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Abstract

Motivated by the interplay of Bethe Ansatz integrability and localization in
a Richardson model of superconductivity, we consider a time-reversal symme-
try breaking deformation of this model, known as a Russian Doll Model (RDM)
by implementing diagonal on-site disorder. The localization and ergodicity-
breaking properties of a single-particle spectrum are analyzed within a large-
energy renormalization group (RG) over the momentum-space spectrum. Based
on the above RG, we derive an effective Hamiltonian of the model, discover a
fractal phase of non-ergodic delocalized states, with the fractal dimension dif-
ferent from the one of a paradigmatic Rosenzweig-Porter model, and explain
it both in terms of the developed RG equations and matrix-inversion trick.
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1 Introduction

The Richardson model of superconductivity [1, 2] is a suitable toy model with finite
number of degrees of freedom which allows to capture the key properties of superconduct-
ing state in a relatively simple manner. This model given by on-site diagonal potential εn
on N sites and all-to-all constant coupling jmn = const/N is known to be Bethe-Ansatz
(BA) integrable, where the BA equations coincide with the ones for the twisted SU(2)
Gaudin model [3]. The commuting integrals of motion (Hamiltonians) emerging from BA
in the Richardson model get identified as superpositions of the Gaudin Hamiltonians.

The relation of integrability to localization properties of the Richardson model with
diagonal on-site disorder has been considered in [4,5] using the example of a single-particle
sector of the model, where it was shown that all (except one) eigenstates are localized
for any coupling constant jmn ≪ N−1 (jmn ≫ N−1). The delocalization of the only
level appears at the same coupling jmn ≃ N−1, when the superconducting gap in the
many-body sector starts to be extensive. Though all (except one) eigenstates are localized
for any coupling due to the BA integrability, the corresponding level statistics shows level
repulsion for jmn > N−1, which is comparable with the one in the random matrix theory
of Gaussian random ensembles [6]. This shows non-trivial relation of BA integrability to the
localization properties already at the single-particle level.

As the Anderson localization based on the interference effects is highly sensitive to the
magnetic field, it is of particular interest to go beyond the Richardson model by keeping BA
integrability and at the same time break time-reversal symmetry (TRS). Such an integrable
deformation of the Richardson model is called Russian Doll model (RDM) [7, 8]. Like in the
Richardson model, RDM has all-to-all constant coupling jmn = [g + ihsign (m− n)]/N ,
but now it has not only a symmetric real term ∼ g, but also an antisymmetric imaginary
contribution ∼ ihsign (m− n). In this case, the BA equations for the spectrum are identi-
cal to the ones for the twisted inhomogeneous XXX SU(2) spin chain. The inhomogeneous
magnetic field in this model is associated with the on-site potential of RDM model, while
the twist is the counterpart of the coupling constant in RDM. The TRS breaking parame-
ter h in RDM is identified as the “Planck constant” in XXX spin chain which vanishes in
the Gaudin limit [9]. This model can be also related to the Chern-Simons theory when the
excitations are represented by the vertex operators [10]. The RDM serves as the example
of a cyclic RG when the TRS breaking parameter provides the period of a cycle, see [11]
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for the review.
In this paper, motivated by the interplay of the BA integrability, localization, and

level repulsion in the Richardson model, we consider the Russian Doll model bringing TRS
breaking to the game, with diagonal disorder. As in the previous localization studies of the
Richardson model, we focus on the single-particle sector of the RDM which still have much in
common with the many-body ones, including the tower of high-energy ground state solutions.

We also consider the generalization of RDM in terms of the scaling of the coupling
constant (similarly to fully-correlated cases in [12–14]). Indeed, in the original RDM the
coupling in matrix Hamiltonian scales as N−1, while we consider more general scaling
N−γ/2 given by the analogy with the so-called Rosenzweig-Porter model [15]. The latter
is also given by the all-to-all hopping term, but each coupling is given by i.i.d. Gaussian
random number with the standard deviation N−γ/2.

This Rosenzweig-Porter model is known to host an entire phase of non-ergodic (so-
called fractal) eigenstates in the range 1 < γ < 2, squeezed between the ergodic (γ < 1)
and Anderson localized (γ > 2) phases [16]. This phase is characterized by the only energy
scale Γ, large compared to the level spacing δ ∼ 1/[Nρ(E)] and small compared to the
bandwidth ∼ 1/ρ(E) of the spectrum, where ρ(E) is the density of states. This energy
scale is given by the standard Fermi’s Golden rule formula

Γ =
2π

ℏ
ρ(E)

∑
m

|jmn|2 ∼ δND (1)

and it determines the fractal dimension 0 < D = 2− γ < 1 of the wave-function support
set. Later, several other models with similar fractal [12–14,17,18] and multifractal [19–24]
phases has been suggested in the literature. In all the cases it has been shown that the
wave-function structure in these models is mostly determined by the diagonal elements, while
the hopping terms provide a certain Breit-Wigner level broadening Γ. 1.

For Richardson model, the standard Fermi’s Golden rule result fails to describe the
localization properties correctly due to the presence of the strong correlations between
the coupling of different sites. In the case of localization, which survives for any coupling
strength even beyond the convergence of the locator expansion (like in the Richardson
model [4, 5] and some other long-range fully correlated models [26, 27]), one can use a
so-called matrix-inversion trick [12] or develop a strong-disorder spatial RG [28,29].

For RDM, in this work we show that the increasing coupling does lead to the delocaliza-
tion of most of the eigenstates, therefore both above methods working only in the localized
phase are not applicable. At the same time, the standard Fermi’s Golden rule approxi-
mation (1) fails due to the strongly correlated coupling terms. Therefore our goal here
is to develop another analytical method to describe localization and ergodicity-breaking
properties of RDM. We base our approach on the RG flow, similar in spirit to the one
used for disorder-free RDM for γ = 2 [7], but generalize it to the momentum space. In
order to double check the RG approximations, we also generalize the above-mentioned
matrix-inversion trick to the case of any divergent spectrum of the disorder-free coupling
term jmn and show that the effective Hamiltonian obtained by this method is statistically
equivalent to the one calculated from the RG flow.

By going back to the coordinate basis we derive the effective Hamiltonian with the
significantly reduced correlations, which is already tractable with the Fermi’s Golden rule
approximation (1). The effective Hamiltonian provides the possibility to elaborate the
localization properties of the single-particle states. Using combination of the effective
Hamiltonian and the Fermi’s Golden rule, we have found that single-particle eigenstates

1Moreover this works also for the non-Hermitian Rosenzweig-Porter model [25], where the phase diagram
is affected only by the non-Hermiticity of the diagonal matrix entries, but not by hopping terms.
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in the disordered RDM demonstrate fractal properties emerging in the same Anderson
localization point γ = 2 as the ones in the Rosenzweig-Porter model. However, the
non-ergodic phase prolongs to smaller values of γ until γ = 0 and the corresponding
fractal dimension D, which we exactly determine analytically, deviates from the one in
the Rosenzweig-Porter and equals to D = 1− γ/2.

