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Abstract

We present the T-flow renormalization group method, which computes the memory
kernel for the density-operator evolution of an open quantum system by lowering the
physical temperature T of its environment. This has the key advantage that it can be
formulated directly in real time, making it particularly suitable for transient dynamics,
while automatically accumulating the full temperature dependence of transport quanti-
ties. We solve the T-flow equations numerically for the example of the single impurity
Anderson model. We benchmark in the stationary limit, readily accessible in real-time
for voltages on the order of the coupling or larger using results obtained by the functional
renormalization group, density-matrix renormalization group and the quantum Monte
Carlo method. Here we find quantitative agreement even in the worst case of strong in-
teractions and low temperatures, indicating the reliability of the method. For transient
charge currents we find good agreement with results obtained by the 2PI Green’s func-
tion approach. Furthermore, we analytically show that the short-time dynamics of both
local and non-local observables follow a “universal” temperature-independent behaviour
when the metallic reservoirs have a flat wide band.
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1 Introduction

The physics of open quantum systems is crucial to many fields and much progress has been
made in the description of their transient and non-equilibrium dynamics. By now certain sit-
uations are well understood and characterized, such as the important case of memoryless
Markovian semigroup dynamics governed by the Gorini-Kossakowski—-Sudarshan-Lindblad
(GKSL) [1, 2] quantum master equation (QME), which typically arises in the limits of weak
coupling or high temperature. As the temperature is lowered towards the system-reservoir
coupling scale, the dynamics is no longer well described by a semigroup. The required non-
semigroup corrections are however often unproblematic to compute using well-developed per-
turbation expansions of either the memory kernel [3] or the time-local generator [4], whose
precise connection has only recently been worked out [5, 6]. In contrast, the description of
physics at low temperatures, strong coupling and large interactions remains challenging al-
though much progress has been made. Various advanced methods focusing on either station-
ary or time-dependent quantities have been devised, such as the functional [7-9], numeri-
cal [10,11] or density matrix renormalization groups [12, 13], quantum Monte Carlo meth-
ods [14] or path integral approaches [15,16], to name but a few. Here we focus in particular
on semi-analytical calculations of the dynamics of the density operator, in particular the real-
time renormalization group (RTRG) method [3] based on a diagrammatic expansion of the
memory kernel. Its most recent formulation, the so-called E-flow RG scheme [17], has been
successfully applied to a range of models [18-21] and provides a number of key technical
ideas for the present paper.

However, already an earlier version of the RTRG approach led to the interesting insight [22,
23] that the Liouville density-operator space for a large class of fermionic models can be
elegantly generated using “superfermionic” excitations [24], simplifying this theory both in
frequency and time representation. This led on the one hand to the discovery of the non-
perturbative fermionic duality [25,26], an exact “dissipative symmetry” which cross-relates
different eigenvalues and -vectors of the memory kernel and propagator in a simple fashion.
Corresponding exact relations for the Kraus measurement operators of the dynamics, the time-
local generator and its Lindblad jump rates and -operators have recently been worked out [27].
On the other hand, it was found that approximate calculations could be improved beyond the
standard bare perturbation theory [28,29]: by directly going to the wideband limit a much
simplified renormalized perturbation series was obtained [6, 22,23,30]. Unlike the bare ex-
pansion around the decoupled limit I' — O of reversible dynamics, here one expands around
the high-temperature limit T — oo, which already includes dissipative behaviour into the ref-
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erence solution of the series. This leads to completely different — and often better behaved
- memory-kernel approximations [6, 22, 23, 30] and facilitates solution of exactly solvable
cases [23,27,30].

In the present paper we pursue this development further and introduce the T-flow method.
It allows to compute the memory kernel using the physical temperature T as a renormalization-
group flow parameter starting from T = oo, where the evolution is known to be a GKSL-
semigroup [22,23] with simple jump operators [27,30]. The basic idea is to obtain the low-
temperature dynamics by literally lowering the physical temperature of the system’s environ-
ment in small steps and systematically computing the memory kernel corrections that this
generates. For this task the above mentioned renormalized perturbation expansion forms the
natural starting point and we show how it can be combined with key techniques of the later
developed E-flow scheme: by simply taking a T derivative (instead of an E derivative) of the
full diagrammatic series for the memory kernel and the effective vertices one readily obtains a
self-consistent hierarchy of differential equations, which can be systematically approximated
while self-consistently keeping full time-propagators between the effective vertices.

In contrast to the E-flow method, we can formulate everything directly either in the time
or frequency domain. Here we focus on numerically solving the T-flow RG equations in time
space for the example of an interacting Anderson dot. Notably, in doing so we automatically
generate solutions for all temperatures. One thus works directly in terms of the temperature
dependence of relevant time-evolving quantities, which are closely connected to the many-
body physics of interest and their experimental signatures. Clearly, this built-in feature of the
T-flow is of special interest for thermoelectric calculations which are, however, beyond the
scope of the present work.

The paper is organized as follows. In Sec. 2 we connect the time correlations of the envi-
ronment to the key idea of the T-flow. Here we merely try to provide some physical intuition
for the later technical developments. In Sec. 3 we introduce the exemplary Anderson model,
its superfermion Liouville-space formulation and the renormalized perturbation theory around
T = oo. From this natural starting point we derive the T-flow equations in Sec. 4 borrowing
techniques from E-flow. We present our first results in Sec. 5, focusing on charge currents,
occupations and charge fluctuations after verifying the legitimacy of the computed propaga-
tors (complete positivity). We investigate the reliability of our approach by comparison with
various other methods and as a first application we investigate the impact of the interaction
on the phenomenon of reentrant charge decay [30]. We summarize and point out future di-
rections in Sec. 6 and discuss relations of our technical results to the broader understanding
of memory effects in open quantum systems [31]. We set i = kg = 1.

