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We consider the 2→ 2 scattering amplitude of identical massive particles. We identify the Landau
curves in the multi-particle region 16m2 ≤ s, t < 36m2. We systematically generate and select the
relevant graphs and numerically solve the associated Landau equations for the leading singularity.
We find an infinite sequence of Landau curves that accumulates at finite s and t on the physical
sheet. We expect that such accumulations are generic for s, t > 16m2. Our analysis sheds new light
on the complicated analytic structure of nonperturbative relativistic scattering amplitudes.
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I. INTRODUCTION

Implementation of multi-particle unitarity is among
the biggest challenges in the nonperturbative S-matrix
bootstrap. This paper studies the “shadow” that multi-
particle unitarity casts on the 2→ 2 amplitude.

It is a well-known fact that scattering amplitudes de-
velop a nontrivial discontinuity along the normal thresh-
olds. This fact is a direct consequence of unitarity. Once
combined with analyticity, unitarity also predicts the
existence of infinitely many curves in the s − t plane
along which the amplitude develops double discontinuity.
These so-called Landau curves are more detailed charac-
teristics of the amplitude’s analytic structure. This paper
explores the 2 → 2 scattering of identical scalar parti-
cles of mass m. The Landau curves found here should
be present in any massive quantum field theory. Relat-
edly, the support of the double discontinuity found in
the present paper enters the Mandelstam representation
of the nonperturbative amplitude.

We assume that m is the lightest particle in a theory.
For simplicity we also assume that the theory has Z2-
symmetry, such that the scattered particles are Z2-odd.1

We only concern ourselves with the behavior of the
amplitude on the physical sheet. This is the region in
the complex s, t planes that is continuously connected
to 0 < s, t, u < 4m2, without going through the multi-
particle normal thresholds.

Let us quickly summarize the state-of-the-art results in
this context, see figure 1. When one of the Mandelstam
variables is in the elastic region, say 4m2 ≤ s ≤ 16m2,
unitarity relates the 2 → 2 amplitude to itself. Corre-
spondingly, the Landau curves in this regime are known

1For example, this applies to the pion scattering in QCD.

FIG. 1. The Landau curves in the elastic region 4m2 ≤ s, t <
16m2 are known thanks to elastic unitarity. The first of these
are plotted in this figure. In the gray region, the double dis-
continuity is equal to zero. The main purpose of the present
paper is to explore the structure of the Landau curves in the
multi-particle region s, t ≥ 16m2.

explicitly [1, 2], see appendix B. In figure 1 we plot the
leading elastic Landau curves and below, in gray, the re-
gion where the double discontinuity is known to be zero.

On the other hand, in the multi-particle regime where
both s, t > 16m2, the full non-perturbative support of
the double discontinuity is not known.2 This is directly
related to the fact that in this regime unitary relates
the discontinuities of the 2→ 2 amplitude to amplitudes
with four external particles or more. These are very hard
to analyze and only a few results are available in the

2For example, in figure 1 one can imagine that there exists a multi-
particle Landau curve bulging below both elastic curves. In this
paper we will argue that this does not happen for the scattering of
lightest particles.
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literature. In [3], five Landau curves in this region were
identified, out of which some were found explicitly in [3,
4].

Using graph-theoretic tools implemented through a
systematic computer search, we find all the Landau
curves that asymptote to both, t = 16m2 at large s and
to s = 16m2 at large t.3 Our results are summarized
on figure 5 and figure 4. In particular, we find infinitely
many Landau curves that accumulate towards the curve

(s− 16m2)(t− 16m2)− 192m4 = 0 . (1)

We expect such accumulation points to be a generic
characteristic of multi-particle unitarity and that there
are infinitely many of them at higher s, t, on the physical
sheet.4

The plan of the paper is as follows. In section II we
review the relation between analytically continued uni-
tarity and the Landau equations. We also formulate
the problem of finding the leading multi-particle Lan-
dau curves addressed in the present paper. In section III
we present the solution to the problem. In section IV
we collect implications of our results, future directions,
and relation to other works. Many technical details are
collected in the appendices.

II. ANALYTICALLY CONTINUED UNITARITY
AND THE LANDAU EQUATIONS

The 2 → 2 scattering process is characterized by an
analytic function T (s, t) that depends on two indepen-
dent (complex) Mandelstam variables s = −(p1 + p2)2

and t = −(p1 +p4)2, where pµi are the on-shell momenta,
p2i = −m2, of the scattered scalar particles.5

We would like to understand the minimal set of singu-
larities possessed by T (s, t) as a consequence of unitarity
and crossing. While the general answer to this question
is beyond the scope of this paper, here we aim at re-
vealing an infinite subset of singularities associated with
multi-particle unitarity. The simplest singularities of this
kind are normal thresholds. These are branch-point sin-
gularities at s, t, u = (nm)2, with n ≥ 2. Their presence
follows directly from unitarity

DiscsT (s, t) ≡ T (s+ iε, t)− T (s− iε, t)
2i

=

∫∑
n

T2→nT
†
2→n ,

with s ≥ 4m2 , 4m2 − s < t < 0 , (2)

3When claiming that the set of Landau singularities we find is com-
plete, we will also assume that there are no bound states. By
bound states we mean poles on the physical sheet in the region
0 < s, t, u < 4m2.

4This is in sharp contrast to the situation in the physical region
where in every bounded portion of kinematic space only a finite
number of singularities exists [5]. By the physical region we mean
kinematics that can be directly probed in a scattering experiment.

5The results derived in this paper should equally apply to spinning
particles.

(a) (b) (c)

FIG. 2. A few simplest examples of graphs that represent
various singularities of the 2 → 2 scattering amplitude. a)
The bubble diagram represents multi-particle normal thresh-
olds. b) The two-particle box diagram. It represents a Landau
curve along which the scattering amplitude develops double
discontinuity. c) The four-particle box diagram. This dia-
gram corresponds to four-particle scattering both in the s-
and in the t-channel. In this paper we systematically study
the graphs of this type and the corresponding Landau curves.

and the fact that T2→n = 0 for s < (nm)2. Here, the
integral is over the n-particle phase space. To each term
in the sum in (2) we can assign the graph in figure 2.a.

The vertices in this graph represent the amplitudes

T2→n, T †n→2 and the lines between them represent the
n-particle state.

As we analytically continue (2) to t > 0, we may en-
counter discontinuities of DiscsT (s, t) in t. For example,
consider the term in (2) with n = 2. Both T2→2(s, t′)

and T †2→2(s, t′′) have a normal 2-particle threshold in the
t-channel. These start to contribute to the corresponding
phase space integral in (2) at a new branch-point that is
located at

(s− 4m2)(t− 16m2)− 64m4 = 0 , (3)

along which the scattering amplitude develops double
discontinuity, see [2] for details.