The remainder of the paper is organized as follows. In Sec. 2 we explicitly describe the
disordered Russian Doll model. Next, in Sec. 3 we calculate the spectrum of the disorder-
free RDM, describe it in terms of energy stratification [14], and calculate the localization
properties of the energy-stratified states in the momentum basis. In Sec. 4 we derive an
effective Hamiltonian representation for RDM using the developed high-energy RG in the
momentum space. Section 5 represents the generalization of the matrix-inversion trick
invented in [12] in order to make it applicable to the description of the delocalized states
and confirm its equivalence to the above RG by comparing the results for the effective
Hamiltonian. In Sec. 6 we provide the analytical results leading from the structure of the
effective Hamiltonian supported by numerical simulations. The conclusion and outlook
are given in Sec. 7.

2 Model

In this work we focus on the single-particle sector of the Russian Doll model with
the on-site disorder εn and the generalized coupling amplitude jmn ∼ N−γ/2, which can
be written as the N × N random matrix of the following form in the coordinate basis
1 ≤ m,n ≤ N

Hmn = δmnεn − jmn, jmn =
g + ihsign (d(m,n))

Nγ/2
. (2)

Here the generalized coupling term jmn scales as a power −γ/2 of the system size N and
the on-site disorder εn is given by Gaussian i.i.d. random variables with zero mean and
the following variance

⟨εn⟩ = 0,
〈
ε2n
〉
=W 2 . (3)

The above-mentioned symmetric coupling g and TRS breaking parameter h are parame-
terized by the angular variable θ as follows

g = cos θ, h = sin θ , 0 ≤ θ < 2π . (4)

For simplicity we consider the periodic boundary conditions and define the distance d(m,n)
with the sign: if the shortest distance from m to n is clockwise (counterclockwise), it is
positive (negative), Fig. 1,

d(m,n) = (m− n) mod N, |m− n| ≤ N/2 . (5)

This allows us to determine an effective magnetic flux θ, threading the loop m − n −m
and equal for each link between any pair of sites m and n.

Note that according to the generic principles of Anderson localization in long-range
models, i.e., the Anderson resonance counting [12, 16, 30, 31], the measure one of the states
in this model are localized for γ > 2, irrespectively to any correlations or TRS breaking.
This leads to the fact that all the properties of the Richardson or Rosenzweig-Porter model
at γ > 2 – starting from the Lorentzian power-law profile of the eigenstates vs εi (sometimes
called frozen multifractality) and ending by the Chalker power-law scaling of the wave-function
overlap, absent in the short-range Anderson models – are also present in the disordered Russian
Doll model. Therefore in the further sections we will focus on the range 0 < γ < 2 (if not
mentioned otherwise).
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Figure 1: Sketch of the Russian doll model, Eqs. (2)-(4). Different colors of vertices
stand for the disorder potential εn, while the coloring of the edges from the topmost vertex
demonstrate different phases of hopping terms with the same amplitude: red color stands
for eiθ, blue – for e−iθ, and black dashed line corresponds to the real hopping 1.

3 Energy stratification of the spectrum and ergodicity-breaking
in momentum space

In this section we focus on the spectrum of the disorder-free RDM and, using the
property of its stratification, analyze the localization and ergodicity-breaking properties
of the high-energy eigenstates of the corresponding disordered RDM in the basis of the
hopping term only. Indeed, the hopping term j is translation invariant jmn = jm−n

therefore it can be diagonalized in the basis of plane waves

|p⟩ =
∑
n

e
2πinp

N

√
N

|n⟩ , (6)

with the spectrum indexed by an integer |p| ≤ N/2

E0 = N1−γ/2 cos θ (7a)

E2k ̸=0 =

{
0, even N

−N−γ/2 sin θ tan
(
πk
N

)
, odd N

(7b)

E2k+1 =

 2N−γ/2 sin θ cot
(
π(2k+1)

N

)
, even N

N−γ/2 sin θ cot
(
π(2k+1)

2N

)
, odd N

(7c)

From this spectrum one can immediately see that

� For the Richardson model, θ = 0, the spectrum is (N−1)-fold degenerate, Ep ̸=0 = 0,
with the only finite-energy level E0 ∼ N1−γ/2. It is this level which is responsible
for the localization of the rest N − 1 eigenstates orthogonal to it in the disordered
Richardson model at γ < 2 [4, 5].

� Even in the general case of θ ̸= 0, the levels, with non-zero even p = 2k, still stay
small |E2k| < N−γ/2 (zero) for odd (even) N . Later we will focus on the case of even
N in order to neglect small amplitude of these levels. However, the levels, with odd
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p = 2k + 1, for any finite θ immediately emerge to be as significant as E0 and given
for |k| ≪ N by

E2k+1 ∼ sin θ
2N1−γ/2

π(2k + 1)
. (8)

Note that the transition between Richardson model and RDM (see the above cases)
occurs at the values of the TRS breaking parameter going to zero at N → ∞, θc ∼
WN−(1−γ/2) → 0., It is the point, when the maximal of energies E2k+1, namely E1, goes
below the diagonal disorder amplitude W and therefore becomes hybridized with the rest zero
modes by the diagonal disorder.

This makes the Richardson model to be an exceptional point, leading to the disconti-
nuity between the behavior of RDM at θ → 0 and the Richardson model at θ ≡ 0 in the
thermodynamic limit N → ∞ 2. Another special point of θ = π/2 is continuous as the
only level E0 = 0 goes to zero at that value.

In the many-body sectors of the Richardson and RDM models there is one BCS-like ground
state or a whole hierarchy of such states, where the gap from these states to the rest becomes
extensive at γ < 2. The single-particle sectors of these models demonstrate the same structure
of gaped or energy stratified levels, even the number of these states scales with the system
size N in the same way. In the Richardson model (or some other long-range fully correlated
models [26–28]) as well as in RDM, the energy stratified levels are special: they form a
measure zero of all the spectral states, but give the main contribution to the hopping term
jmn. The most high-energetic of these states are barely affected by the disorder term and,
thus, stay non-ergodic in the momentum basis due to the extensive diagonal energy there.
This leads both to the ergodicity of these modes in the real space and to the main contribution
of them to the hopping term.

Indeed, the disorder term εn (3) in the momentum space basis (6) plays a role of the
hopping between plane waves with the translation-invariant Gaussian i.i.d. amplitudes

Jp−q =
1
N

∑
n e

2πinp
N εn with zero mean and the variance scaling down with the system size

⟨Jp⟩ = 0,
〈
J2
p

〉
=
W 2

N
. (9)

Thus, the corresponding representation of RDM in the momentum space looks like a
translation-invariant case of the Rosenzweig-Porter ensemble with a certain special real-
ization Ep of the diagonal disorder. For this model introduced in [12] it is known that the
Fermi’s Golden rule is applicable and gives the following broadening

Γp =
2π

ℏ
ρ(Ep)

∑
p

|Jp−q|2 ∼ ρ(Ep)W
2 (10)

of the Breit-Wigner approximation for the eigenstate (see, e.g., [19, 32,33])

|ψEp(p
′)|2 ∼ C

(Ep − Ep′)2 + Γ2
p

. (11)

Here C is an unimportant normalization constant and we labelled the high-energy eigen-
states with disorder-free energy Ep assuming smallness of the broadening Γp with respect
to it. One should note that, unlike the Rosenzweig-Porter model, RDM in the momentum
space has highly inhomogeneous density of states (DOS) ρ(Ep), p = 2k + 1, given by

ρ(Ep) ≃
∣∣∣∣ dpdEp

∣∣∣∣ ∼ min

(
πp2

4 sin θN1−γ/2
,
1

W

)
, (12)

2The similar discontinuous character of the limit is known for the Richardson model in a different
class of deformations [12,27],related to the power-law decaying hopping term jmn = 1/d(m,n)a called the
Burin-Maksimov model [26]
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where we have taken into account that the disorder εn ∼ W hybridizes the levels as soon
as the disorder-free version of DOS |dp/dEp| goes above its bare disorder counterpart
|dn/dεn| ∼ 1/W .