2 Temperature as flow parameter: Time-correlations

We first consider for simplicity a system in contact with a single environment, the latter ini-
tially in equilibrium at temperature T. As mentioned in the introduction, the basic idea of
the T-flow is to calculate low-temperature dynamics by literally lowering the temperature of
the environment step-by-step. To develop some intuition for this we focus on the environ-
ment correlations. This suggests that our method is similar in spirit to Wilson’s RG for critical
systems [32] with the key difference that correlations in time — instead of space — are at the
focus. In particular, the temperature T sets the inverse correlation time and we will show in
the next section that these time-correlations are effectively encoded into a single temperature-
dependent correlation function y~(t, T). The crucial underlying assumption for this is that
the reservoirs are non-interacting: in this case all multi-particle correlation functions of the
reservoirs — determining the time-nonlocal backaction of the system via the memory kernel .
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— factorize into one-particle functions (Wick-theorem).

Following Wilson’s idea we set up a flow from the high-temperature limit where the corre-
lations are short-ranged (y~ = 0 for T — ©0) to one with long-ranged power laws (y~ o< 1/t
for T — 0). Thus, in the low-temperature regime of interest different time scales contribute

equally when integrating power law correlations (e.g. ftlot dt’/t’ = 1n10 independent of t)
to compute the dynamics. An important difference with Wilson’s RG is that we do not intro-
duce an artificial flow parameter into the description, but instead use a variable that is already
part of the problem. This is similar in spirit to the E-flow RG method for open quantum sys-
tems [17], which by choosing the Laplace variable E as flow parameter is intrinsically bound
to the frequency domain, in the sense that only at the end of the calculation one can go to
the conjugate time-domain. By instead choosing the physical environment temperature T we
remain flexible to work in either domain.

Whereas at high temperatures the dynamics can be computed via a memory kernel X using
perturbation theory, this becomes unreliable at low temperatures, because the slowly decaying
correlations amplify higher order contributions requiring a more systematic treatment. In
the T-flow this is done by integrating out thermal fluctuations in many small steps 6T, as
opposed to treating the entire correction T = o0 — 0 in one piece. Thus the reduction of
thermal fluctuations generates effective higher-order coupling effects. These corrections are
controlled by the temperature sensitivity of the correlation function, d;y~. A key observation
is that this quantity never behaves as a power law in time and even vanishes at T = 0 for all
times, in contrast to Y~ itself which is divergent for t — 0 and slowly decaying for t — co. In
this sense, the computation of the temperature sensitivity of the memory kernel, ; %, is better
behaved than that of X itself. This is very similar to the calculation the memory kernel in the
E-flow method [17].

At this point it is important to note that we do not change temperature as function of
time. Instead we consider the entire dynamics — via its memory-kernel — at temperatures
T and T — 6T when we stepwise lower the temperature. Proceeding this way it is by no
means obvious that we do not pass through T = 0 and continue to negative temperatures.
However, the above mentioned properties of the temperature sensitivity of the correlation
function ensure that this does not happen: as we will see, the T-flow terminates at the fixed
point T = 0:

_om,

Finally, before turning to the technical implementation, we highlight that because in our
T-flow method temperature itself serves as a flow parameter it does not play the role of a
cut off in the technical RG sense (there is no other running energy scale). This should not
be confused with the fact explained above that temperature sets the inverse correlation time
beyond which time integrations stop contributing, i.e., it does cut off time integrations in the
ordinary non-RG sense (time is not a flow parameter).

3 Renormalized perturbation theory around T = oo

With these ideas in mind, we now concretely set up the approach for the Anderson impurity
model, noting that the following analysis can be extended straightforwardly to a large class of
relevant fermionic transport models, see Refs. [23,25,27] for details. The system consists of
a single orbital quantum dot with energy € and Coulomb repulsion U described by

H =e(ny +n))+Unyny, (2)
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where n, = d/d, denotes the number operator for spin o. Several non-interacting electron
reservoirs

HR = ZJ‘ dCO(O) + nu'r)a;ro-(w)ara(w) (3)

are connected to the dot via tunnel junctions

HT - ZJ dw \ l;r_; (aia(w)da + dl-aro(w)) . “4)

We take the reservoirs labelled by r to be initially in grand canonical thermal equilibrium at
different temperatures T, and chemical potentials u,. The spin-dependent spectral densities
T, are assumed to be energy independent (wideband limit) and real-valued. The total system
is described by

H.,=H+Hyp+Hry. (5)

Assuming that the total initial state is a product state, p,,.(0) = pg ® pr , there is a well-
defined propagator II(t) of the system density operator, p(t) = II(t)p, for arbitrary initial
states p,. The propagator satisfies the time-nonlocal quantum master equation [3, 33,34]

t

T1(t) = —iLII(t) — if dsK(t,s)II(s), (6)

0

where Le := [H, o] is the local Liouvillian and X denotes the memory kernel. In our case the
memory kernel depends only on time differences, K(t,s) = K(t —s), since the system is time-
translation invariant. By directly computing the propagator, we can analyse the time-evolution
for arbitrary initial states pg.

A standard way to compute K is via a bare perturbation theory in the coupling I' [28,35].
We will use this as an example to introduce the superfermion description of Liouville space
and some notation. With the fermion parity operator (—1)" := (1—2n;)(1—2n;) and fermion
operators

di for n=+
— (02
dno : { d, for n=-— 2
superfermions denote superoperators acting on an operator argument e as
GP 0= —=[dy 0 +p(—1)" o (—1)d, , ] ®)
no- 1/5 no p no |
Roughly speaking, p = + gives a creation and p = — an annihilation superoperator, similarly
to their operator analogues (7). For example, superfermions anticommute as
P1 P2 _ _
(Gh,GP2} =5, 5 515, ©)
where we use multi-indices 1 = (17, 0;) and the notation p := —p, 1 := (—n;,0;). They

furthermore respect a super-Pauli principle, (Gf )? = 0, which formally means that it is im-
possible to create (or annihilate) the same superfermion twice [23]. Any superoperator can
be expressed in terms of strings of creation or annihilation superfermions. For example, the
Liouvillian L can be written as

L=>[7(e+3U) Gi G, +3U (G;CTGWGWGW + G;GG;C,G;UG;G)]
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The memory kernel can be computed via its diagrammatic representation as the sum over
connected diagrams, which is a series around the uncoupled limit:

B S 5 W e s B W S (10)

Here the single horizontal line, directed from right to left (not indicated), represents the ref-
erence dynamics II,(t) := e 'Lt, see Refs. [3,23] for details. For example, using the super-
fermions the lowest order diagram is explicitly given by

iKW = [ =206 TG, an

where we implicitly sum over all repeated (multi-)indices. The two possible contraction func-
tions are given by yi’(t) = TYo(t) = > yf,m(t) with