We can assign to this double discontinuity the graph
in figure 2.b, where again, the lines represent (on-shell)
particles and the vertices represent four-point amplitudes
that have been analytically continued outside the regime
of real scattering angles.

As we take s > 16m2 more n’s contribute to (2) and
more singularities are produced by the corresponding
phase space integration. For example, the integration
over the four-particle phase space (n = 4) can produce
a cut of DiscsT (s, t) in t that results from the analyt-
ically continued two-particle normal threshold of T2→4

and T †2→4. The graph that represents this contribution
to the double discontinuity DisctDiscsT (s, t) is plotted in
figure 2.c.

Similarly, for any singularity that follows from multiple
iteration of (analytically continued) unitarity we can as-
sociate a corresponding graph. By iteration of unitarity
we mean the double discontinuity of the amplitude that is
generated from a singularity of T2→n and another singu-

larity of T †2→n, through the analytic continuation of the
phase space integration in (2) to t > 0. The singularities

of T2→n and T †2→n themselves follows from analytically
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continued unitarity in a similar fashion. The graph that
we associate to such a contribution to DisctDiscsT (s, t) is
defined recursively, by gluing together a graph that rep-
resents a singularity of T2→n with a one that represents

a singularity T †2→n with n-lines.
To enumerate all singularities that emerge in this way,

we can go in the opposite direction and first enumerate
all graphs that may result in a singularity of the am-
plitude. Whether a given graph leads to a singularity
of the amplitude in a certain region in the complex s, t
planes is a kinematical question that does not depend
on the details of the sub-amplitudes, represented by the
vertices in the graph.6 Hence, to answer this question
we can equivalently take them to be constants. After
doing so, it becomes evident that the same singularity,
if it exists, is also generated by the Feynman diagram
that coincides with the graph obtained from unitarity.
The relevant singularity of the diagram comes from the
region of loop integration where all propagators go on-
shell [6, 7]. Other singularities of Feynman diagrams may
result from a region of the loop integration where only
a subset of propagators is on-shell. Those propagators
that remain off-shell at the locus of a given singularity
can thus be regarded as part of an higher point vertex
that is not constant. For example, the Feynman dia-
grams that correspond to the graph in figure 2.a with
two lines and the graph in figure 2.b, both have normal
threshold at s = 4m2. Hence, the set of all singularities
of a Feynmann diagram includes the singularities of the
corresponding graph and graphs obtained from it by col-
lapsing some subset of lines into vertices with more legs.
This operation is called a contraction.

If a generic diagram has an n-particle cut then it has
a normal threshold starting at n2m2 in s, t or u (de-
pending on which external legs are considered incom-
ing/outgoing). This can be seen by contracting the rest
of the lines into a bubble diagram as in figure 2.a, with
n legs.7

In this way we immediately conclude that figure 2.b
has normal thresholds at s = 4m2, t = 16m2, and figure
2.c at s = 16m2, t = 16m2.

To summarize, in spite of their perturbative nature,
Feynman integrals have kinematic singularities (normal
thresholds and Landau curves) that can be traced back
to (analytically-continued) unitarity, a principle which
the non-perturbative amplitude is expected to satisfy.

6The described way of generating new singularities from old ones
involves analytic continuation of the amplitudes. It might happen
that due to some special properties of the amplitude, the expected
singularity is not there. Here we assume that this does not hap-
pens and expect the singularities which follow from unitarity to be
generically present.

7In fact, the set of contractions only leads to a pair of single vertices
if each side remains connected after the cut. In graph-theoretic
terms this requires the cut to be minimal [8]. Physically, this is
consistent with the fact that on the RHS of unitarity (2) only con-
nected S-matrix elements participate.

Therefore, to enumerate the singularities that follow from
non-perturbative unitarity we can equally enumerate the
singularities of individual Feynman diagrams.8

In this classification, the Feynman diagrams are only
used as a device to study the location of kinematic sin-
gularities of the non-perturbative amplitude.9 For more
than two intermediate particles, we find this tool more
practical than directly analyzing the analytic continua-
tion of the unitarity relation (2).

The locations of singularities of Feynmann diagrams
can be found using the Landau equations. These are
summarized in appendix C and we refer the reader, for
example, to [9, 10] for a detailed review.

The so-called leading singularity of a Feynmann di-
agram occurs when every internal momentum goes to
the mass-shell. This is precisely the singularity that is
described by the corresponding graph, as defined above
through unitarity, where each line represents an on-shell
particle.

Therefore we may restrict our dissection to singulari-
ties of this type only. The Landau equations then read

1. All propagators are on-shell, k2i = m2, where the
index i = 1, . . . , P labels all the propagators and
ki’s are complex-valued oriented momenta that flow
through them.

2. At each vertex v, the momentum is conserved,∑
j∈v ±k

µ
i = 0, with + (−) for ingoing (outgoing)

momenta.

3. For any loop l, the momenta satisfy∑
j∈l±αjk

µ
i = 0, with + (−) sign for momenta

along (opposite) the orientation of the loop, and
non-zero coefficients, αi 6= 0.

Two solutions that are related by an overall rescaling
of the coefficients corresponds to the same singularity.
We may therefore normalize them such that

∑
αi = 1.

For any solution to these equations we can associate a
story in complexified spacetime. In this story the Feyn-
man parameters, αi, are the proper times of on-shell par-
ticles, k2i = m2

i , that propagate along the spacetime in-
terval ∆xµi = αik

µ
i . Every vertex represents a scattering

of these particles that takes place at a point. The space-
time interval between two vertices should not depend on
the path between the vertices. This means that for a
closed path (i.e. a loop) we have

∑
i∈l ∆x

µ
i = 0.

No general answer is known to the question of which
parts of the Landau curve lead to singularities on the
physical sheet (which is our main interest here).

8Related to that, let us emphasize particles that propagate in these
auxillary Feynman graphs are true asymptotic states. For example,
in QCD these are pions and not quarks.

9In particular, note that m is the mass of a particle in the spectrum,
which need not be associated with a fundamental field.
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With present understanding, answering it requires a
careful case-by-case analysis. There is however a special
class of solutions to the Landau equations, called α-
positive, for which the singularity on the physical sheet
is sometimes easier to establish.10 These are solutions
for which αi > 0.11 Below we concern ourselves with
α-positive solutions only.