The support set ∆p occupied by the eigenstate (11) in the momentum space can be
found from the condition

|Ep+∆p − Ep| ≃ Γp , (13)

which leads to the non-ergodic behavior as soon as ∆p ∝ ND(p) scales as a fractional
D(p) < 1 power of N .

As soon as |Ep+∆p − Ep| ≃ |Ep| (or ∆p ≃ p), the condition (13) with substituted (8),
(10), and (12) leads to the number p∗ of energy-stratified states which are non-ergodic in
the momentum basis:

p∗ ≃ 2

W

sin θ

π
N1−γ/2 , Γp∗ ≃W . (14)

The energies of these states are barely affected by disorder, as Ep are extensive, Ep ≫W at
|p| ≪ p∗. Thus, our criterion is consistent to the so-called Mott’s principle (see, e.g., [12]),
claiming that as soon as the bare diagonal energy Ep of the state is large compared to the
spectral width W of the hopping term Jp−q, this state is non-ergodic in the corresponding
(momentum) basis. Note that at θ < θc ∼ N−(1−γ/2) only the state p = 0 is non-ergodic
(localized) in the momentum space. Note also that the support set ∆p is limited from
above by p < p∗ ∼ N1−γ/2. Thus, from the condition D(p) < 1 Eq. (14) is valid until
p∗ ≪ N , i.e. for γ > 0. Further we will mostly focus our consideration to this parameter
interval, 0 < γ < 2.

4 Large energy RG in the momentum space. Effective Hamil-
tonian

In the paper [7], the authors consider the RG flow over the matrix sizeN in clean RDM,
with the linearly increasing diagonal terms εn ∼ n, where each RG step was represented
by the removing of one row and one column corresponding to the largest diagonal element
εN . In particular, they perform the following steps:

1. First, they start with the matrix of size N0 and at each step reduce its size by one.

2. For this, they take at each step the highest diagonal energy in the absolute value
(εN or ε1) and assuming it to be large with respect to the rest of the levels and with
respect to the hopping terms

|εN | ≫ jNn , (15)

they resolved the eigenproblem with respect to the site i = N corresponding to this
level εN :

(εm − E)ψE(m)−
∑
n

jmnψE(n) = 0 (16a)

ψE(N) =

∑
n ̸=N jNnψE(n)

εN + jNN − E
(16b)

(εm − E)ψE(m)−
∑
n̸=N

jmn(1)ψE(n) = 0 , (16c)

where m ̸= N and jmn(1) is calculated by one RG step

jmn(r + 1) = jmn(r) +
jmN (r)jNn(r)

εN + jNN (r)− E
, (17)
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with jmn(0) = jmn.

3. Next, they assumed εN + jNN −E ∼W and using the ratio W/δ = N they end up
in cyclic RG equations.

In the disordered RDM the above consideration fails as the maximal diagonal matrix
element does not correspond to the maximal (or minimal index) which breaks down the
self-similar structure of the matrix at further RG steps (see, e.g., [34]). However, analo-
gously to the renormalization group (17) considered in [7], one can take into account the
large diagonal terms in the momentum basis, with the diagonal energies Ep (7) and the
hopping terms Jp−q (9) satisfying similar inequality to (15)

|Ep| ≫ |Jp−q| . (18)

The corresponding equation for a certain rth step for the momentum pr is given by the
following hopping term renormalization step

Jp,q(r + 1) = Jp,q(r) +
Jp,pr(r)Jpr,q(r)

Epr + E − Jpr,pr(r)
, (19a)

Jp,q(0) = Jp−q , (19b)

while the diagonal term stays the same

Eq(r) = Eq for q ̸= p1, . . . , pr . (20)

Of course such renormalization works only when Eq. (18) is valid, i.e. at least for γ < 3,
which is the case in our interval of the interest, 0 < γ < 2.

Further we will remove the largest Ep in the following order for s up to s = r ≤ N/4

p0 = 0, p2s−1 = −(2s− 1), p2s = 2s− 1 . (21)

Here we should warn a reader that both θ = 0 and θ = π/2 has been considered (slightly)
differently. As for the vicinity of the Richardson model, θ ≲ N−(1−γ/2), the only level
satisfying (18) is E0, we can consider only one renormalization step r = 1. For the vicinity
of θ = π/2, on the contrary, E0 is the level which invalidates (18), thus we should start
with s = 1. However, as we will see in Eqs. (27) and (31) the latter does not change the
results.

In the following, we plan to find the optimal number of RG steps needed for writing the
effective Hamiltonian for the bulk spectral states, E ∼ O(1), with suppressed correlations.
The effects of the energy-stratified states will be taken into account by RG. In order to find
the effective Hamiltonian, in the next subsection 4.1 we, first, simplify the RG flow (19)
focusing on the leading contributions by the order of magnitude. Next, in the following
subsection 4.2 we rewrite the Hamiltonian in the coordinate basis in order to find the
optimal number r of RG steps needed for minimization of the broadening Γ found by the
Fermi’s Golden rule from the effective Hamiltonian.

4.1 Simplification of RG (19)

In order to simplify the RG flow (19) here we show that the main contribution to it is
given by

J̄p,q(r + 1) = Jp−q + Sp,q(r) , (22)

where

Sp,q(r) =

r∑
k=0

Jp−pkJpk−q

Epk + E − Jpk−pk

. (23)
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Indeed, this takes into account the renormalization (19) itself, but neglects the renormal-
ization of the hopping terms Jp,q(r) in the sum Sp,q(r).

As we show in Appendix A for all r smaller than

r ≪ r∗∗ = N1−γ/3 (24)

the above approximation works leading to |Sp,q(2r)| ≪ |Jp−q| and the difference between
Jp,q and J̄p,q at most of the order of |Sp,q|.

Note that the value r∗∗ corresponding to the momentum value p∗∗ = 2r∗∗ − 1 ≫ p∗

according to Eq. (21) is large compared to the number p∗ of energy-stratified states (14)
at γ > 0. Thus, one can take into account all the high-energy states within the above RG
flow.

4.2 Effective model in the coordinate basis.

Now we are in the position to calculate effective renormalized model (20) and (22) in
the coordinate basis in order to further estimate the fractal dimension of the eigenstates
in the coordinate basis.

For this purpose we separate our renormalized Hamiltonian in four terms

Hp,q(2r) = Jp−q +
JpJ−q

E0
+

r∑
l=1

ap,q,l
E2l−1

+ Eqδp,q ≡

≡ H
(1)
p,q +H

(2)
p,q + H(3)

p,q + H(4)
p,q , (25)

where ap,q,l = Jp−2l+1J2l−1−q − Jp+2l−1J−2l+1−q and p, q ̸= ps, with 0 ≤ s ≤ r, and ps are
from Eq. (21).

The discrete Fourier transform of the above terms takes the form

H(k)
m,n =

∑
p,q ̸={ps}

e
2πi(pm−qn)

N

N
H(k)

p,q =

∑
p,q

+
∑

p,q={ps}

−
∑
p,

q={ps}

−
∑

p={ps},
q

 e
2πi(pm−qn)

N H(k)
p,q ,

(26)

where we replaced the summation over p, q ̸= {ps} by the complemented sums over the
whole interval and over ps in either or both variables. The first summation is given just
by the initial (not truncated) Fourier transform.