Yor(t) = 316 6(t) (p=+), (12a)
L,T -

- —_jroTr iUt —

Vor ()= i ise ™. (p =) (12b)

These are essentially the retarded and Keldysh reservoir correlation functions [22, 30], re-
spectively. The & distribution — defined such that f Ot 5(t —s)f(s)ds = f(t) - occurs in the
temperature independent }/;”a contraction and is a consequence of the wideband limit, which
was taken from the very beginning in the definition of the Hamiltonian in Eq. (4). It leads to
a separate time-local contribution present in the memory kernel:

K(t—s)=(L+X)0(t—s)+X(t —s), (13)

where
) . 1 4o
—i X = —3 Er o, G] Gi' 14

Adding this to the Liouvillian of the uncoupled system we obtain the new reference Liouvillian
Loo =L+ o, (15)
which generates the exact GKSL-semigroup dynamics of the model at infinite temperature [23],

Mo, (t) = lim TI(t) = e Leot, (16)

In other words, by the simple renormalization (15) of the kinetic equation (6) we obtain the
exact result at T = oo for the propagator II(t). Interestingly, it is now possible to formulate a
renormalized perturbation theory around the infinite temperature limit [3, 23] by resumming
all the time-local yjlo contractions exactly. To do so the diagrammatic rules have to be changed
as follows: first, only ¥ o Contractions and superfermionic creation operators G:;G are allowed.
Second, all of the intermediate uncoupled propagators I, are replaced by infinite temperature
propagators Il,. Thus, the renormalized version of Eq. (11) reads

—ixM() =[] =—17(0G M (1G] (17)

Compared to the bare perturbation theory this already incorporates dissipation into the ref-
erence solution, often! improving the quality of the approximation. For example, a finite
number of terms of the renormalized series gives the exact solution in three different physical

IThis is true for the renormalized time-nonlocal memory kernel approach, but not for the renormalized version
of time-local approach (TCL), see Ref. [6].
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limits: By construction it is exact in the limits of vanishing coupling I' — 0 or infinite tem-
perature T — oo, but it can be shown that it is additionally exact in the non-interacting limit
U — 0[23,30] for any T and T, which is not the case in any finite order bare perturbation
theory in T.

Whereas the memory kernel can be used to compute the density operator and thus ex-
pectation values of local observables, it is not sufficient to determine expectation values of
nonlocal observables such as transport quantities. For these additional observable-kernels are
needed [3]. Here we will focus on the particle current flowing out of reservoir r defined by
I,(t) == =0, (N, )1t(t), which can be obtained using a current kernel K; via

t
Ir(t)=—iTrf dsK; (t —s)p(s). (18)
0

Similarly to the the ordinary memory kernel C [cf. Eq. (13)] we can decompose
/CIr(t—s)ZZIr’OOS(t—S)-i-ZIr(t—S). (19)

Here the first term is time-local due to the wideband limit and gives the infinite temperature
part of to the current-kernel. This term corresponds to the renormalization (15) of the kinetic
equation (6) that we performed to obtain the exact result at T = oo. When it is applied
to a finite-T state, we obtain a contribution to the current expectation value that probes the
deviation of the spin-orbital occupations from half filling,

I oo(t) = —1Tr % oop(t) (20)

1 -
:—anl"rol TrGl G:_l p(t) (21)

=S, G_<no>(t)). (22)

Note that lim,_,o+ I,(t) = I, 5c(0) # O in general: the current instantly rises at t = 0 (no
coupling) to a finite value because we are working in the wideband limit. For large but finite
bandwidth D the current approaches our result on the very short timescale 1/D [23,36,37].
The time-nonlocal current-kernel %; can be computed using the same diagrammatic series
that is used for %, except that the leftmost vertex and its contraction need to be replaced [3]. In
the superfermionic notation we use here this amounts to replacing the leftmost G:; - gG;U

and Yoo = Voor: Thus the leading order renormalized diagram of the current kernel reads

-z = & d=-1, , (0BG ()G, (23)

where we use a cross to indicate the replaced vertex.

4 The T-flow renormalization group

We are now ready to derive the self-consistent T-flow equations for d;%, which allows us to
lower the temperature in small steps 6 T, schematically via %(t, T—6T) = %(t, T)—o;%(t, T)6T.
This is inspired by the derivation of the E-flow method [17], in particular by the definition of
the effective vertices and the usage of full propagators between them. For simplicity we con-
sider the case where all reservoirs have a common temperature T, = T — the general case is
explained in App. D — while allowing for arbitrary applied bias V = u; — ugz. We are thus
considering transient dynamics to a non-equilibrium stationary state.
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We first bring the renormalized series in self-consistent form by resumming all connected
subblocks without uncontracted lines, thereby replacing infinite temperature propagators I,
by full ones represented by double lines, [T = =——. We then have

—ix=_ l+{ 3+ (24)

Thus for example, the third term of Eq. (10) is already contained within the first term of
Eqg. (24) and so on. Next, we introduce effective n-point supervertices G; , as sums over all
connected diagrams with n uncontracted lines. Specifically we will need

== ey (25)
G125&3:ﬂﬂ_‘l+"'. (26)

Note that the T-dependent effective supervertex G; (without superscript) differs from the T-
independent superfermion G;r (the first term in (25), defined by Eq. (8) with p = +) by finite-
temperature corrections. Some remarks are necessary to make the above definitions more
precise and these are given in App. A. Importantly, one can express G; using G, and IT in a
self-consistent manner as

=1+ + =+ =3 27)
This can be seen in the following way: cutting off the leftmost vertex in each term of Eq. (25)
from the rest of the diagram (except in the trivial first term), the remaining part on the right
will have two uncontracted lines and will either be disconnected or it will remain connected.
In the former case the diagram before cutting will be included in the second term in Eq. (27),
whereas in the latter case it must belong either to the third or fourth term. By this way of
sorting, all diagrams are included without double counting. Combining Egs. (24)-(25), we
see that the memory and current kernel can be expressed using effective supervertices as

—ix= . o—in =) (28)

Note that the resummation to full propagators performed to obtain Eq. (24) is crucial for
Egs. (28) to hold.