The double discontinuity DisctDiscsT (s, t) does not de-
pend on the order in which the two discontinuities are
taken. For example, the graph in figure 2.b can equally
be interpreted as a contribution to the double discontinu-
ity that comes about by first considering the four particle
contribution to t-channel unitarity and then plugging in
the single-particle pole of the analytically continuation of

T2→4 and T †2→4 in the s-channel. We can therefore group
the Landau curves into families that are characterized by
two integers (ns, nt), which are the maximal number of
particles in the s-channel and t-channel unitarity they
can be obtained from.

In this paper we focus on the (4s, 4t) family of double
discontinuities. These are the ones that originate from
the analytic continuation of unitarity (2) up until n = 4
in both channels. Physically, this corresponds to restrict-
ing energies to s, t < 36m2.

We expect that all Landau curves in families with
(ns ≥ 4, nt > 4) and (ns > 4, nt ≥ 4), which are not
already included in the (4s, 4t) family, to lay above the
(4s, 4t) family in the s− t plane of figure 1.

III. GRAPH SELECTION

We now describe our systematic method of finding the
α-positive Landau curves in the (4s, 4t). A characteristic
feature of a graph associated with such a curve is that
any of its internal lines can be taken to be one of the four
(or less) particles in the unitarity relation in either the
s-channel or the t-channel. In other words, any leg of the
graph should have a 2- or 4-particle cut in at least one of
the channels.

The number of potentially contributing graphs is infi-
nite. We study finitely many graphs with a fixed num-
ber of vertices, V , of fixed maximum vertex-degree D,12

10More precisely, this has only been shown for planar Feynman dia-
grams [11]. We believe that all α-positive solutions found in this
paper correspond to singularities on the physical sheet. However,
we do not prove this for the non-planar graphs.

11Let us emphasize an important subtlety. In the literature the notion
of α-positive graphs typically involves an extra assumption: all
kµi are real, and k0i > 0. These are the solutions of the Landau
equations that capture singularities of the amplitude in the physical
region [12]. On the other hand, the α-positive graphs considered
here are relevant for singularities of the 2 → 2 amplitude on the
physical sheet.

12Because of the aforementioned contractions, graphs with higher
vertex degree D are associated with Landau curves can arise in
theories with a smaller vertex degree. For example, the graph (c)

and increase V gradually. As we do so, the number of
graphs to be analyzed grows factorially and the prob-
lem rather quickly becomes intractable.13 To overcome
this difficulty, we rule out graphs that a priori cannot
possibly have α-positive Landau curve or involve more
than four particles in the s- or t- channel. Importantly,
this selection process has a precise graph-theoretic imple-
mentation, so that it can be imposed before solving the
Landau equations. Eventually we find that the number
of the relevant graphs stabilizes at a handful number of
graphs.

Throughout our analysis we assume Z2 symmetry of
the amplitude that restricts the vertex degree D to be
even.

The set of criteria that we use to select the relevant
graphs are as follows:

• We look for Landau curves in the (4s, 4t) fam-
ily. Correspondingly, we demand that any leg of
a graph should have a four-particle or two-particle
cut in at least one of the channels. Even though this
criteria sounds very intuitive, we have not proved it.
Instead, we will see that all the curves that result
from graphs that satisfy it pass through the region
16m2 < s, t < 36m2 and asymptote to 16m2.14

• A graph only admits an α-positive solution to the
Landau equations if each of its subgraphs admits
an α-positive solution to the Landau equations.

According to this criterion, we can discard a graph
by identifying that one of its subgraphs cannot have
an α-positive solution.

• We can discard a graph if a subgraph of it can be
contracted without affecting the solution. That is
because the corresponding Landau curve if it exists,
is already accounted for by the contracted graph.

We denote trivial sub-graph a graph that falls into one of
the last two categories. We have identified a few fami-
lies of trivial graphs that involve bubbles, triangles, and
boxes.15 They are discussed in appendix D.

Computationally, we found it most efficient to proceed
as follows

1. We start by generating all graphs without trivial
bubbles, with fixed number of vertices V that con-
tain at least one vertex of degree D, but no vertices
of higher degree.

in Fig. 2, which has two degree-6 vertices, gives a Landau curve in
φ4 theory.

13For D = 4 we analyzed all the graphs with V ≤ 12 and for D = 6, 8
up to V ≤ 8.

14Conversely, no graph that was left out by this criterion was found
to have a curve in this region. This check was made until V = 8
for D = 4 and until V = 6 for D = 6.

15These are subgraphs with 2, 3, and 4 vertices correspondingly.
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2. We discarded graphs with trivial sub-triangles.

3. We discarded graphs without 2-particle or 4-
particle cuts in at least two channels.

4. We selected the graphs for which all legs can be cut
by 2-particle or 4-particle cuts.

5. We discard graphs with trivial sub-boxes.

6. Finally, we select graphs for which an α-positive
solution to the Landau equations is found.

Step 1 was implemented using nauty and Traces
[13]. Steps 2-5 were implemented using the open
source network analysis package igraph [14], adapted to
mathematica by the igraph/M package [15]. Step 6 was
implemented in mathematica. The details of the imple-
mentations of each step can be found in appendix E.

As we increase D, it is harder to satisfy the four-
particle constraint and the absence of trivial sub-graphs.
In particular, we did not find any graphs satisfying our
criteria with D ≥ 8. In table I, we list the number of
graphs at each step for D = 4 and D = 6.

As can be seen from table I, considerable reduction in
the number of graphs occurs at step 4 as the number of
vertices increases. At this order it becomes an incredibly
tight criterion, but also very computationally expensive.
For comparison, given the same set of graphs, we observe
step 3 to be roughly a hundred times faster and step 2
around a thousand times faster.

Step 3 is logically included in step 4. Even though it
is not necessary, it reduces total computing time.

Interestingly, step 2, the elimination of trivial sub-
triangles, is essential to observe the quench in the growth
of diagrams. We observe that the number of diagrams
with trivial triangles that survives the criterion imposed
by step 4 grows at least exponentially with the number
of vertices.

(a) (b)

FIG. 3. The planar cross and the non-planar cross (open
envelope) graphs. Each of the diagrams is the first one in
an infinite chain of diagrams, see figure 4, that generates the
Landau curves on the physical sheet, in the region 16m2 ≤
s, t < 36m2.