After straightforward algebra and neglecting subleading corrections (both given in
Appendix B), one obtains the following renormalized Hamiltonian in the coordinate basis
at 2rth step of RG flow, with 1 ≤ r ≤ N/4 and a certain unimportant constant c

Hm,n(2r) ∼ εmδmn +
εmεn

N2−γ/2 cos θ
+

+

 2
πN

−γ/2 sin θ
(
1− rm−n

N

)
+ i8π2εmεn(m−n)r3

3N3−γ/2 sin θ
− (εm + εn)

r
N , |m− n| ≪ N

r
2
πN

−γ/2 sin θ c
r +

i2πεmεn
N2−γ/2 sin θ

(
cN

2sign(m−n)
(m−n)2

+ r
)
− εm+εn

2π|m−n| , |m− n| ≫ N
r

. (27)

5 Generalization of the matrix-inversion trick for Russian
Doll model

Here we present an alternative way to derive the effective Hamiltonian of RDM in the
momentum space, analogous to (25), which is free from the approximations of the above
RG. For this purpose we generalize the matrix-inversion trick invented in [12].
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The main idea of the matrix-inversion trick is as follows: having large eigenvalues
Ep of the hopping matrix elements, one adds to the hopping matrix the identity matrix
multiplied by a certain constant E0 and inverse this matrix as follows

E|ψE⟩ =

(∑
p

Ep|p⟩⟨p|+
∑
n

εn|n⟩⟨n|

)
|ψE⟩ ⇔∑

n

(E + E0 − εn)|n⟩⟨n|ψE⟩ =
∑
p

(Ep + E0)|p⟩⟨p|ψE⟩ ⇔

∑
p

1

Ep + E0
|p⟩⟨p|

∑
n

(E + E0 − εn)|n⟩⟨n|ψE⟩ = |ψE⟩ . (28)

In such a way the large energies Ep of the hopping matrix elements, providing the dominant
contribution to the hopping, can be sent to the denominator without changing the basis,
thus, the effective model can be treated with the perturbation theory as soon as the
parameter E0 is selected to avoid any resonances Ep + E0 ≳ O(1).

For the models with one-sided divergence of the spectrum Ep (like in the Burin-
Maksimov model [12], where Ep<p∗ ≫ 1 are large and positive Ep<p∗ > 0) one can avoid
having singularities in the denominator Ep +E0 by selecting E0 < −minpEp ∼ O(1) and
show wave-function localization.

However in RDM the spectrum is unbounded from both sides (see Eq. (8) for positive
and negative k ≪ N) and does not have finite gaps in the thermodynamic limit at finite
energies in order to find E0 ∼ O(1) and, thus, avoid the divergence at the inversion of
Ep + E0 terms.

In order to restore the convergent matrix inversion, one has to invert only a part of
the spectrum given by high-energy levels Ep<pr

E|ψE⟩ =

(∑
p

Ep|p⟩⟨p|+
∑
n

εn|n⟩⟨n|

)
|ψE⟩ ⇔∑

n

εn|n⟩⟨n|+
∑

|p|>pr

Ep|p⟩⟨p|

 |ψE⟩ =

 ∑
|p|<pr

(E − Ep)|p⟩⟨p|+
∑

|p|>pr

E|p⟩⟨p|

 |ψE⟩ ⇔

 ∑
|p|<pr

1

1− Ep/E
|p⟩⟨p|+

∑
|p|>pr

|p⟩⟨p|

∑
n

εn|n⟩⟨n|+
∑

|p|>pr

Ep|p⟩⟨p|

 |ψE⟩ = E|ψE⟩ ⇔

 ∑
|p|>pr

|p⟩⟨p|+
∑

|p|<pr

E

Ep
|p⟩⟨p|

∑
n

εn|n⟩⟨n|+
∑

|p|>pr

Ep|p⟩⟨p|

 |ψE⟩ = E|ψE⟩ , (29)

where for simplicity we take E0 = −E and use |E|p|<pr | ≫ E.
Eq. (29) gives the term-by-term correspondence to Eq. (25). Indeed

� the first term is equivalent to H(1) after neglecting subleading terms like imn in (65)
of Appendix B,

� the part of the second term with p = p0 = 0 corresponds to EH
(2)
mn/εm after neglect-

ing gm,0

√
r/N subleading terms in (25),

� the rest part of the second term with p = ps ̸= 0 corresponds to EH
(3)
mn/εm after

neglecting gm,0

√
r/N subleading terms in (25),

10
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� while the last term is just equal to H(4).

To sum up, this result shows that all the approximations performed in the previous
section in order to derive the effective Hamiltonian, Eq. (27), either lead to subleading cor-
rections or a to the prefactors E/εm ∼ O(1) of the order of unity. As the matrix-inversion
trick is just another representation of the exact eigenproblem without any approxima-
tion, the equivalence between Eqs. (25) and (29) confirms the applicability of the effective
Hamiltonian (27) to the whole range of parameters of interest, 0 < γ < 2.

6 Results

Now we are ready to calculate non-ergodic properties of eigenstates based on the
effective Hamiltonian (27) and Fermi’s Golden rule approximation (1). Like with the
matrix-inversion trick [12], the Fermi’s Golden rule for each effective Hamiltonian with a
certain r gives an upper bound for the fractal dimension via broadening Γn(2r) (see the
definition below). Therefore in order to find the true fractal dimension of the problem one
should make the upper bound strict by finding the minimum of Γn(2r) via the optimization
of the value of r = ropt. Further we implement this algorithm analytically and verify the
results for the fractal dimension numerically by calculation the eigenstate statistics.

6.1 Analytical results – Optimization of fractal dimension

Similarly to the Rosenzweig-Porter model, in the model given by the effective Hamil-
tonian (27), we expect to see only fractal (defined via level broadening in (33)), but not
multifractal states (where multifractal dimensions Dq are parameterized by the order q
of the wave-function moment, see Sec. 6.2). Therefore, in order to calculate this fractal
dimension D of eigenstates in RDM (2), we use the Fermi’s Golden rule formula analogous
to (1), but with the effective hopping term from the renormalized Hamiltonian (27)

Γn(2r) =
2π

ℏ
ρ(En)

∑
m̸=n

|Hm,n(2r)|2 . (30)

Taking the energies and DOS of the bulk of the spectrum, En ∼ εn ∼W and ρ(En) ∼ 1/W ,
one obtains for each term of the effective Hamiltonian the following expression 3

W

2π
Γn(2r) ∼

W 4

N3−γ cos2 θ
+

4

π2
N−γ sin2 θ

N/r∑
n=0

(
1− r

N
n
)2

+
c2

r2

(
N − N

r

)+

+
W 4

N4−γ sin2 θ

N/r∑
n=0

n2
64π4r6

9N2
+

N∑
n=N/r

c2N4

16π2n4
+ r2

(
N − N

r

)+W 2

 r2
N2

N

r
+

N∑
n=N/r

1

4π2n2

 ∼

∼ W 4

N3−γ cos2 θ
+

4

π2
sin2 θ

N1−γ

r
+

W 4r3

N3−γ sin2 θ
+
W 2r

N
(31)

The first term (corresponding toH(3) with p = p0) is subleading for all |θ| ≫ N−(1−γ/2)

and r ≫ 1. Formally in the vicinity of θ = π/2 this term diverges, but as we discussed
after (18) that equality should be satisfied in order to write this term. In the same way,
in the vicinity of θ = 0 the divergence of the third term ∼ 1/ sin θ is fake.

