j (ω+ω2, s,ω+ω1)
�

+2(ΓΛa → Γ
Λ
c , XΛa → XΛc )

�

(25a)

Ỹ Λb i j = −T
∑

ω

Gi(ω)G j(s+ω)
�

�

ΓΛc, ji (ω+ω1, s,ω+ω2) X̃
Λ
a, ji

�

ω−ω4,ω−ω3, s
�

+ΓΛc, ji

�

ω−ω3, s,ω−ω4

�

X̃Λa, ji (ω+ω2,ω+ω1, s)
�

+(ΓΛc → Γ
Λ
a , X̃Λa → X̃Λd ) + (X̃

Λ
a → X̃Λd )

�

−T
∑

ω

G j(ω)Gi(s+ω)
�

�

ΓΛa, i j (ω+ω2, s,ω+ω1)X
Λ
c, i j

�

ω−ω4, s,ω−ω3

�

+ΓΛa, i j

�

ω−ω4, s,ω−ω3

�

XΛc, i j (ω+ω2, s,ω+ω1)
�

+(ΓΛa → Γ
Λ
c , XΛc → XΛa ) + (Γ

Λ
a → Γ

Λ
c )
�

(25b)
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Ỹ Λc i j = T
∑

ω

Gi(ω)G j(s+ω)
�

�

ΓΛc, ji (ω+ω1,ω+ω2, s) X̃Λb, ji

�

ω−ω4,ω−ω3, s
�

+ΓΛc, ji

�

ω−ω3,ω−ω4, s
�

X̃Λb, ji (ω+ω2,ω+ω1, s)
�

+(ΓΛc → Γ
Λ
b , X̃Λb → X̃Λc )

�

−T
∑

ω

G j(ω)Gi(s+ω)
�

�

ΓΛb, i j (ω+ω2,ω+ω1, s)XΛb, i j

�

ω−ω4,ω−ω3, s
�

+ΓΛb, i j

�

ω−ω4,ω−ω3, s
�

XΛb, i j (ω+ω2,ω+ω1, s)
�

+(ΓΛb → Γ
Λ
c , XΛb → XΛc )

�

(25c)

and as a consequence of Eq. (20c)

Ỹ Λd i j = Ỹ Λa, i j(s, t, u)− Ỹ Λb, i j(s, t, u)− Ỹ Λc, i j(s, t, u). (25d)

C Details on the numerical implementation

The solution of the flow equations amounts to the numerical integration of a large system of
coupled ordinary differential equations (ODE’s). The initial conditions are given as

Γ
Λ0
c i j(s, t, u) = −Ji j

γ
Λ0
i (ω) = Γ

Λ0
a i j(s, t, u) = ΓΛ0

b i j(s, t, u) = 0, (26)

with Λ0 at least two orders of magnitude above the largest exchange coupling. To obtain a finite
system of equations, only the first Nω non-negative Matsubara frequencies are considered (nega-
tive frequencies are related by symmetries). Matsubara sums over iωn are truncated for |n|> Nw.
The error made in this approximation is controlled since the contribution of large frequencies is
typically small due to the vanishing propagator G(iωn) ∼ 1/iωn. For four-point vertices, we
must pay special attention to the fact that combinations of bosonic Matsubara integers ns, nt , nu
are (un-)physical if their sum ns + nt + nu is odd (even) [13]. Vertices with unphysical frequency
arguments will never appear in flow equations and are thus not computed. If one or more Mat-
subara integers are greater or equal to Nω, the vertex is approximated by setting the associated
index to either Nω − 1 or Nω − 2 such that ns + nt + nu is odd. This avoids the introduction of
errors at the boundaries of our frequency range. For the same reason, we also refrain from the
alternative of interpolating between frequencies and instead raise the number of positive frequen-
cies until convergence is reached. Good results are typically obtained at Nω = 32, particularly, for
temperatures T ¦ 0.5. For the lowest temperature treated, Tmin = 0.2, we found full convergence
of the structure factor below Nω = 64, while convergence of the energy per site required a higher
number of Nω = 96. At T = 0.2, the latter value corresponds to a maximum bosonic frequency of
≈ 120J1, more than two orders of magnitude larger than the relevant energy scale.

Regarding the real space cutoff discussed in the main text, we report no significant depen-
dence on the particular choice of the cutoff. If the maximum vertex length is defined by the
number of nearest-neighbor bonds instead of an (isotropic) distance L, the same scaling behaviour
is observed.

Numerically, the flow equations were solved using adaptive, error-controlled methods pro-
vided in the Julia package “DifferentialEquations.jl” [58]. To allow for accurate numerical deriva-
tives of the free energy, a relative tolerance ∼ 10−8 is required in which case the Dormand-
Prince(5) method was found to be most efficient.
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