Let us now summarize our findings. Figures 4 and
5 depict all the graphs that satisfy α-positive Landau
equations with at most four particles in the s- and t-
channels, and figure 5 the corresponding Landau curves.
The graphs in figure 4 and figure 5, as well as the Landau

a)

b)

FIG. 4. The planar, a), and non-planar, b), triangle chain
graphs. Remarkably, each of the graphs involves four-particle
scattering both in the s- and in the t- channel. As the number
of triangles grows, the corresponding Landau curves quickly
accumulate around the locus (1) on the physical sheet. No-
tice that adding a single triangle to each chain increases the
number of vertices V by 2. Closely related diagrams appeared
before in [11, 16, 17].

curves in figure 5 are the main results of the paper.16

In appendix A we exhibit the equations for some of the
multi-particle Landau curves depicted in figure 5.

Interestingly, we find Landau curves crossing 16m2 ≤
s, t < 36m2 which originate from graphs with arbitrarily
large V . These are depicted in figure 4 and their Landau
curves (shown in black on figure 5) accumulate to the
red curve on figure 5. This is a new feature compared
to the elastic region 4m2 ≤ s, t < 16m2, where every
bounded region of the kinematic space contains a finite
number of Landau curves. We believe that this feature
is characteristic for the multi-particle region and there
are infinitely many accumulation points of the Landau
curves there. We discuss this further below.

IV. DISCUSSION

In this paper we have analyzed analytic properties of
the 2 → 2 scattering amplitude on the physical sheet.
In particular, we have focused on the leading Landau
curves in the multi-particle region which originate from
the analytic continuation of four-particle unitarity both
in the s- and t- channels (in our notations (4s, 4t) curves).
Here we discuss various implications of our results as well
as some interesting directions to explore.

16 All the curves that we found cross the region 16m2 < s, t < 36m2.
We believe that the presented here list of curves in this region is
complete. Showing this requires proving some further properties of
the α-positive Landau curves which we discuss in the conclusions.
It also requires making sure that non α-positive solutions to the
Landau equations do not lead to the singularities on the physical
sheet.
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Quartic graphs (D = 4)

# of vertices (V ) 4 5 6 7 8 9 10 11 12
All graphs (no trivial bubbles) 2 3 23 111 788 5639 46603 410114 3587793

No trivial triangles 2 1 10 33 232 1522 12696 113034 1023415
2- or 4-particle cuts (exist) 2 1 7 25 157 955 7070 54835 429093

2- or 4-particle cuts (all legs) 2 1 4 5 12 7 10 7 9
No trivial boxes 2 1 3 4 9 4 4 3 3

α-positive Landau curves 2 1 2 1 3 1 1 1 1

Quartic & sextic graphs (D = 6) w/ sextic vertex

# of vertices (V ) 4 5 6 7 8
All graphs (no trivial bubbles) 9 109 2678 73918 2477395

No trivial triangles 6 22 553 14714 538309
2- or 4-particle cuts (exist) 1 3 27 476 10356

2- or 4-particle cuts (all legs) 1 0 2 1 3
No trivial boxes 1 0 1 0 0

α-positive Landau curves 1 0 1 0 0

TABLE I. The number of graphs with vertex degree 4 (top) and vertex degree ≤ 6 with at least one sextic vertex (bottom).
Each column specifies the number of vertices and each row specifies a reduction step. We show the total number of 2 → 2
graphs without trivial bubbles in the second row. In the third row, graphs with trivial triangle subgraphs have been discarded.
Next, we require that all legs can be put on-shell with at most 4-particle cuts since we are looking for Landau curves in the
(4s, 4t) family. We first demand that there exists at least one such cut of the diagram in each channel (fourth row). Next
we demand that every line can be cut with a 2-particle or a 4-particle cut (fifth row). As a next step we discard the graphs
containing a trivial box subgraph (sixth row). The last row has the number of graphs for which an α-positive solution has
been found by numerically solving the Landau equations. For quartic graphs, this number does not go to zero as the number
of vertices is increased. This is due to an infinite family of diagrams generated by consecutive insertion of triangles (see figure
4). The corresponding Landau curves accumulate at finite s, t, see figure 5. Current computational limitation prevents us from
increasing the number of vertices any further, but we believe that all the relevant diagrams have been identified.

Triangle chain curves at symmetric point: s = t = xn.

n 1 2 3 4 5 6 7 8 · · · ∞
xn 35.8885 27 30.2385 29.7511 29.8799 29.8504 29.8579 29.8560 · · · 29.8564∣∣ xn−x∞

xn−1−x∞

∣∣ - 0.4735 0.1338 0.2756 0.2235 0.2533 0.2482 0.2547 · · · ?

TABLE II. Accumulation of Landau curves at finite s and t. The table lists the symmetric point (s = t) of the first few
Landau curves produced by the infinite set of triangle chain diagrams (depicted in black in figure 5). The curves accumulate
towards the red curve in figure 5. The last row of the table indicates that the approach towards the limiting curve is very quick
(approximately geometric).

A. Lighest particle maximal analyticity

Eventually we would like to fully understand the ana-
lytic properties of the scattering amplitude on the phys-
ical sheet. In the context of perturbation theory a rich
structure of singularities has been discovered already in
a 2 → 2 scattering amplitude. These include anomalous
thresholds [18–20]17, crunodes, acnodes and cusps [23].
No systematic understanding of these latter singularities
exists up to this day.

Nevertheless in the course of these explorations a re-
markable hypothesis has emerged. It concerns the 2→ 2

17Anomalous thresholds do not arise in the 2 → 2 scattering of the
lightest particles, see e.g. [11] for a perturbative argument. How-
ever they are present in the 3 → 3 (or 2 → 3) scattering, see
[21, 22].

scattering of the lightest particles in a gapped theory
(which is the subject of the present paper) and can be
stated as follows.

Lighest Particle Maximal Analyticity: The 2→ 2
scattering amplitude of the lightest particles in the the-
ory, T (s, t), is analytic on the physical sheet for arbitrary
complex s and t, except for potential bound-state poles,
a cut along the real axis starting at s = 4m2 with branch
points associated with production normal thresholds and
Landau curves, as well as images of these singularities
under the crossing symmetry transformations.