In the following we will focus on the memory kernel, noting that the treatment for the
current-kernel is formally very similar. Taking a T derivative of Eq. (28), which we diagram-
matically represent using a slashed line, we obtain the key relation

.0%
—ig =1+ 0+ (29)
The first term contains the temperature derivative d;y~ (slashed contraction) given by
o, il elhrt ntT
nor ro
t,T)= -1 30
oT (&,T) sinh(7ctT) [tanh(rctT) ] (30)
1 -1
. i _ 7 for t<LT
~ Ut ntT 3
il e ntTe { 5 for t> T 31

which is explicitly divergence free. As mentioned in Sec. 2, it never behaves as a power law
and even vanishes identically as T — 0. The second term of Eq. (29) contains the temperature
derivative of the propagator d;I1 = ===. We show in App. B that this is connected to the T
derivative of the memory kernel via

(32)
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where * denotes time convolution. This turns Eq. (29) into a self-consistent equation for ;3.
The third term of Eq. (29) requires the temperature derivative of the effective supervertex
drG;. It can be obtained by differentiating (27). Here the two-point vertex drG;, enters,
which can only be expressed in an exact manner using three-point vertices dr G153 and so on.
This way a hierarchy of self-consistent differential equations is obtained.

Approximations within the above general T-flow scheme consist in truncating this hierar-
chy. To do so we count the number of bare vertices present in each term, which keep track
of the number of contraction functions y™~ in which we are expanding. For example, the first
and second term of Eq. (24) are counted as (’)(G+2) and (’)(G+4), respectively. In this first im-
plementation of the method we will keep all terms in the vertex equations such that Eq. (29)
consistently includes all terms of order (’)(G+6). This means that the T-flow vertex equations
are

=3+ T+ T+ + e
+ gl + el + = e+ 06T, (33)
T =—=F—+0:G™. 34

Eq. (29) together with Egs. (33)-(34) constitute the main result of the paper. They form a
closed set of self-consistent differential equations for the memory kernel ¥ and the effective
supervertices G; and G, — describing the entire dynamics and transport — as function of tem-
perature T.

The above derived T-flow is started at some high, but finite temperature T, < 00, where
initial conditions are obtained straightforwardly using the renormalized perturbation theory:
we first compute the next-to-leading order memory kernel %(To,) (see Egs. (35a)-(35¢) in
Ref. [6]), which is then used to solve the corresponding time-nonlocal quantum master equa-
tion giving the propagator I1(To ). Inserting I1( T, ) into the first two terms of Eq. (25) gives
an initial value for the supervertex G;(T,). Similarly the first term of Eq. (26) is used to
compute Gi5(Too)-

Using Eq. (30) it is now easy to see that the T-flow reaches a fixed-point at T = 0 [Eq. (1)]:
taking a T derivative of the renormalized perturbation series (10) for K each summand con-
tains exactly one 3TY;U factor, which vanishes for all times t > 0 as T — 0 as discussed. By
the decomposition (13) this implies that limy_,, 97 2(t, T) vanishes.

Finally, we mention that the t = 0 singularity in the contraction y~ never contributes ex-
plicitly in Eq. (29). This is because in the first term only a non-singular slashed contraction
8T}/;a enters. Furthermore, we show in App. C that in the second and third term the singu-
larity is always compensated. Thus, provided the initial propagator is time-non-singular, it
will remain so during the T-flow making the approach well behaved and suitable for numer-
ical calculations. This is indeed the case for Anderson-like models considered here, since the
initial propagator is computed using next-to-leading order renormalized perturbation theory,
for which the singularity is known to be canceled out by the anticommutation of the super-
fermions (8) [6,22].

5 Results

We now present results obtained by numerical solution of the T-flow equations for non-zero
interaction U, whose implementation details are discuss in App. E. We focus on transport ob-
servables but emphasize that we have checked that every computed propagator is a completely
positive map at each time t. This is a basic criterion for the physicality of an approximation en-
suring it also properly evolves the system when it is entangled [30,38]. Furthermore, in App. F
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we explicitly show how the T-flow recovers the known exact solution at U = 0 [23,27,30].

5.1 Stationary limit

We first consider the stationary limit for the purpose of benchmarking, stressing right away
that this is not the limit where a real-time formulation is supposed to be particularly advan-
tageous. For this reason, we need to restrict our attention to bias V > T, since for smaller
bias the stationary limit is reached only at relatively large times, which is of course challeng-
ing when working in the time-domain. We consider the dot at the particle-hole symmetric
point € = —U/2 connected to two reservoirs r € {L,R} with temperature T; = Tz = T under
a symmetric bias u;z = £V /2 with I, = T independent of r and o. For sufficiently low
temperatures the Kondo effect becomes important and renders both bare and renormalized
perturbation theory computations unreliable.

0.7 ; ; 0.45 « ; ; ;
T-flow t 04 LY U=2I V=1 — |
0.6 - QMC % . : \ U=2ol,V=2I - - -
tDMRG o 035 F U=4T,V =1 —— |
05 fRG o3[~ U=4I, V=2 - - -
SO N U=8, V=1 — |
% 0.4 {u 0.25 [ AN U=8rLV=2I - - - |
Z 03l (a) | F02p
U=sr ., %
" 0.15 F
0.2 + * T x E
- * 0.1
01} / s~ * il
: U = 10T 0.05 |
0 L L L L L L L 0 L L L L L
0 05 1 15 2 25 3 35 4 0 1 2 3 4 5 6
V)T T/T

Figure 1: Stationary current at the symmetry point €e = —U /2. (a) Comparison of the
stationary current I, at T = 0 as function of bias V between the T-flow method,
fRG, tDMRG and QMC. (b) Stationary current as function of temperature.

In Fig. 1(a) we compare the obtained stationary current I, as function of V. = u; —uz for
T = 0 with results from the functional renormalization group (fRG), time-dependent density
matrix renormalization group (tDMRG) and real-time quantum Monte Carlo method (QMC)
reported in Refs. [8,39,40]. We find very good agreement with all four methods for U = 2I'
and U = 4T'. At U = 8T we see that the currents predicted by our method are very close to
the QMC ones, but slightly higher than the currents of fRG and tDMRG. The agreement with
QMC persists for U = 10T noting that for this value no fRG and tDMRG data were reported in
Ref. [8].

