
 
* In one respect, the findings of this study are not particularly surprising. It has been known for a 
long time that multi-layer feed-forward neural networks offer an extremely powerful 
alternative to traditional interpolation methods, with i.e. the use of neural networks to 
parametrise deep-inelastic structure functions having been stablished 20 years ago, with 
subsequent applications becoming a basically mainstream technique in global analyses of non-
perturbative QCD quantities from (nuclear) parton distributions to fragmentation functions. 
Similar techniques have been applied to speed up event generation in Monte Carlo programs as 
well as to facilitate the evaluation of complex high-dimensional functions that arise in the 
context of perturbative QCD and electroweak calculation. 

 
Although on the one hand our study confirms the growing results of the success of neural 
network interpolation, it also shows that they are not always the best choice for precision, 
especially in low dimensions. Furthermore, we believe that a systematic study such as this one 
provides a strong anchor for justifying the use of one approximant over the other for 
interpolation with large training data. 
 
 

* I would argue that at this point it is the choice of a traditional interpolation algorithm that 
should be justified, while the use of neural networks are universal unbiased interpolants to 
parametrise functions in HEP is more or less an off-the-shelf technique. While the authors 
mention some of these results in their introduction, it may be a bit more accurate to emphasize 
that by now these are more or less standard techniques in HEP, and that it has been acknowledge 
that the use of traditional interpolation is restricted to a problems of certain simplicity. In 
particular, the statement "Although the previous analyses show promise in their respective 
methods" should be removed: there is a very large body of scientific work that demonstrates 
that NN-based methods outperform traditional interpolation techniques for all applications 
except those too simple to present a major bottleneck in any physics study. I believe that stating 
this in the introduction would reflect better the state of the art in the field. In other works, while 
the general answer of when it is worth moving to ML-based interpolation methods depends 
indeed on the problem, it is almost always found that when quality and performance of 
interpolation starts to limit how far we go into a given problem, it is the point while moving to 
ML-based tools is the right choice. 

 
We have modified our introduction to reflect the point raised above.  
 

* In this respect, I think the title does not reflect accurately the contents of the paper. The 
examples the authors consider are not representative of the whole field of HEP but instead are 
focused on functions that appear in the context of higher-order calculations. So I think it would 
be appropriate if the authors modified the title to better reflect their focus. 

 
A more precise title that we have chosen is “Comparing Machine Learning and Interpolation 
Methods for Loop-Level Calculations” 
 

* I also think that one should mention that in many physics problems that appear in HEP the 
functions to be parametrised have some physical interpretation, and for instance they are 
expected to be continuous and smooth. So the general problem of function interpolation in HEP 
should also address this point. I mention this because the authors try some interpolators such as 
nearest neighbours which are discontinuous, and hence cannot be applied to some problems of 
relevance in HEP. For the higher-order QCD functions that the authors study in this study this is 



probably since since in these case they cannot be associated a physical interpretation, but this is 
only a subset of the relevant applications of ML-based regression for HEP problems. It would be 
interesting to consider how results change if some instance one imposes some smoothness 
criterion on the parametrised functions (my hunch is that if anything this requirement will 
further strengthen the superior performance of the MLP method). So address this point, would 
be interesting to add figures of merit such as arc-length to the ones already considered in the 
paper. 

 
Indeed nearest neighbors is discontinuous, but it was chosen as a baseline interpolant that is 
inexpensive to implement. Imposing a smoothness criterion would be interesting for physically-
interpretable functions, however we don’t believe it is necessary when focusing on higher-
order integral functions for loop calculations. 
 

* Another reason why it should not surprise anyone that ML-based regressors outperform 
traditional interpolation techniques in high dimensions is that the latter are designed in general 
for low-dimensional problems, and simply cannot be trusted to work in high dimensions. For 
example, techniques like chebyshev polynomial interpolation are based on fitting the 
coefficients of the chebyshev polynomial expansion to the input data, and such fits are quite 
instable in high-dimensions due to the cancellations between different terms in the expansion. 
This problem is absent in ML-based methods, where by construction one starts with an smooth 
function which is then via the training adjusted to describe as well as possible the data. 

 
The reviewer rightly points out that ML methods are by design well-suited for higher 
dimensions, our results however show that it is not a guarantee that ML methods will 
outperform RBF for example in 9 dimensions. Neural networks on the other hand do show 
superiority across all considered functions. Thus, our results are not completely in-line with the 
ML-superiority view in high dimensions. 
 

* Yes another relevant topic that I am a but surprised the authors do not consider is that of 
overlearning. In general NN-based regressors are overly flexible and the input data is never 
"perfect", but will fluctuate around some true value. Given sufficiently large training times, the 
NN model will learn these fluctuations and thus deviate systematically from this underlying law. 
Without considering this possible issue in detail it is not possible to draw any solid conclusion 
about the performance of ML regressors. I understand that for this specific application the data 
is "perfect", but I would encourage the authors to consider the case where some fluctuations are 
added to the data, and reassess their analysis in that case. 