Establishing this hypothesis even within the frame-
work of perturbation theory is an important, open prob-
lem in S-matrix theory. Assuming lighest particle max-
imal analyticity (LPMA), the analytic structure of the
2 → 2 amplitude is concisely encapsulated by the Man-
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FIG. 5. The Landau curves in the 2→ 4 multi-particle region. To each diagram corresponds a pair of crossing symmetry-related
curves. For crossing symmetric diagrams, there is only one curve. The red curve, given by equation (1), is an accumulation
point of infinitely many Landau curves. The uppermost curve (black #1) is given by the non-planar cross diagram, figure 3 (b),
while the planar cross, figure 3 (a), gives the lowermost curve (black #2). The planar triangle chain graphs (#2, #4, #6,...),
figure 4 (a), approach the red curve from below while non-planar triangle chain graphs (#1, #3, #5,...), figure 4 (b), approach
it from above. As shown in the inset panel, the approach is fast (see table II). We expect that the Landau curves presented
here are all the curves that cross the square 16m2 < s, t < 36m2 on the physical sheet. We collect explicit equations for some
of the Landau curves in appendix A.

delstam representation.18 From the point of view of our
analysis, the nontrivial fact about LPMA is that scat-
tering of lightest particles contains infinitely many sub-
graphs that by themselves do not respect maximal ana-
lyticity. For example, some of the trivial boxes subgraphs
depicted in figure 19 do not admit the Mandelstam rep-
resentation [24]. For LPMA to hold, embedding these

18The Mandelstam representation involves an extra assumption that
the discontinuity of the amplitude is polynomially bounded on the
physical sheet.

subgraphs inside a larger graph that describes scattering
of the lightest particles in the theory should render the
complicated singularities of the subgraph harmless on the
physical sheet.19

We have not studied the mechanism of how this hap-

19As an example, the top center box in figure 19 has an α-positive
section of the Landau curve for s < 4m2, which is associated with a
complex singularity and for which the Mandelstam representation
does not hold [24]. For the case of scattering of lightest particles,
this anomalous box is embedded in the graph in fig. 11, where
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pens, and we leave this important question for future
work.

LPMA is a working assumption in some of the recent
explorations of the S-matrix bootstrap, see e.g. [2, 25–
27]. It is also one of the main reasons we have restricted
our study to the physical sheet.

It would be very interesting to revisit the problem of
establishing LPMA in perturbation theory. For example,
showing that all the graphs considered in the present pa-
per admit Mandelstam representation might provide a
clue as to why it is valid more generally.

B. Analytic continuation of multi-particle unitarity

As we discussed at the beginning of the paper, a di-
rect way to see the emergence of double discontinuity of
the amplitude is to analytically continue the unitarity
relations (2) which involves T2→n scattering amplitude.
While for n = 2 this has been done already by Mandel-
stam [1], very little work has been done for n > 2. Let
us mention that some progress has been made for n = 3
in the papers [28, 29] but the connection between analyt-
ically continued multi-particle unitarity and the multi-
particle Landau curves has not been explored systemat-
ically. It could be useful, for example, to better under-
stand the lower bound on particle production along the
lines of [2].

C. Lightest particle α-positive Landau curves

All the elastic Landau curves [2] and the multi-particle
curves discussed in the present paper satisfy the following
properties:

1. Asymptotic to normal thresholds. As t (or s) goes
to infinity, s (or t) approaches normal thresholds.

2. Monotonic. For s > 4m2 we have dt
ds < 0.

It is tempting to conjecture that in the context of the
lightest particle scattering the properties above fully cap-
ture the nonperturbative analytic structure of the 2→ 2
amplitude on the physical sheet. Assuming it is true,
the Landau curves form a simple hierarchical structure,
where the α-positive curve (if it exists) of a graph with a
minimum cut across ns legs in the s-channel, and a min-
imum cut across nt legs in the t-channel has support in
the region s > (nsm)2, t > (ntm)2. It then follows that
the curves found in the present paper are complete in the
region 16m2 ≤ s, t < 36m2. This is an extra assumption
to which we referred in the footnote 16.

LPMA applies. For this graph we have verified numerically that
no α-positive solution exists for s < 4m2. While at present we
cannot rule out the presence of complex singularities in this graph,
we see that, at least, there is no anomalous α-positive real section.

Even if heavier particles flow in the internal lines, as
long as the external states are the lightest particles, we
expect that the above properties should hold. Clearly,
in fig. 5 we see diagrams with 2-particle and 3-particle
internal bubbles which are equivalent (i.e. would give the
same Landau curve) to diagrams where these bubbles
are replaced by single particles with mass 2m and 3m,
respectively.

However, due to the presence of anomalous thresholds
[24], monotonicity of the Landau curves does not neces-
sarily hold outside lightest particle scattering. See sec-
tion IV H for a discussion on the general external mass
case.

D. Extended elastic unitarity region

The results of this paper strengthen the picture in
which the double discontinuity vanishes below the first
elastic Landau curves

ρ(s, t) ≡ DisctDiscsT (s, t) = 0 (4)

for s, t ≥ 4m2 and
(s− 4m2)(t− 16m2) < 64m4

(t− 4m2)(s− 16m2) < 64m4 .

We see that the multi-particle Landau curves do not
spoil this relation and, therefore, we expect it to hold
non-perturbatively.

Another outcome of our analysis is an extended region
of validity of the analytically continued elastic unitarity.
Let us consider the first multi-particle Landau curve that
we encounter as we enter the region s, t > 16m2. It is the
planar cross curve given by the equation [3] (black curve
#2 in figure 5)

s3(t− 16) + t3(s− 16) + 24 s t(s+ t− 18)− 2s2t2 = 0 .
(5)

Let us call {4m2 < s, t < planar cross} the extended elas-
tic unitarity region. In this region the double discontinu-
ity ρ(s, t) satisfies the following relation

Extended elastic unitarity :

ρ(s, t) = ρel(s, t) + ρel(t, s) , 4m2 < s, t < planar cross ,
(6)

where ρel(s, t) is the double discontinuity given by the
Mandelstam equation in the s-channel, which expresses
analytically continued elastic unitarity.

Notice that the equation (6), on one hand, involves
only the 2→ 2 scattering amplitude. On the other hand,
its origin lies in the details of multi-particle unitarity.

E. Accumulation points of the Landau curves are
generic

We believe that the basic mechanism found in the
present paper for the accumulation of the Landau curves
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FIG. 6. A box graph with bridges of size (n1, n2, n3, n4). The
Landau curve that is associated to this graph is expected to
be an accumulation curve of infinitely many Landau curves.
They correspond to graphs that are obtained from this one
by replacing an ni-bridge with an ni-chain.

on the physical sheet is generic. For example, we expect
that the Landau curves that originate from the graphs
depicted in figure 6 are accumulation points of infinitely
many Landau curves on the physical sheet.

