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FIG. 3. Estimating the di↵usion constant. (a,c) show data
for the Ising chain (4) and (b,d) for the XX ladder (5). We
fix �t = 1 and use bond dimensions up to � = 768. In
(c) and (d) we show results for the time-dependent di↵usion
constant at a fixed `⇤ = 3 for varying �, showing clear signs of
convergence. In (a,b) we show the the estimate for D (taken
as the average of D(t) in the interval t 2 [15, 20]). Data for
the weakest dissipations is well fit by a linear extrapolation,
and results for di↵erent `⇤ give consistent estimates for the
physical di↵usion constant. In (b) and (d), the I and dotted
line represent the estimate D = 0.95 from Ref. 61.

lim�!0 D`⇤,�t(t; �) = D(t), for any `⇤ and �t. In prac-
tice, we are limited to some minimal � we can simulate
with a certain bond dimension, while avoiding truncation
errors. However, as we show, one can extrapolate from
the data to get an estimate for the di↵usion constant at
� = 0. Estimates for di↵erent `⇤ then allow us to check
the accuracy of this extrapolation.

The results are shown in Fig. 3(a,c), for �t = 1 and
`⇤ = 2, 3, 4. D(t) saturates to a �-dependent constant.
When � is made su�ciently small, we find that the re-
sults converge. The last few data points are well fit by
a straight line, which allows us to extrapolate D back to
� = 0. The extrapolated results for di↵erent choices of
`⇤ all agree to within ⇡ 1% error, supporting our conclu-
sions that we indeed reached the physical di↵usion con-
stant (in this case, D ⇡ 1.40). This constitutes strong
evidence that our method can successfully capture trans-
port coe�cients to a high precision.

Spin transport in the XX ladder. Next, we study a
spin-1/2 model on a two-leg ladder. We denote by j =
1, . . . , L the rungs of the ladder, and use a = 1, 2 for the
two legs. Pauli operators on a given site are specified as

Xj,a, etc. The Hamiltonian then reads

H =
LX

j=1

X

a=1,2

(Xj,aXj+1.a + Yj,aYj+1.a)

+
LX

j=1

(Xj,1Xj,2 + Yj,1Yj,2) . (5)

Besides energy, this model also conserves the spin z
component,

P
j,a

Zj,a. We examine the transport of
the corresponding local conserved density qj = Zj ⌘
(Zj,1 + Zj,2)/2 along the chain. We take a system of
L = 41 rungs, which is large enough to avoid finite-size
e↵ects, up to the times (t ⇡ 20) that we simulate.

Spin transport in this model has been studied in a num-
ber of previous works, finding clear evidence of di↵usive
behavior with a di↵usion constant D ⇡ 0.95 [23, 61, 62].
Here we show that our method reproduces this result on
much larger systems. We perform the same analysis as in
the Ising model, comparingD for di↵erent � and extrapo-
lating back to � = 0; the results are shown in Fig. 3(b,d).
We find that the extrapolated results are all within the
range D ⇡ 0.96 � 0.98 (even for `⇤ = 1, where energy-
conservation is violated). The fact that these values are
all very close to one another, and to the previous result,
strongly supports the validity of our method.

Conclusions.— We introduced a controlled numerical
method for computing transport properties in strongly
interacting quantum systems at high temperatures. Our
method is based on neglecting ‘backflow’ from compli-
cated to simple operators. We provided a simple imple-
mentation of this method, using matrix product states,
which allowed us to calculate dynamical correlations
without finite-size or finite-time limitations. We demon-
strated the utility of this approach on two spin models,
showing that it can be used to estimate di↵usion con-
stants with high precision. An interesting open question
is whether the method could be further improved by us-
ing ideas from Refs. 24 and 27.

There are a variety of physical problems that would be
interesting to explore with this method, such as transport
in 1D quantum magnets [63–66], disordered models [67–
71] or long-range interacting [72] systems, where existing
methods are even more limited. There might also be ap-
plications in quantum chemistry, where tensor network
methods are becoming increasingly important [73–77].
A natural extension of our method is to finite temper-
atures. We expect it to work well at high temperatures,
where the thermal density matrix is dominated by short
operators [78–83], while it presumably breaks down as
the low-temperature limit is approached. Precisely when
and how this happens is itself an interesting question.
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