3Here we neglect the cross-terms as we are interested in the dominant contributions and the competition
between them at different r.

11
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After neglecting the first term for finite θ, the rest three terms, except the first one,
give the optimal value of r corresponding to the minimal level broadening

ropt ≃ c
sin θ

W
N1−γ/2 ⇔ Γn(ropt) ≃ c′ sin θN−γ/2 , (32)

with certain constants c and c′ of the order of one. Note that this optimal point ropt
satisfies the condition (24), r ≪ r∗ ∼ N1−γ/3, for all γ > 0. The validity condition
|Jp,q(r)−J̄p,q(r)| ≪ |Sp,q(r)| for the above used RG, leading to r ≪ N (3−γ)/4 from Eq. (56)
in Appendix A, is satisfied at γ > 1. However, even for r ≳ N (3−γ)/4, corresponding to
0 < γ < 1 the Jp,q(r) − J̄p,q(r) gives at most the same-order contribution as the Sp,q(r)
and affects only the numerical prefactors c and c′.

As in the bulk of the spectrum the mean level spacing is δ = 1/(ρ(E)N) ∼ W/N , the
fractal dimension for the typical wave function in this case should be given by the ratio

ND = Γn(ropt)/δ ∼
sin θ

W
N1−γ/2 ⇔ D = 1− γ/2 , (33)

which is different from the one in the Rosenzweig-Porter model [16]. This result is also
confirmed by numerical calculations below, where we define the fractal dimension via the
inverse participation ratio (but not as the number of sites where the wave function has
significantly non-zero values within the Breit-Wigner approximation). Note that in the
case when the Fermi’s Golden rule does not work for the initial problem, the number p∗ of
the energy-stratified levels, Eq. (14), determines the fractal dimension via the expression
p∗ ∼ ND (see [14] for more details).

The effective renormalized Hamiltonian (27) in this case is given by

Hm,n(2ropt) ≃ εmδmn −
{ (

εm+εn
W − c

)
Γ, |m− n| ≪W/Γ

εm+εn
2π|m−n| , |m− n| ≫W/Γ

, (34)

whereW/Γ ≃ N/ropt ∼ (W/ sin θ)Nγ/2 and we neglect the subleading terms for simplicity.
Note that the Hamiltonian (34) is equivalent to the one of power-law random banded

matrices [35] with a bandwidth b and diagonal disorder W rescaled as ∼ Nγ/2.

� if none of b and W is scaled with N the system hosts genuinely multifractal states,
with Dq ∼ b at b≪ 1 and 1−Dq ∼ 1/b at b≫ 1 [35],

� The scaling b ∼ Nγ/2, W = O(1) sends the system to the ergodic phase, with D = 1,

� the scaling W ∼ Nγ/2, b = O(1) leads to the system localization, D = 0,

� while the case of RDM, corresponding to the simultaneous scaling of both parameters
W ∼ b ∼ Nγ/2, gives fractal eigenstates described by the Fermi’s Golden rule (30) 4.

The bulk eigenstates of such effective Hamiltonian should be given by two contributions:

� First, due to the presence of the Rosenzweig-Porter-like long-range hopping terms at
|m − n| ≪ W/Γ the wave-function should have a contribution of a Lorentzian profile
versus εn with the width |Em − εn| ∼ Γ [19, 32,33]

|ψEm(n)|2 ≃
δΓ

(Em − εn)2 + Γ2
. (35)

4However, there are some investigations which might have multifractal wave functions, with the fractal
structure in the energy spectrum inside a miniband of size Γ ∼ N−γ/2 provided by the Fermi’s Golden
rule [24].

12
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� Second, similar to the power-law banded random matrices
〈
|jmn|2

〉
∼ |m−n|−2a at the

critical power a = 1, there should be the multifractal proliferation of the wave-function
maxima given by the resonances. However, unlike the power-law banded random matrix
case, in the RDM case the N -scaling of the cutoffW/Γ ∼ Nγ/2, at which this power-law
comes into play, significantly reduces the number of resonances:

Nres ∼
∑
m

|Hmn|/W ∼ ln (NΓ/W ) = (1− γ/2) lnN (36)

and do not affect the fractal dimension of the system given by (see, e.g., Eqs. (30-31)
in [36])

D lnN ∼ Nres ⇔ D = 1− γ/2 . (37)

6.2 Numerical results – Spectrum of fractal dimensions, level statistics,
and wave-function decay

Numerically we do not stick to any approximation, but instead consider exact diag-
onalization of the initial model (2) calculating the eigenstates ψEn(m) in the coordinate
basis and eigenvalues En.

Focusing on the mid-spectrum states, we perform the multifractal analysis. For this
purpose, we consider two relevant measures of eigenfunction statistics based on the distri-
bution of amplitudes P (|ψE(n)|2).

First, we consider the spectrum of fractal dimensions defined as the power f(α) of the
scaling of the distribution P (α) ∼ Nf(α)−1 of α = − ln |ψE(n)|2/ lnN [37]

f(α) = 1− α+ lim
N→∞

ln[P (|ψE(n)|2 = N−α)]

lnN
. (38)

This f(α) is a kind of large deviation function showing the tails of the distribution of
ln |ψE(n)|2 far away from its typical (most probable) value〈

ln |ψE(n)|2
〉
= −α0 lnN . (39)

It has a bunch of properties (like the normalization condition of the probability distribu-
tion, f(α) ≤ 1, f(α0) = 1, or the wave-function normalization f(α) ≤ α, f(α1) = α1),
among which we just mention the symmetry [37]

f(2− α) = f(α)− (α− 1) , (40)

relating wave-function peaks (small α < 1) and tails (large α > 1). This symmetry is
known to work for the non-ergodic extended states, fractal or multifractal. In particular,
for the Rosenzweig-Porter model, as shown in [16], f(α) takes a simple linear form for
γ ≥ 1 with an additional point f(0) = 0 for γ > 2

fRP (α) =

{
1 + (α− γ)/2, max(0, 2− γ) < α < γ
−∞, otherwise

, (41)

satisfying the symmetry (40) for γ < 2.
The second widely used probe of multifractality is the inverse participation ratio Iq

defined via the moments of eigenstates as follows

Iq =
∑
n

|ψE(n)|2q ∼ N−(q−1)Dq , (42)

13
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Figure 2: The spectrum of fractal dimensions f(α) in RDM model for 50 % mid-
spectrum eigenstates, θ = 0.25, and (left) γ = 0.75, (middle) γ = 1, and (right) γ = 1.25.
f(α) is extrapolated (green) from N = 29 − 214 (from blue to red) with 1000 disorder
realizations for each. The grey dashed line shows the analytical prediction (46).

where the q-dependent exponents Dq are called fractal dimensions. For the ergodic states
Dq = 1 for all q, while for the localized situation Dq = 0 for q > 0. The intermediate
case of 0 < Dq < 1 called non-ergodic delocalized case. In the multifractal situation, Dq

is represented by strictly decaying function, while in the fractal one, Dq = D does not
depend on q at least for q > 1/2.