 
We are aware of the possibility of overfitting, which is why we reserve a validation dataset and 
monitor its behavior. We mention in the cross-validation section “During training, we use the 
validation data to monitor the performance of the model on data it hasn't been trained on. This 
allows us to stop training when our models start to overfit.” Furthermore, the amount of 
training data we use far exceeds the parameters in the neural network for example, so the 
chances of overfitting are low. 
 

* The choice of training algorithm and of the model hyperparameters is also very important in 
order to assess the performance of ML-based regressors. A poor choice for example of NN 
architecture may lead to a model under-performing, but the conclusion here is not that the ML 
regressors is not appropriate but that the method adopted to select the model hyperparameters 
is non-optimal. Likewise, a wrong choice of training algorithm (or even of family of algorithm, 



from SGD-like to GA-like techniques) can complicate the interpretation of the results and the 
benchmarking of the performance of ML regressors as compared to traditional interpolation 
techniques. 

* The authors state that "performing hyperparameter optimization is computationally 
expensive so we rely on empirical tests to guide the settings" which in practice means setting 
the hyperparameters of the model by trial and error. Given that the whole point of this study is 
to robustly estimate the performance of ML regressors, I believe that the authors should 
investigate in a bit more systematic way how the choice of model hyperparameters affect the 
findings of their work. At the very least, the choice of adopted hyperparameters should be better 
justified; results for different sets of hyperparameters compared; and results using different 
minimisers (at least for the MLP analysis) benchmarked. 

We vary hyperparameters and choose the best performing ones. For example, we fix the nodes, 
layers, and loss function, then vary the activation between ELU and GELU and find that they 
either have similar performance or GELU outperforms ELU, so we choose GELU. Similarly, we fix 
all but the loss function and compare MSE, MAE, and MAPE, then choose the best performing. 
We also check SGD vs Adam and find Adam outperforms SGD consistently. This method does 
not guarantee to find the optimal hyperparameters in the large space of possibilities, but it 
provides a practical way of finding a good set of hyperparameters.  
 
We keep track of all the runs where we record relevant parameters and figures of merit. For 
example, for the neural network we record the nodes, layers, epochs, batch size, activation, 
loss function, optimizer, # of training points, # of testing points, and the figures of merit. We 
keep similar records for SVGP and LGBM. 
 

* For the reasons stated above, I am surprised that they use a "EarlyStopping callback that stops 
training when no improvement has been made over 400 epochs". This seems to me in general a 
recipe for overlearning in practical applications (not in toy scenarios of course). The authors 
should investigate how the presence of noise in their input data (for example coming from MC 
fluctuations) affects the outcome of their analysis. 

 
This might be a worry if we track the training loss with EarlyStopping, however we track the 
validation loss which would grow in the case of overfitting. 
 

* Why the authors choose "an architecture of 8 hidden layers with 64 nodes each" for the MLP? 
As pointed out above, a single layer with sufficiently large number of neurons suffices for a 
general regression task, so the choice of 8 hidden layers seems a bit difficult to justify to me. 

 
Although in theory a single layer is enough, in practice the number of nodes required in one 
layer may be too large for anything practical. On the other hand, having deep networks are 
known to be much more practical than a single layer. The architecture we choose here is similar 
to many regression/generative models used in e.g. https://arxiv.org/pdf/1707.00028.pdf, 
https://www.scipost.org/SciPostPhys.9.4.053/pdf . 
 

* Concerning the use of Gaussian Processes, it may be appropriate to mention that feed-forward 
neural networks can be understood as a collection of GPs. So in this respect the techniques 
discussed in 3.1 and 3.3 are not really independent but rather they are closely related. It is thus a 

https://arxiv.org/pdf/1707.00028.pdf
https://www.scipost.org/SciPostPhys.9.4.053/pdf


bit weird that the performance of the GP method is so inferior as compared to the MLP, do the 
authors understand this point? 

 
This correspondence is true for infinitely wide neural networks, so we do not think it would be 
relevant for our case. We do, however, state some reasons for the inferiority of SVGP in the 
discussion section. 
 

* Are the figures of merit evaluated over all the data points or not? What happens if one uses say 
80% to construct the interpolation and 20% for the validation? Do the results presented in the 
paper change a lot? An important benefit of MLP models is that they are reasonably stable upon 
extrapolation, which is not always the case with traditional interpolation techniques. 

  
The figures of merit are evaluated over 1 million unseen testing points. This provides a fair 
comparison between the methods since they have not been trained/fitted to this dataset. 
 

* Another important consideration when choosing an interpolation/regression strategy is 
related to uncertainty propagation. As mentioned above in most applications one is fitting to 
data with some fluctuations over the underlying "truth", and it is important to be able to 
estimate and propagate all uncertainties to the final model. The authors should discuss how the 
various interpolation/regression strategies considered should be combined with error 
propagation methods, a key ingredient of realistic applications. 

 
The question of uncertainties and error propagation is important for realistic applications and is 
the subject of future work as mentioned in the conclusions section. We do not think that 
uncertainties in this analysis will change anything significantly. Having established the 
superiority of neural networks in high dimensions, future work will focus on different estimates 
of uncertainty such as ensembling or Monte Carlo dropout. 