In Fig. 1(b) we show the stationary current as function of temperature. Here each curve is
efficiently obtained within a single T-flow renormalization group trajectory. We find that the
current is monotonically increasing as T is lowered. The asymptotic current for high temper-
atures is independent of € and U and given by

rv

Istat = 4_T if T > F, €, U, V, (35)

which can be derived from the kernels (17) and (23).
In Fig. 2 we show the stationary charge fluctuations (An)ft at = (nz )stat — (n)ft ¢ - Because
the stationary occupation at the symmetry point equals (n),. = 1, it follows that the stationary

charge fluctuations are related to the stationary occupation-correlation as

(An)?tat = 2(nyny ) sear- (36)

10
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The behaviour for high temperatures can be analytically calculated from Eq. (17) to be

1 4e +3U
2 —
(An)3%(T) =3 (1 -7

) for T>T,¢e,U,V, (37)

which we stress also holds if the system is not at the particle hole symmetric point. The tem-
perature dependence is shown in Fig. 2(a): Whereas the curves for different bias V merge
at high T into the limiting curve (37) [inset], the fluctuations at small temperatures are sup-
pressed as expected by Coulomb blockade. However, the fluctuations hit a global minimum
at finite T, which is especially noticeable for small V, after which they increase again. For the
chosen parameters this minimum occurs at T ~ 0.4T for V =T and then moves towards lower
temperatures with increasing V. We attribute this enhancement of charge fluctuations at small
T and V to the onset of the Kondo effect which in the T-flow method requires an account of
time-correlations on increasingly larger time scales as temperature is decreased. Since a large
bias suppresses the Kondo effect, the finite temperature minimum of the fluctuations should
become less pronounced at larger V, which indeed can be seen. Fig. 2(b) shows that for the
chosen parameters the fluctuations scale as

(An)? (T)=(An)? (TZO)[l—CT—Z] if T<T, (38)

stat stat 2

where the constant ¢ depends on U and V. This T? scaling is ubiquitous for the Kondo effect
in the low temperature Anderson model and appears for example also in the conductance as
function of V or T (for V,T < Tg) [17,41].

0.34 ‘ ‘ 1072
0.48
032 5 (b)
03 |
- 0.28 <§| 103 B
= 026 | =
o S
= 0241 &
< 5
= 022 V = 4T = 10 V=4 —— |
0.2 V =3r g V=3l
V=2 —— I V=2 ——
0.18 V_ir - V=1 —
0.16 1 1 1 1 1 1 1 10-° 1
0 05 1 15 2 25 3 35 4 0.01 0.1 1
/T /T
Figure 2: Stationary charge fluctuations (An)?tat as function of temperature for
U = 8T, e = —U/2 and several bias voltages. (a) Low and intermediate temper-
ature regime. Inset: High temperature regime. (b) Scaling of the fluctuation for
TLT.

5.2 Transient effects

We now turn to the transient dynamics. Here we find quite generally that the short time be-
haviour of the propagator is independent of temperature. This contribution stems not just from
the leading-order infinite-temperature limit, but additionally from the initial temperature-
independent part the memory kernel: For small times 6t we have

T(5t) =Moo (5t)— %Z}(t =0)5t2, (39)

11
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where for conciseness we have not expanded the first term, with the temperature-independent
zero-time kernel

: 2 +, 2 + ot
~i%(t=0)= ~TG] Lo +EF;urG+GG_G. (40)
Here the second term does not contribute for symmetric bias u; = —uy considered here. This

T-independence means that there is no T-flow of the propagator at short times 5t < I, As
a consequence all local observables are initially insensitive to temperature as, for example, the
occupations

()60 =5 = 2% (3= tng)y, ) +[U (5= 0dp, ) -5 | 6% @)

where again we do not expand the exponential for conciseness. Here the first two terms
describe decay to half filling coming from the infinite temperature propagator in (39). The
third and fourth terms add quadratic corrections depending on the initial deviation of n; from
half filling and the level deviation from the symmetry point. This is shown in Fig. 3, where the
transient occupation (n)(t) = (ny)(t) + (n;)(t) is plotted for several temperatures. Because

1 L
0.8 | |
= 06 | ]
T o4l T=0" ——
T—1 ——
T =3r
0.2 + T=00 —— ]
/ Eq. (41)
O I I I I I
0 0.5 1 15 2 25 3

Figure 3: Transient occupation (n)(t) for U = 4T, ¢ = —U/2, bias V =T and sev-
eral temperatures. Initially the dot is empty, o, = |0){0]. We note that the O(5t2)
contributions of Eq. (41) are negligible here, but can play a role, see Fig. 5.

the initial evolution is T-independent as explained above and the stationary occupation is fixed
by the particle-hole symmetry, temperature can only affect the intermediate occupations. A
noticeable detail of this crossover from weak to strong coupling is that for this moderate value
of the interaction the occupation slightly overshoots its stationary value (n)g, = 1 for the
lowest temperatures, but this effect is lost already for U = 8T' (not shown).

Interestingly, for non-local observables the short-time behaviour may also be temperature
independent. An example is the particle current plotted in Fig. 4. Similar to the decom-
position (39) there are contributions from both the infinite temperature current and the T-
independent zero-time current-kernel, e.g., for the left reservoir:

ot ot
=(V—U—26)7+(1—(n)p0)F[1+(U—2nF)F]. (43)

Again we stress that this result also holds if the system is not at the particle hole symmetry
point. In Fig. 4(a) I;(t) is shown for large interaction U = 8" at bias V =T as the temperature
is lowered. As expected the initial onset of the current follows Eq. (43). Whereas for T 2 T
the current monotonically converges to its stationary value, at lower temperatures the current

12
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after an initial increase first decreases until tI' ~ 1 and then turns up again. For T < 0.2T
the stationary current is significantly higher than the local maxima at tI' &~ 1/2. The local
minimum at tI' & 1 becomes less pronounced if U is decreased and eventually vanishes (not
shown).