The basic mechanism is the one we observed for the
triangle chains depicted in figure 4. By exchanging an
ni-particle bridge with a chain of ni-particle sub-graphs,
an infinite family of Landau curves is generated. As the
length of the chain is increased, it is natural to expect
that the solution of the Landau equations, if it exists,
converges to the one of the ni-particle bridge. In par-
ticular, we have already established existence of the α-
positive solution to the Landau equations for a chain of
triangles. The triangle chain can now be exchanged with
any ni = 3 bridge of a diagram with an α-positive solu-
tion to produce an accumulation sequence.20

This scenario leads to a very complicated structure of
the Landau curves on the physical sheet. We will have
an infinite number of accumulation points, accumulation
points of accumulation points, etc.

Let us also emphasize that this feature should be
present in any interacting gapped theory with at least
one massive particle in the spectrum, with any spin. We
also see no reason why such accumulations would not oc-
cur in the general mass case, i.e. with different species
being exchanged. It would be interesting to check this
explicitly.

F. Higher multi-particle Landau curves

Our method is systematic and, given enough com-
putational ability, can be used to find Landau curves

20Note that the triangle chain diagrams correspond to embedding
3 → 3 elastic scattering amplitude inside a 2 → 2 process. Sim-
ilarly, the mechanism for accumulation of the Landau curves de-
scribed above seems to be related to the behavior of the n → n
multi-particle amplitudes close to the normal multi-particle thresh-
olds. It would be interesting to study this behavior in more detail
(for a related discussion see [17]).

above s, t > 36m2. Graph selection should now involve
6−particle (or heavier) cuts.

It is likely, however, that the elimination of trivial bub-
bles and triangles will no longer be sufficient to quench
the growth of the number of graphs. Unfortunately,
the condition for larger subgraphs to be trivial is not
so simple (see appendix D where we identify some triv-
ial boxes). The problem becomes more complicated the
deeper one delves into the multi-particle region. One may
need to discard multiple-loop subgraphs, for example.

Direct use of unitarity may be a viable alternative, as
shown in the elastic region. However, as mentioned ear-
lier, analytic continuation of multi-particle kernels is a
difficult task. The accumulation mechanism discussed
here, which should follow from 4-particle unitarity, in-
deed does not indicate otherwise.

G. S-matrix bootstrap applications

Our results have implications for the S-matrix boot-
strap program. Indeed, the stumbling block of the cur-
rent incarnation of the S-matrix bootstrap in d > 2 is
that it was not possible so far to include the multi-particle
amplitudes in the analysis.

Here we took an alternative route, where we tried to
understand how the presence of multi-particle unitarity
is reflected on the structure of the 2 → 2 amplitude. In
some sense, we can think of the Landau curves found in
the present paper as seeing multi-particle shadows on the
elastic scattering wall.

Implementing the structure of the few leading Landau
curves in the analytic structure of the amplitude will al-
ready be a step forward compared to some of the current
explorations of the S-matrix bootstrap [25–27, 30]. In-
deed, even (4) has not been realized in this context.21

Another interesting question is to what extent the de-
tailed analytic structure is relevant for the low-energy
observables, e.g. a few low-energy Wilson coefficients.
We do not know the answer to this question, but recent
works [25, 26] suggest that the low-energy observables are
not very sensitive to that. It would be very interesting
to better understand the origin of this phenomenon.

H. Other future directions

A few other future directions are

• An interesting generalization of our analysis is to
relax Z2 symmetry. Effectively it allows vertices of
odd degree D and will lead to new graphs and the

21The fixed point unitarity methods [31] do realize this structure but
these have not been implemented in d > 2 yet [32].
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corresponding Landau curves. It would be interest-
ing to understand them in detail. While the Lan-
dau curves found in fig. 5 should still be present,
these will not be all the curves crossing the re-
gion 16m2 < s, t < 36m2. There will be new
curves that asymptote to 9m2 and that cross this
region, similarly to what happens with the elas-
tic curves, which asymptote to 4m2 and also cross
16m2 < s, t < 36m2.

A presumably simpler problem to what we have
studied here would be to map out all the curves
in the region 9m2 < s, t < 16m2. Are there ac-
cumulations of Landau curves inside this region?
We believe that this is not case since no analog of
the triangle chain depicted in figure 4 exists in this
case.

• Another possibility is to consider the presence of
bound-states, or particles with different mass. We
can think of a couple of difficulties here. One
is that the graph selection procedure is more in-
volved. The simple graph-theoretic rules derived
in appendix D for discarding trivial sub-graphs be-
come much more complex in the general mass case,
and a systematic selection as done here might be
unfeasible. The other problem, a more fundamental
one, is that the different mass case leads to several
new features on the Landau curves. First, there
are anomalous thresholds and Landau curves are
in general non-convex, namely they can bulge be-
low the asymptotic normal threshold. This could
invalidate our cut criteria which discard Landau
curves that asymptote to normal thresholds out-
side the kinematic region of interest. Surely the
curves found in fig. 5 should be present in any the-
ory (with at least one massive particle). However,
in the general mass case these won’t likely be all
the curves that cross a given kinematic region on
the physical sheet. Secondly, cusps, acnodes and
more generally complex singularities [9, 24] could
appear on the physical sheet. These are not nec-
essarily associated with α-positive solutions to the
Landau equations.

• It would be interesting to apply techniques recently
developed in [33] to better understand the approach
of the Landau curves to the accumulation point, as
well as the analysis of [34] to better understand the
nature of multi-sheeted analytic structure of the
corresponding Feynman graphs.

• It would be important to prove that all the curves
we have found are indeed present on the physical
sheet. For the planar graphs it is guaranteed, see
[10, 11, 35]. For the non-planar cross in figure 3.b,
the question was addressed in [36]. For the other
non-planar graphs an extra analysis is required, ei-
ther by following the analytic continuation of the

corresponding Feymann integral or by directly an-
alyzing the 4-particle unitarity kernel. It is also
important to prove that non α-positive solutions
to the Landau equations do not lead to singulari-
ties on the physical sheet. Finally, one would like
to show that there is a unique α-positive solution
associated with each nontrivial graph (which we as-
sumed to be the case in appendix C).

• Our results should emerge from the flat space limit
of the theory in AdS [37–41]. In the latter case, one
computes the conformal correlators on the bound-
ary of AdS. The double spectral density of the am-
plitude corresponds to the quadruple discontinuity
of the corresponding correlator [42]. Complexity of
the multi-particle scattering in this case translates
into the complexity of the n-twist operators with
n > 2, [43, 44].