The relation between Dq and f(α) is given by the saddle-point approximation of the
disorder averages moments:

⟨Iq⟩ = N

∫
|ψ|2q P (ψ)dψ =

∫
0
Nf(α)−qαdα ≃ Nmaxα[f(α)−qα] (43)

and given by the Legendre transform

(q − 1)Dq = qαq − f(αq), where f
′(αq) = q . (44)

The last equality is just the definition of αq.
From the above definition one can immediately see that α1 determining the wave-

function normalization condition f(α1) = α1 gives the limiting value Dq→1

D1 = α1 = 2− α0 , (45)

while the latter equality is given by the symmetry (40). Here α0 determines the most
typical wave-function coefficients (39) and gives the maximum of f(α0) = 1.

From the above relation and from the predicted value of the fractal dimension, Eq. (33)
one can find the spectrum of fractal dimension in RDM similarly to (41)

f(α) =

{
1 + (2α−2−γ)

4 , max
(
0, 1− γ

2

)
< α < 1 + γ

2
−∞, otherwise

, (46)

Alternatively one can derive the above expression from the Breit-Wigner approxima-
tion (11) with the broadening (33), see, e.g., [33].

Numerically, one cannot achieve the infinite system sizes, therefore both the spectrum
of fractal dimensions, Eq. (38), and the fractal dimensions themselves, Eq. (42), can be
calculated only for finite systems and extrapolated to the thermodynamic limit N → ∞
(see Appendix C). The spectrum of fractal dimension at finite system sizes can be extracted
directly from the histogram over α (see, e.g., [12,16,38,39]), while the inverse participation
ratio is just given by Eq. (42).
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Figure 3: The fractal dimension D1 versus γ in RDM model for 50 % mid-spectrum
eigenstates, and θ = 0.25. The symbols correspond to Dq extracted from the inverse
participation ratio (•) and from the points corresponding to the first α1 (□), and zeroth
2 − α0 (△) moments of P (α) ∼ Nf(α)−1. The black dashed line shows the analytical
prediction (33). The symmetry (40) used for 2−α0 works only for the delocalized phases,
i.e. we plot 2−α0 only for γ ≤ 2. The data is extrapolated from N = 29 − 214 with 1000
disorder realizations for each.

Figure 2 shows the spectrum of fractal dimensions f(α) extracted from the numerical
simulations. One can see that the extrapolation procedure gives the correct normalization
value f(α0) = 1 and the perfect agreement with the analytical formula (46).

Both from the inverse participation ratio (42) and from its relation to f(α) (45) one
can extract the fractal dimension D1, see Fig. 3. A perfect agreement both between each
other and with the analytical prediction (33) confirms our analytical derivation and the
symmetry (40) of f(α). Some deviations from the prediction in the localized phase are
caused by the finite-size effects which are enhanced close to the Anderson transition.

Note that, according to the analytical prediction, the fractal dimension is not homogeneous
across the spectrum and this is confirmed also numerically, see Fig. 4: The fractal dimension
in the spectral bulk (for more than 90 % at the considered system sizes) shows the above
fractal behavior for 0 < γ < 2, while at the edges the high-energy states become ergodic with
D2 → 1.

In addition to the previous two measures, we consider the eigenvalue statistics using a
so-called adjacent level gap ratio (defined in [40,41]) and the wave-function spatial decay (first
used in [27]).

The ratio statistics is given by

rn =
min (sn, sn+1)

max (sn, sn+1)
, where sn = En+1 − En . (47)

The localization corresponds to the Poisson level statistics, characterized by the absence of
level repulsion and leading to r = ⟨rn⟩ = rP = 2 ln 2 − 1 ≃ 0.3863. The ergodic random-
matrix prediction corresponds to the Wigner surmise [6] and is given by rGOE ≃ 0.5307 for
the orthogonal symmetry and rGUE ≃ 0.5996 for the unitary one. For the fractal phase of
the Rosenzweig-Porter kind the gap ratio still shows the Wigner-Dyson value in the entire
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Figure 4: The fractal dimension D2(En) versus energy index n in RDM model for
γ = 0.75, 1, 1.25, θ = 0.25, and N = 210, 212, 214. (insets) the same data for D2(En),
shown vs energy En and zoomed close to the right spectral edge. The data both for
D2(En) and En are averaged over 1000 realizations of disorder for each eigenvalue index
separately.
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Figure 5: The spectral ratio statistics ⟨r⟩typ = exp ⟨ln r(En)⟩ versus energy En in

RDM model for γ = 0.75, 1, 1.25, θ = 0.25, and N = 210, 212, 214. The data both for
r(En) and En are averaged over 1000 realizations of disorder for each eigenvalue index
separately.

delocalized phase, γ < 2, while non-ergodicity is visible only at higher order gap ratios (see,
e.g., [29,42,43]) or other measures like spectral form factor, level compressibility [16] or power
spectrum [44–46].

Figure 5 shows the conventional ratio statistics (47) across the spectrum in disordered
RDM for γ = 0.75, 1, 1.25. One can see that, like in the Rosenzweig-Porter model, the ratio
statistics in the bulk of the spectrum shows Wigner-Dyson unitary value rGUE , while at the
spectral edges the states correspond to the special r values first going up to the equidistant
spectrum r = 1 and then to the nearly degenerate values r ≃ 0.

The last measure of the wave-function spatial decay [12,27,29,47] uncovers the structure of
the eigenstates followed from the effective Hamiltonian (34) and Eq. (35). In order to uncover
the wave-function spatial decay we plot it versus the diagonal energy differences |εm − εn|,
provided these energies are ordered εn < εn+1, see Fig. 6.

Indeed, according to (35), for the sites n, close in the diagonal energy εn to the eigenvalue
Em, |εn − Em| ≲ Γ, the wave-function has a fractal structure |ψEm(n)|2 ∼ N−D like in the
Rosenzweig-Porter. This is confirmed by the Lorentzian form of the wave-function decay in
Fig. 6, similar to the Rosenzweig-Porter results [47].
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Figure 6: The wave-function spatial decay ND
〈
|ψEm(n)|2

〉
versus the diagonal

energy differences |εn − εm| in RDM model for γ = 0.75, 1, 1.25, θ = 0.25, and N =
210, 212, 214. The data is averaged over 1000 realizations of disorder for each eigenvalue
index separately. The main plots show the collapse of the curve with the rescaling δ ·ND

of the energy differences in the log-log scale. The insets show the linear scale without
x-axis rescaling.

7 Conclusion and outlook

In this work we consider the localization and ergodicity-breaking properties of eigen-
states in the disordered Russian Doll model, with the generalized amplitude of the coupling
strength ∼ N−γ/2. We develop RG flow based on the renormalization of high-energy states
in the momentum basis and provide the approximate solution for the effective Hamilto-
nian, valid for any number of the renormalized high-energy states within the considered
parameter range.

In addition, we validate the above result and confirm the subleading character of the
approximations by generalizing the matrix-inversion trick to the case of the spectrum of
the off-diagonal hopping matrix, which is dense at all finite energies and divergent to both
sides of the spectrum. This spectral structure corresponds to the phases of delocalized
eigenstates that can be described by the above generalization of the matrix-inversion trick
(cf. [14]).

Based on the effective Hamiltonian, we find the fractal dimension of the eigenstates in
the spectral bulk and show that the non-ergodic phase of matter appears in the extended
parameter range with respect to the Rosenzweig-Porter model and has different fractal
dimension, D = 1− γ/2.