In Fig. 4(b) we compare the transient currents obtained by the T-flow with those obtained
in Ref. [42] using a two-particle-irreducible effective action (2PI) approach at low temperature
T = 0.1T and intermediate interaction U = 4T". We find overall good agreement. In particular,
both predict that the current slightly overshoots its stationary value at large bias. At small bias
the stationary current of the 2PI approach is slightly smaller compared to our T-flow result,
which in the stationary benchmarks in Fig. 1(a) compared favourably with other methods.

0.1 [(®)
0.08 |
= 006
=
=004 |
T =200 — T =047
0.02 T=10I —— T=02I —
: T =0.8T T =0.00
T =0.6T Eq. (43)
0 1 1 1 1
0 1 2 3 5
1T
Figure 4: (a) Transient current I;(t) for U = 8, ¢ = —U/2, V =T and several

temperatures. Initially the dot is singly occupied, p, = |T)(T|. (b) Transient current
I;(t) for U =4T, e =—U/2, T = 0.1T and several bias voltages. Solid lines: T-flow.
Dashed lines: 2PI approach from Ref. [42].

Finally, as an application we consider the transient effects of the interaction in the empty-
orbital regime € > {T',V}, which is characterized by (n)sy;r=0 ~ 0. Perhaps surprisingly,
preparing the dot in a state with a higher occupation than its stationary occupation need not
lead to a simple decay of the occupation. Instead, it is possible that the dot initially fills up
more as predicted in Ref. [30] on quite general grounds. How this can happen can be under-
stood specifically from Eq. (41), which shows that initially the occupation grows towards half
filling — away from the stationary value — as dictated by I1,. Indeed, in Fig. 5 the occupation
initially increases until tT' ~ 0.3, after which the naively expected monotonic decay starts.
The occupations then reenter their initial value precisely at the reentrant time t, = I'"*. More
strongly, for the chosen initial state this reentrance occurs for any local observable of the dot, as
for example the correlation in Fig. 5, implying that the entire reduced density operator returns
to its initial value.

This at first puzzling reentrant behaviour was already explained in Ref. [30] in general
terms showing that it is generically enforced in non-semigroup dynamics by the fundamental
property of trace-preservation of the dynamics. In short, for every time ¢, the propagator has a
fixed point, i.e., some operator denoted p,(t,) such that TI(t,.)p,(t,) = p1(t,), which is more-
over a physical state, p;(t,) = 0 and Tr p;(¢t,.) = 1. Thus, all local observables must return to
their initial values at time t, if the initial state py = p;(t,) is prepared. (Note that this argu-
ment does not imply reentrant behaviour of non-local observables such as currents measured
outside the system.) Whereas in Ref. [30] this general effect was predicted, it was illustrated
only for the occupation of a non-interacting spinless quantum dot coupled to a single reservoir,
a solvable model. Here we have illustrated that it occurs for more than one observable and
shown that it remains clearly visible in the strongly-interacting, low-temperature case under
finite bias transport conditions. We highlight that the rationale behind the T-flow method

13
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ties in directly with the competition between finite-T and infinite-T dynamics that drives this
physical effect.

=

0.05

tI

Figure 5: Reentrant effect for dot occupation and correlation for parameters U = 8T,
€ =2.75T, V =T at T = 0. The reentrant effect for time t, = I'""! is realized by the
initial state po with (ny),, = (n}),, & 0.131 and (nyn;), = 0.007.

6 Summary and outlook

In this paper we presented the T-flow renormalization group method, which uses the physical
environment temperature to achieve a flow of the density-operator dynamics to its nontrivial
low-temperature limit. Starting from the simple high-temperature limit, the temperature is
lowered in many small steps using the self-consistent RG equations (29)-(34). In this way we
collect useful information about the physics at all traversed finite temperatures, which sets our
scheme apart from RG methods using unphysical flow parameters.

We implemented the RG equations directly in time space at the example of an interact-
ing Anderson dot including vertex corrections. For voltages on the order of the coupling or
larger, stationarity is reached quickly, allowing us to benchmark our transient method in the
stationary regime. We demonstrated quantitative agreement in the current-voltage character-
istics, noting in particular that the agreement with accurate quantum Monte Carlo simulations
extends up to U = 10T'. Comparing transient currents with the 2PI Green’s function results
we found good agreement as well. Interestingly, we could show analytically that the short
time dynamics of both local and nonlocal observables are temperature independent in the
wide-band limit considered here, with important contributions from the short-time memory
kernels. The observed collapse of the data onto a T-independent limiting curve may be of
interest for experimental studies of transient transport.

As an application we investigated the reentrant effect found in Ref. [30] for a solvable non-
interacting model: the charge prepared on a quantum dot which is destined to decay can ini-
tially show an unexpected pronounced further accumulation. We showed that this effect is due
to a generic interplay between short-time infinite-T dynamics and long-time finite-T correc-
tions and remains clearly visible even for strong interactions and finite-bias non-equilibrium.
Moreover, we illustrated that this effect does not only occur for the occupation but also for
the correlation of two electrons in agreement with general arguments about non-semigroup
dynamics put forward in Ref. [30].

For the formulation and application of the method we focused on the case of equal reser-
voir temperatures and studied the transient approach to non-equilibrium stationary states and
transport quantities. However, we also provided the general formulation for distinct tempera-
tures of the reservoirs whose application to thermoelectric transport with strong coupling and
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interaction is interesting. The additional heat currents of interest in this situation [43,44] can
be computed by straightforward extension of the presented technique for the charge current.
Moreover, the presented method can be extended in several further directions: (i) Since the T-
flow allows to avoid the frequency domain it is straightforward to include non-periodic driving
of bias and gate voltages [V (t) and e(t)] or tunnel barriers [T'(t)]. This comes at the numeri-
cal price of dealing with double (triple) time-dependence of the contraction functions }fﬁ’ and
the memory kernel IC (the supervertex G;), but should present no principal problem. (ii)
However, it is equally well possible to formulate the T-flow entirely in the Laplace-frequency
domain by changing the translation rules of the diagrams as in Ref. [3,22]. This may provide
more direct access to stationary quantities than by converging transient calculations well into
the stationary regime, in particular for regimes where T,V < T'. How this compares with the
E-flow scheme is an interesting open question. (iii) The T-flow can also address systems with
bosonic environments provided a renormalized perturbation theory around the infinite tem-
perature and wideband limit is set up analogous to fermionic environments [20, 45], which
seems possible.