• For large N confining gauge theories, a new clas-
sical description emerges at large s, t � m2 [45].
Can there also be a universal classical description in
this regime for the non-perturbative amplitude? A
crucial step in answering this question seems to be
a better understanding of the analytic structure in
this regime. Understanding this regime is necessary
for establishing the Mandelstam representation of
the scattering amplitude non-perturbatively. It is
also important for developing possible truncation
schemes in which the complicated multi-particle
unitarity structure can be simplified.
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Appendix A: Multi-particle Landau curves

Here we collect explicit equations for some of the multi-
particle Landau curves discussed in the paper. For con-
venience we set the mass m = 1. We refer to the various
diagrams by their colors as depicted on figure 5.

Red curve: (the accumulation curve)

(s− 16)(t− 16)− 192 = 0 . (A1)

Planar cross: (see figure 3.a, and [3])

s3(t−16)+t3(s−16)+24st(s+t−18)−2s2t2 = 0 . (A2)
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Non-planar cross: (see figure 3.b, and [3])

1

3
s3t3u3 − 48s3t3u2 + 768s3t3u− 4096s3t3 + 4096s3

+ 8512s2t2u2 − 503808s2t2 − 36864
(
s2t+ st2

)
+ 138240

(
s3t2 + s2t3

)
− 790528stu+ (cyclic) = 0 ,

(A3)

where s + t + u = 4. Curiously in the region 0 <
s, t, u < 4 this curve can be written as [46]

( s
16

) 1
3

+

(
t

16

) 1
3

+
( u

16

) 1
3

= 1 . (A4)

Green curve:

s2t2 − 16s2t− 32st2 + 224st+ 256(t− 1)2 = 0 . (A5)

Blue curve:

(s− 16)3t2 + (s− 4)(s− 16)3t− 16((s− 10)s+ 32)2 = 0 .
(A6)

Curves (A1), (A5) and (A6) were found using the 2-
particle kernel. See appendix B.

Appendix B: Landau curves from 2-particle unitarity

As explained in section II, we can assign graphs to
singularities that follow from continuation of unitarity.
They represent how unitarity integrals relate singulari-
ties of sub-graphs to singularities of the bigger graph. In
this appendix we demonstrate such explicit relation di-
rectly at the level of the Landau curves, without using
the Landau equations. It follows from a detailed anal-
ysis of the two-particle unitarity integral – the so-called
Mandelstam kernel, see [2] for details.

FIG. 7. The Landau curve of a graph AB that has a 2-particle
cut is related to the singularities of sub-graphs A and B. The
numbers indicate the mass of “on-shell” particles as integer
multiples of m.

Consider a graph AB that can be split into two sub-
graphs, A and B, by a 2-particle cut as illustrated in
figure 7. In this case, the Landau curve of AB (tAB(s))
can be determined in terms of the curves of A (tA(s))
and B (tB(s)) from the following equation

λn,j(s, tAB(s)) = λn,k(s, tA(s))× λk,j(s, tB(s)) , (B1)

where

λn,j(s, t) = zn,j(s, t) +
√
zn,j(s, t)2 − 1 , (B2)

and

zn,j(s, t) =
s− 2(nm)2 − 2(j m)2 + 2t√
s− 4(nm)2

√
s− 4(j m)2

, (B3)

is the cosine of the scattering angle between incoming
particles of mass nm and outgoing particles of mass j m.

To illustrate (B1) consider the leading elastic Landau
curve that is plotted in gray in figure 5. It is represented
by the graph on figure 8 and has a single 2-particle cut

FIG. 8. Diagrams with a single s-channel cut which splits
each diagram into a pair of t-channel bubbles. The Landau
curves of these diagrams follows from the singularities of the
bubbles, which are simple normal thresholds. The Landau
curve of the diagram on the left (gray curve in figure 5) is
given by equation (B4) while the diagram on the right (red
curve in figure 5) has Landau curve given by equation (B7).

along the s-channel. Since either sub-diagram has a nor-
mal threshold at t = 4m2 and all legs have the same mass
m, the corresponding Landau curve is given by

λ1,1(s, tgray(s)) =
(
λ1,1(s, 4m2)

)2
, (B4)

which in polynomial form reads

(s− 4m2)(t− 16m2)− 64m4 = 0 . (B5)

Swapping s ↔ t leads to the leading elastic curve that
follows from t-channel unitarity. Both are represented in
gray in figure 5.

Note that equation (B1) can be iterated. By gluing
AB to a new diagram C one can express the Landau
curve of ABC as

λn,j(s, tABC(s)) = (B6)

λn,k(s, tA(s))× λk,l(s, tB(s))× λl,j(s, tC(s)) .

One may further iterate (B6) by gluing more sub-
diagrams. If all sub-diagrams A, B, C, ... are taken
to be t-channel bubbles then the full graph ABC· · · be-
comes a ladder diagram. Every Landau curve belonging
to the elastic region 4m2 < s < 16m2 is represented by a
ladder diagram, and every elastic curve can be computed
accordingly (see section 3.5 of [2]).

Interestingly, the 2-particle kernel may also be used
to determine some of the Landau curves in the multi-
particle regime s, t > 16m2. This is because a bubble
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diagram with n legs of mass m is indistinguishable from
a graph where this bubble is replaced by a single on-shell
particle of mass nm (see appendix D). We may therefore
use equation (B1) to determine the red Landau curve in
figure 5 whose diagram and cut is represented in figure 8

λ1,1(s, tred(s)) = λ1,2(s,m2)λ2,1(s, 9m2) . (B7)

Similarly, we may use equation (B6) to compute the
blue and green Landau curves in figure 5, according to
the slicing in figure 9.

FIG. 9. Slicing of multi-particle graphs with 2-particle cuts
where each cut bubble corresponds to a particle of mass 2m.
equation (B6) may be used to find the Landau curves repre-
sented by these diagrams. Green is given by equation (B8)
and blue follows from eqs. (B9) and (B10).

The green Landau curve reads

λ(s, tgreen(s)) = λ1,2(s,m2)λ2,2(s, 4m2)λ2,1(s,m2) ,
(B8)

which, in polynomial form, is given by equation (A5).
The blue Landau curve can be expressed in terms of

the Landau curve t∗(s) of the sub-diagram in the middle
(see figure 10),

λ(s, tblue(s)) = λ1,2(s,m2)λ2,2(s, t∗(s))λ2,1(s,m2) .
(B9)

We can now relate t∗(s) to the Landau curve of a simple
box diagram by crossing s- and u-channels.

FIG. 10. Crossing s ↔ u channels relates the Landau curve
of the middle sub-graph of (Blue) in figure 9 with the curve
of a simple box diagram. To each external vertex a bubble is
connected, which is equivalent to considering 2→ 2 scattering
of particles with mass 2m.