Note that, as the fractal properties in RDM barely depend on the time-reversal symme-
try breaking parameter θ ̸= 0, the Richardson model provides an example of an exceptional
point, where the limiting behavior θ → 0 of the Russian Doll model does not correspond
to the one of the Richardson model, θ = 0. Unlike the case of the Burin-Maksimov
model [12, 26, 27], where the symmetry-breaking parameter destroyed the BA integrabil-
ity and, thus, the discontinuous character was expected, this work demonstrates that by
breaking time-reversal symmetry, which keeps the model in the BA integrable class for
any finite N may lead to the same discontinuity. It would be also interesting to search for
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the non-ergodicity in the ensemble of twisted XXX models with random inhomogeneities
using the relation with the RDM model. Another interesting issue for further study con-
cerns the derivation of the generalized RDM that is Richardson model with time-reversal
symmetry breaking term and the generalized hopping term scaling, and the investiga-
tion of its fractal properties. It is an important direction of the research as already the
generalized Richardson model describes the superconducting phase of the mixture of the
Sachdev-Ye-Kitaev and the Fermi-Hubbard models [48].

Moreover, we show that the Russian Doll model provides an example of BA integrable
model and delocalized non-ergodic eigenstates already in the single-particle sector. This
consideration raises the question of the relation between BA integrability and the local-
ization and opens a new avenue in this research direction.
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A Estimation of smallness of a parameter Sp,q(2r) and Jp,q(r)−
J̄p,q(r)

Within the condition (24), r ≪ r∗∗ = N1−γ/3,

Epr ≫ Jp−q ∼ N−1/2 (48)

and the sum Sp,q(r), Eq. (23), is small compared to Jp−q

|Sp,q(2r)| ≤

∣∣∣∣∣
r∑

k=0

Jp−pkJpk−q

Epk

∣∣∣∣∣ ≃ 1

N1−γ/2

∣∣∣∣∣ 1

N cos θ
+

π

2 sin θ

r∑
l=1

(2l − 1)ap,q,l

∣∣∣∣∣ , (49)

where ap,q,l = Jp−2l+1J2l−1−q−Jp+2l−1J−2l+1−q due to (9) has zero mean and the following
variance

⟨ap,q,l⟩ = 0 , (50a)〈
|ap,q,l|2

〉
=

2

N2
(1 + δp,q) . (50b)

Using this, the above sum of random variables can be approximated via its variance (as
it have the zero mean)

r∑
l=1

(2l − 1)2
〈
|ap,q,l|2

〉
≃ 2r(4r2 − 1)

3N2
(1 + δp,q) . (51)

Finally, this gives the following estimate for Sp,q(2r) at r ≫ 1

|Sp,q(2r)| ≲
1

N2−γ/2

[
1

cos θ
+
r3/2

sin θ

]
≪ Jp−q ≃

1

N1/2
, (52)
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due to γ < 3 and (24).
In the similar way one can estimate the difference

lp,q(r) = Jp,q(r)− J̄p,q(r) , lp,q(1) = 0 . (53)

Indeed, using Eqs. (19), (22), and (48) one immediately obtains

lp,q(r+1)− lp,q(r) ≃
1

Epr

[
Jp−pk (Spk,q(r) + lpk,q(r))+Jpk−q (Sp,pk(r) + lp,pk(r))

]
, (54)

where we neglected the quadratic term (Sp,pk(r) + lp,pk(r)) (Spk,q(r) + lpk,q(r)) due to its
smallness.

Further we estimate by the order of magnitude the parameter l by rewriting the above
equation for l in the continuous form and neglecting the difference between variables with
different indices

dl(r)

dr
≃ J

Epr

(S(r) + l(r)) . (55)

Solving this ordinary differential equation in the variable x

N−(3−γ)/2 ≤ x =
Jr

Epr

∼ r2

N (3−γ)/2
≪ N (3−γ)/6 (56)

one obtains

l(r) = −S(r)
∫ x
0 y

3/4eydy

x3/4ex
. (57)

For x≪ 1 one can immediately see that |l(r)| ∼ xS(r) ≪ S(r).
In the opposite limit of x ≳ 1 one can only bound |l(r)| ≤ S(r) using the condition for

y′ = (x− y) ≥ 0 in the integrand∣∣∣∣ l(r)S(r)

∣∣∣∣ = ∫ x

0

(
1− y′

x

)3/4

e−y′dy′ ≤ 1 . (58)

In this case one cannot neglect l(r) with respect to S(r), but can absorb it to S(r) if the
numerical prefactors are not important. Thus, in the main text we consider both above
cases of x≪ 1 and x ≳ 1.

B Derivation of the effective Hamiltonian (25) in the coor-
dinate basis (27)

In Eq. (25) we separate our renormalized Hamiltonian in four terms

H(1)
p,q = Jp−q , H(2)

p,q =
JpJ−q

E0
, H(3)

p,q =
r∑

l=1

ap,q,l
E2l−1

, H(4)
p,q = Eqδp,q , (59)

where we introduce the notation ap,q,l = Jp−2l+1J2l−1−q − Jp+2l−1J−2l+1−q and p, q ̸= ps,
with 0 ≤ s ≤ r, and ps are from Eq. (21). The discrete Fourier transform of the above
terms takes the form

H(k)
m,n =

∑
p,q ̸={ps}

e
2πi(pm−qn)

N

N
H(k)

p,q =

∑
p,q

+
∑

p,q={ps}

−
∑
p,

q={ps}

−
∑

p={ps},
q

 e
2πi(pm−qn)

N H
(k)
p,q

N
,

(60)

19



SciPost Physics Submission

where we replaced the summation over p, q ̸= {ps} by the complemented sums over the
whole interval and over ps in either or both variables. The first summation is given just
by the initial (not truncated) Fourier transform.

Here we will calculate all these terms one-by-one. The first term written in the above
four sums takes the form

H(1)
m,n =

∑
p,q ̸={ps}

e
2πi(pm−qn)

N

N
Jp−q ≡ εmδmn + imn − Imn −Kmn , (61)

where the first term corresponds to the diagonal disorder, the second one is given by

imn =
∑

p,q={ps}

e
2πi(pm−qn)

N

N
Jp−q , (62)

while the last two terms are symmetric with respect to each other by the Hermitian
conjugation

Imn =
∑
p,

q={ps}

e
2πi(pm−qn)

N

N
Jp−q =

∑
p′={ps},

q′

e−
2πi(p′n−q′m)

N

N
Jq−p = K∗

nm (63)

with p′ = q and q′ = p and J−p = J∗
p . Let’s calculate, first, Imn by shifting the summation

over p to k = p− q

Imn =
∑

q={ps}

e
2πiq(m−n)

N

N

∑
k

e
2πikm

N Jk = εm
∑

q={ps}

e
2πiq(m−n)

N

N
= εm

(
1

N
+

r−1∑
l=−r

e
2πi(2l−1)(m−n)

N

N

)
=

= εm

(
1

N
+

sin (4πr(m− n)/N)

N sin (2π(m− n)/N)

)
, (64)

The second sum imn in Eq. (61) can be found after the same shift

imn =
∑

q={ps}

e
2πiq(m−n)

N

N

∑
k+q={ps}

e
2πikm

N Jk =

=
∑

q={ps}

e
2πiq(m−n)

N

N
gm,q

√
r

N
≲

(
1

N
+

sin (4πr(m− n)/N)

N sin (2π(m− n)/N)

)
gm,q

√
r

N
≪ Imn (65)

and estimating the following sum with the random phase approximation∑
k={ps−q}

e
2πikm

N Jk ≃ gm,q

√
r

N
(66)

and the central limit theorem for r ≫ 1 leading to random variable gm of the order of one.
After neglecting of the small terms gm

√
r/N with respect to εm we obtain for the first

term

H(1)
m,n(2r) ≃ εmδmn − (εm + εn)

sin (4πr(m− n)/N)

N sin (2π(m− n)/N)
∼

∼ εmδmn − (εm + εn)

{
r
N , |m− n| ≤ N

r
sin(4πr(m−n)/N)

2π|m−n| , |m− n| ≥ N
r

. (67)
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In the last equality we approximate the sine factors of the last term by linear functions
when their arguments are small compared to one.