We emphasized throughout that the presented T-flow scheme is naturally suggested by
physical considerations underlying the renormalized perturbation expansion. Nevertheless,
further considerations of its physical underpinnings would be of interest. Indeed, early time-
domain formulations of the density-operator RTRG [45,46] were motivated by considerations
similar to those given in Sec. 2, but encountered technical issues. These were initially resolved
by reformulations which abandoned the time-domain [47,48] and started from a renormalized
perturbation theory which was later identified as describing the T = oo limit [22, 23] as
used here. This renormalization by the T = oo reference solution plays a crucial role in the
construction of a well-defined RG flow for the open-system dynamics, in particular, for the
special treatment required for the stationary state. This is problematic when starting from a
standard bare perturbation expansion ("zero eigenvalue problem", see the discussion preceding
Eq. (199) in Ref. [3]).

In the present paper we instead returned to the time-domain by exploiting the insights
gained in the above cited works. This has the advantage that the similarities and differences
with Wilson’s RG [32] become apparent, in particular the focus on the long-range correla-
tions which become explicit in the renormalized perturbation theory about T = oco. The
ordinary perturbation expansion does not reveal the relevant correlations since the T = o0
and T < oo contributions are completely mixed up [22,23]. This constitutes a key difference
of the T-flow to other RG approaches. Its apparently successful application here warrants
further, more detailed consideration of these physical underpinnings, in particular its close
connection to the generation of memory effects. Importantly, here memory is characterized as
retardation [5], which is related to but not the same as non-divisibility of dynamical maps [31]
(“non-Markovianity”).

The return to the time-domain achieved by our work may also enable general physical
arguments to be applied more easily to technical considerations, especially since our RG flow
parameter can in principle be changed physically in the lab. A T-flow step establishes a map-
ping between two entire physical evolutions at adjacent temperatures. Operationally this cor-
responds to an intervention on the initially decoupled reservoir state pgr(T) — pr(T —6T)
[Eq. (5) ff.] before the interaction with the system is started and before the environment is
discarded (integrated out). It has been stressed [31] that interventions on the environment
represent yet another way of characterizing memory effects beyond the framework of retar-
dation and non-divisibility of the reduced evolution mentioned above. Operationally defined
mappings of entire evolutions have been studied in detail in quantum information using the
supermap [49] and process-tensor formalisms [50] and these may find new applications here.
To apply such considerations here it is a crucial advantage that the T-flow allows one to stay
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in the time-domain, since transformation to frequency domain tends to complicate rather than
simplify operational properties of time-evolutions [38].
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A Definition of effective supervertices

Here we give the precise definition of the supervertices and show how the vertex diagrams can
be translated into explicit equations. First, it is important to keep in mind that in contrast to the
bare superfermion GIF [Eq. (8)] the effective supervertex G; also has a dependence on time.
Specifically we need to distinguish the time arguments of the latest, the uncontracted and the
earliest vertex within G;, which we label as t, T and s respectively. Thus t > 7 > s and we
denote G; = G,(t, 7,s). For time translation invariant systems this simplifies to G, (t—7, T—s).
Every vertex except the uncontracted one is associated with a prefactor of —i, and every cut con-
traction line with a fermion minus sign. Importantly the contraction function associated with
the uncontracted vertex is not part of G, itself. Thus, the first two diagrams in the definition
of G; [Eq. (25)] are translated as

1=G6(t—1)5(7—s), (44)
1 =y, (t —s)GITI(t, T)GF II(7,5)G, (45)
S

t T

where we indicated the time arguments in the second diagram. Higher order terms also con-
tain internal vertices with time arguments labelled from left to right as t; > --- > t, over
which one has to integrate in a time-ordered way. For example, the third term of (25) reads

t t
S s w— — —
dey | dtyyy(t—t2)r5(er—s)
T T

t ] ty T N

x Gy TI(t, t1)G5 TI(tq, tz)G;"H(tZ, T)G;LH(r,s)G;. (46)

The 2-point vertex G, = G15(t,T1,T9,s) is defined such that the uncontracted vertex with
index 1 (at time 7,) is always to the left of the uncontracted vertex with index 2 (at time 7,),
i.e., T; > T,. Thus

 — — — _
$ = —15(t —=5)G3II(¢t, T1)G11I(T1, T2)GoII(T2,5)Gs. (47)

t T1 T

B Temperature dependence of the propagator I1

The propagator II can be computed from the renormalized kernel X via the Dyson equation

I(t) = Mg (t) —i[M o * X x IT](1), (48)
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where * denotes time convolution. Suppressing time arguments and taking a derivative with
respect to the temperature T, of the r-th reservoir it follows that

ot 3 [—ix] ot

=II IM+1I —ix
T, o0 * T, s [T+ [ oo s [—1 ]*8Tr (49)
=— (oo + Moo # [—iD] 5 Mg + -+ (50)
oz
=—ill I1. 51
i *8Tr* (51)

To obtain Eq. (50) one iterates the self-consistent equation Eq. (49) for o;I1 treating IT, 1,
and ¥ as given. Eq. (51) follows by recognizing the term in parenthesis as the solution of the
self-consistent equation (48) for II. Setting T equal for all reservoirs we obtain Eq. (32) of
the main text. Inserting the leading order term of d;X it is straightforward to show that the
leading short-time dependence of 0,11 is quartic for small times &t:

T
8T 36

T.To, (Gf LooGY +mu,GF GT)6¢%. (52)

This explains the T-independent short-time behaviour discussed in the main text [Eq. (41)].