The second term H
(2)
m,n splits in the product of two equivalent sums, giving in the same

approximation as for imn(
N2−γ/2 cos θ

)
H(2)

m,n =
∑

p,q ̸={ps}

e
2πi(pm−qn)

N JpJ−q =
∑

p ̸={ps}

e
2πipm

N Jp
∑

q ̸={ps}

e
2πiqn

N J−q ≃

≃
(
εm − gm,0

√
r

N

)(
εn − gn,0

√
r

N

)
∼ εmεn . (68)

The third term H
(3)
m,n within the same approximation reads as(

2

π
N2−γ/2 sin θ

)
H(3)

m,n =
∑

p,q ̸={ps}

e
2πi(pm−qn)

N

r∑
l=1

(2l−1) (Jp−2l+1J2l−1−q − Jp+2l−1J−2l+1−q) =

=
r∑

l=1

(2l − 1)
[
e

2πi(2l−1)(m−n)
N

(
εm − gm,2l−1

√
r

N

)(
εn − g∗n,2l−1

√
r

N

)
−

− e−
2πi(2l−1)(m−n)

N

(
εm − g∗m,2l−1

√
r

N

)(
εn − gn,2l−1

√
r

N

)]
≃

≃ 2iεmεn

r∑
l=1

(2l − 1) sin

[
2π

N
(2l − 1)(m− n)

]
∼

∼ 2iεmεn

{
r(4r2−1)

3
2π(m−n)

N , |m− n| ≪ N
r

cN
2sign(m−n)
(m−n)2

+ 2r − N
π(m−n) , |m− n| ≫ N

r

(69)

In the last case we assumed that sine of the large argument is more or less equivalent to
(−1)l. In both latter derived equations we again used (66) and neglected these terms with
respect to εm.

The last term is given by the truncated initial hopping term which we do not split into
the above four sums (60):

H(4)
m,n =

∑
p ̸={ps}

e
2πip(m−n)

N

N
Ep =

2

π
N−γ/2 sin θ

N/2∑
k=r

sin
[
2π
N (2k − 1)(m− n)

]
2k − 1

. (70)

Again using the same approximation for sine of the large argument as (−1)k we will obtain

H(4)
m,n ∼ 2

π
N−γ/2 sin θ

{ (
1− rm−n

N

)
+ cm−n

N , |m− n| ≪ N
r

c
r −

2c
N , |m− n| ≫ N

r

(71)

The first bracket in the first case corresponds to the small argument of the sine, k ≤
N/[4π(m− n)], while the rest terms correspond to the large sine argument.

To sum up, in the coordinate basis at 2rth step we have the following estimate for the
renormalized Hamiltonian given in Eq. (27)

Hm,n(2r) ∼ εmδmn +
εmεn

N2−γ/2 cos θ
+

+

 2
πN

−γ/2 sin θ
(
1− rm−n

N

)
+ i8π2εmεn(m−n)r3

3N3−γ/2 sin θ
− (εm + εn)

r
N , |m− n| ≪ N

r
2
πN

−γ/2 sin θ c
r +

i2πεmεn
N2−γ/2 sin θ

(
cN

2sign(m−n)
(m−n)2

+ r
)
− εm+εn

2π|m−n| , |m− n| ≫ N
r

, (72)

with 1 ≤ r ≤ N/4 and a certain unimportant constant c.
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C Extrapolation of the multifractality measures to the ther-
modynamic limit N → ∞

Here we remind the standard extrapolation procedure for the spectrum of fractal di-
mensions (see, e.g., [12, 13,16,27,38]) and for the fractal dimensions Dq [37].

For the first one we express the multifractal spectrum f(α,N) at finite system size N

f(α,N) = f(α) +
A

(1)
α

lnN
+

A
(2)
α

(lnN)2
+ . . . , (73)

with certain constants A
(k)
α depending on α. The latter expression can be derived using

the definition Eq. (38) and extracted directly from the histogram over α [12, 16, 38, 39].
Here and further we stick to the simplest linear in 1/ lnN behavior, which is typical for
the models with fractal eigenstates [12,14,16].
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Figure 7: Finite-size extrapolation of the multifractal spectrum f(α) for 50 %
mid-spectrum eigenstates and θ = 0.25. (left) f(α,N) and its extrapolation for γ = 3,
the inset shows the extrapolation of f(0, N) vs 1/ lnN , (right) extrapolation of f(α,N)
vs 1/ lnN at γ = 1.5 for several values of α. f(α) is extrapolated from N = 29 − 214

with 1000 disorder realizations for each γ value.

The corresponding finite-size f(α,N) and extrapolated f(α) curves are given in Fig. 7
for 50 % of mid-spectrum states. As an additional marker of the extrapolation quality
we check that the normalization condition, maxα f(α) = f(α0) = 1, of the probability
distribution P(α) is satisfied.

The finite-size fractal dimension is defined by the formula (42) Dq(N) = ln Iq/(1 −
q) lnN , with the generalized inverse participation ratio (IPR),

Iq =
∑
i

|ψn(i)|2q = cqN
(1−q)Dq . (74)

In order to avoid the parasitic contributions from measure zero of special eigenstates we
focus on the typical averaging of the IPR both over the disorder and the eigenstates

Iq,typ = e⟨ln Iq⟩ ∼ N−(q−1)Dq,typ (75)

and omit the subscript “typ” for brevity.
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Figure 8: Finite-size extrapolation of the fractal dimension α0, α1 and D2 for
γ = 1, θ = 0.25. D2 is extrapolated from the same system sizes as f(α) in Fig. 7.
Different symbols in the extrapolation of αq correspond to different percentage P of the
deviation from the maximum of the function f(αq)− qαq used for the extrapolation.

As the main contribution to IPR is given by the scaling exponent Dq and the prefactor
cq similarly to (73) one obtains

Dq(N) = Dq +
(1− q)−1 ln cq

lnN
. (76)

The extrapolation of Dq(N) vs 1/ lnN extracted from I2 and from α0 and α1 is shown
in Fig. 8. Here in order to diminish finite α-bin size for extracting αq we fit f(α)−qα close
to its maximum with a parabolic fit and associate αq with the maximal position of this
fit. The fitting interval, α− ≤ α ≤ α+, is determined by the deviation from the maximal
value f(αq)− qαq to

f(α±)− qα± = (f(αq)− qαq)P , (77)

with the percentage P = 0.9, 0.93, 0.95, 0.97 shown in the legends of Fig. 8. One can
straightforwardly see that 7 % change in P affects the extrapolation by at most the
same amount. The same procedure is done for α0(N) and α1(N) mentioned in Eqs. (39)
and (44).
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