C Finiteness of T-flow equations

Here we establish that the T-flow equations are free of time-divergences. The diagrams in
Eq. (29) are explicitly given by

r't ty

g(t,s)z—J dtlf dtz—(t—tZ)G+H(t t1)Gi(ty, ty,s), (53)
;t Stl +3H

Q)(t,s)z—Js dtlfs dtzyl(t—tz)Glﬁ(t, t1)Gi(tq,ta,s), (54)
rt ty

g(t,s)z—J dtlf dtyy,(t —t5)GTI(t, t1) (t1,f2,3) (55)

Whereas (53) does not contain any singularities, this is not immediately obvious for Egs. (54)
and (55). In Eq. (54) we use that 9;I1(t) = O(t*), see Eq. (52). This small-time behaviour
regularizes the 1/t divergence of the contraction function. The finiteness of (55) can be seen
by switching the order of integrations:

t t1 t t
f dt1J dtzh(f—tz):J dtzJ dtyy,(t —t3) (56)
s s s ty

Now the inner t; integral vanishes as O(t — t,) making the term finite. Using very similar
arguments one establishes that all diagrams in (33) and (34) are well behaved, making the
T-flow equations explicitly time-singularity free.

D Different reservoir temperatures

Here we show how the T-flow as presented in the main text can be generalized to the case
where each reservoir has a different temperature T,. This can be applied in various ways. For

17



SciPost Physics Submission

this discussion it is useful to collect all temperatures into a single vector T = (Ty, Ty, ..., T,).
The T-flow is then started at high, but finite temperatures To, = (Too,1> Too 25+ ++> Too n)s al-
lowing us to compute an accurate initial condition using the renormalized perturbation theory.
We next chose a path T'(a) = (T;(a), To(at), ..., T,(a)) in this n dimensional temperature space
parametrised by a : 0 — 1, passing through the temperature-biased configurations of interest.
If we denote by T, the final target configuration of the reservoir temperatures (in the main
text Tp = 0) then T(a=0)=T., and T(a=1) = T,. The case from the main text, where all
reservoirs are cooled at the same rate, corresponds to T(a)=To + a(T"O— Too). Alternatively
we could keep Ty, ..., T, fixed while cooling T;, and afterwards cool T, etc..
To generalize the T-flow equations we replace all derivatives

or—0,=03T/0a Vs (57)

in Egs. (29)-(34). For example, slashed contractions now denote

o :Z aT, l:rme“wrf [ ntT, _1] 58)
da — da sinh(ntT,) | tanh(7tT,)
Note that the slashed propagator is now given by the key relation
O, I =—ill% 0, X xII (59)

[cf. (32)]. With these conventions the same diagrammatic rules apply, which makes the imple-
mentation of the T-flow for distinct temperatures straightforward. Finally, we point out that
closed temperature loops have no thermodynamic meaning here, because we are not lowering
temperature in time (each RG step computes an entire evolution).

E Numerical solution of the T-flow equations
The truncated T-flow equations from the main text form a closed set of implicit (self-consistent)

differential equations for ¥, G; and G;, and we here comment on their numerical discretiza-
tion. Suppressing time arguments these equations are of the form

o oY _ 3G,

i = it §

T fo[ g O aT]’ (60)

— = 2 —,G, — —= 61

oT fl[ or’ Y ar Y or | 61)
— £ [ 2

Ee 5[z], (62)

where the functionals F; are given by the right-hand sides of Egs. (29), (33) and (34). We
do not explicitly indicate the dependence on the propagator IT and its temperature derivative
orIl, since these can be computed using > and dr% as the solutions of Egs. (6) and (32),
respectively. Defining the vector ¢ := (%, G1, G1,) the T-flow equations thus have the form

2% 1ok
— =F®,—.
aT }-|: ’aT] (63)

To simplify the discussion we assume an equidistant temperature grid T,, := no T for some
small stepsize 6T > 0, noting that in practice the stepsize should be varied based on local error
estimates to reduce numerical effort and improve accuracy. Our goal is to compute ®,, := &(T,)
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and 9;9,, := d;®(T,) on this grid assuming &, 1,®,,9,... and P, 1, 07rP,,o,... are already

available. To do so we first approximate 0; 9, ~ (—3%,, + 4®,,1 —®,42)/(26T) leading to
4 1 2 —30, +43,,1 —P,\s
q)n = gq)n-b-l - gq)n+2 - 5.7" I:q’na - 25n; mr

This is the well-known second order backwards differentiation formula (BDF2) [51]. To eval-
uate Eq. (64) further we approximate on the right hand side &, = <I>,(1P) + O(T?), where <I>,(1P)
denotes the Adams-Bashforth predictor [51]

<I>T(1P) = <I)n+1 - (

Thus we obtain both &, and 8;®, = F[¢", (-3¢ + 4% ,,, —&,,,)/(25T)] as wanted.

]5T +O(5T?). (64)

3 00
20T

109

20T

) oT. (65)
n+2

n+1

F Exact solution at U =0

Here we show how the T-flow equations (29) and (32)-(34) recover the exact solution for the
non-interacting spin-degenerate Anderson dot. The main simplification in this case is that all
terms with more than four creation superfermions vanish for algebraic reasons as discussed
in Ref. [6,23,30]. Therefore the infinite T-flow hierarchy terminates at finite order and is
completely contained in the contributions of the main text. In fact they simplify to

ox
—i = + + , (66)
== (67)

In the second term of Eq. (66) we can use a bare vertex (instead of an effective one) and in the
third term a bare propagator I, (instead of a full one) because the corrections to this are of
order O(G+6) and vanish algebraically. For the same reason Eq. (67) only contains bare ver-
tices and propagators. With the initial condition G;(T = 0o, t—7,T—s) = G;’g(t —1)6(T—5)
for the supervertex we can immediately integrate (67), since only the contraction depends on
temperature:

=l (68)

Note that the first term is equal to the initial condition and contains two & functions of time
not indicated diagrammatically. Insertion of G; [Eq. (68)] and 0;G; [Eq. (67)] into the first
and last term of (66) respectively, gives

ox

i S S S ) G s s 1 O i (69)
gy S . N i W . W i WD . W s e 0 WY i s

(70)

where in the third term of the first line we again replaced a full propagator by a bare one. In
the last line we inserted the expansion of the full propagator and its temperature derivative
[Eq. (32) with (66)] using that all orders greater than (’)(G+4) vanish algebraically. With the
initial condition (T = oo) = 0 we can integrate the last equation and recover the exact
memory kernel for the U = 0 Anderson dot

it S o S S & W s W 71)

This is the result computed in Ref. [23] [Eq. (123), Sec. 4 and App. F loc. cit.], where the full
solution is analysed in detail, see also Ref. [30].
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