Using (B1) we can find the Landau curve of the box
diagram and t∗(s) is the solution of

λ2,2(u, t∗(s)) = λ2,1(u,m2)λ1,2(u,m2) , (B10)

where in the formula above we set u = 16m2 − s− t∗(s).
Plugging t∗(s) back into (B9) leads to the blue curve in
figure 5, which is expressed in polynomial form in (A6).

For the graphs in this section, we have explicitly
checked that the obtained Landau curves correspond to
the α-positive solutions of the Landau equations. How-
ever, this is not always the case. For example, the graph
in figure 11 does not admit an α-positive solution. Apply-
ing to it the procedure described in this section produces
a Landau curve which we believe is on the second sheet.

FIG. 11. A graph whose Landau curve (more precisely, its
leading singularity) can be found using the method described
in this section. The Landau curve sits between the blue and
red curves in figure 5. Given that it is not α-positive, we
do not expect it to be on the physical sheet. In the graph
selection procedure, this graph was discarded by identification
of a trivial box (see figure 19).

Appendix C: Landau equations and automorphisms

Here we briefly review the standard derivation of the
Landau equations for the Feynman diagrams, see for ex-
ample [9] and [10] for a recent review. A generic Feynman
integral with trivial numerators takes the form

F =

∫ L∏
j=1

ddkj

1∫
0

P∏
i=1

dαi
δ(1−

∑
i αi)

ψP
, (C1)

where L are the number of loops, P the number of inter-
nal lines and the denominator reads

ψ =

P∑
j=1

αj(k
2
j −m2

j ) , (C2)

where the kj>L momenta depend linearly on the loop
momenta kj≤L, due to momentum conservation at each
vertex.

The integration over the loop momentum can then be
readily done and yields

F =

1∫
0

P∏
j=1

dαj
δ(1−

∑P
j=1 αj)C

P−2L−2

DP−2L , (C3)

with

C = det aij , D = det

(
aij −bj
−bj c

)
, (C4)

where i, j = 1, . . . , L and

aij =
1

2

∂2ψ

∂ki∂kj

∣∣∣∣
k=0

, bj =
1

2

∂ψ

∂kj

∣∣∣∣
k=0

, c = ψ|k=0 .

(C5)
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As the integral is analytically continued in the Man-
delstam variables, the contour of integration may be
smoothly deformed to avoid the singularities. The in-
tegral becomes singular when the contour is pinched by
singularities of the integrand.

The so-called leading singularities occur whenever two
(or more) zeros of the denominator coincide.22

These can be found by solving

∂ψ

∂αi
= 0 ,

∂ψ

∂kj
= 0 . (C6)

The first condition puts all internal legs on-shell, k2i =
m2
i , while the third condition relates momenta belonging

to the same loop, l, as∑
i∈l

αiki = 0 . (C7)

An equivalent form of the Landau equations is ob-
tained for representation (C3),

D = 0 ,
∂D

∂αi
= 0 . (C8)

Note that since D ∝ αi
∂D
∂αi

is homogeneous, D = 0 is
automatically satisfied.

There are P + 2 variables, s, t and the α parameters,
and P + 1 Landau equations, which are the P pinch con-
ditions (C8) supplemented by the normalization

P∑
i=1

αi = 1 . (C9)

These equations may be solved for αi(s) and t(s), the
Landau curve.

In this work we made use of the form (C6) to discard
trivial subgraphs (see appendix D), while (C8) is used
for numerical computation of the Landau curves (see ap-
pendix E) since D is an explicit function of s and t.

As discussed in section II, we restricted ourselves to
the α-positive solutions because these occur on the undis-
torted contour of integration of (C1) and (C3), and are
therefore likely to be on the physical sheet.10

We observe that non-trivial graphs (see section III)
have a unique α-positive solution, corresponding to the
Landau curve represented by that graph. We assume
that it is always the case.

Under this assumption, one can derive an important
result which allows for dramatic simplification of the Lan-
dau equations in the search for α-positive solutions.

Symmetries of a graph translate into symmetries of
the corresponding Landau equations. Concretely, if a

22There are also end-point singularities, corresponding to pinches at
end-points of the integration contour. However, in the context of
Feynman integrals, these are also leading singularities of contrac-
tions of the original graph [9].

transformation mapping edge i→ i′ is an automorphism
[8] (which also leaves (s, t) invariant) then the change
αi → αi′ is a symmetry of the Landau equations (C8).
Therefore, if αi is a solution, then αi′ is a solution to
(C8) as well.

Now, under the assumption that the α-positive solu-
tion is unique we see that the automorphism i → i′ has
to map the α-positive solution to itself. Hence,

αi = αi′ . (C10)

This property can be used to reduce the system of Lan-
dau equations, if one identifes the automorphisms that
leave the Mandelstam invariants unchanged. Note that
(s, t) are left invariant if the external legs are swapped
in pairs or, trivially, if they remain still.23 If there are
also automorphisms that map s ↔ t, the Landau curve
is crossing-symmetric and further reduction is possible at
the point s = t.

Given a graph, the exact expression for D and the
graph automorphisms can be found automatically using
graph-theoretic tools. See appendix E for the precise
implementation.

Appendix D: Trivial subgraphs

As discussed in the main text, a trivial sub-graph is a
sub-graph that either do not have an α-positive solution
or can be contracted without affecting the solution to
the Landau equations. In this appendix we identify a
few families of trivial sub-graphs that are composed from
bubbles, triangles and boxes.

Bubbles

A bubble sub-graph is a set of n > 1 legs connect-
ing the same two vertices, see figure 12. When solving
the associated Landau equations, we attach to them pa-
rameters αi and momenta ki, that are all taken to point
towards the same vertex.

Each pair of these legs, (i, j), form a loop and the
associated Landau equation reads

αiki = αjkj . (D1)

Using the on-shell condition k2i = m2 and requiring the
α’s to be positive leads to αi = αj . Plugging this back
into (D1) leads to ki = kj .

Since all momenta are equal, the bubble diagram is
indistinguishable from a single leg with mass n×m.

23The latter case includes permutations between legs belonging to
the same bubble. This implies that the corresponding parameters
αi have the same value, as derived in appendix D.
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FIG. 12. A bubble sub-graph with n internal lines. Each
line is associated with an on-shell momentum k2i = m2 and a
Feynman parameter αi. The Landau equation forces them all
to be the same, making the buble equivalent to a single line
of mass n×m.

FIG. 13. A sub-graph made of a chain of two bubbles with
n and ñ lines correspondingly. The Landau equation forces
n = ñ, making the chain equivalent to a single bubble and
hence, a trivial sub-graph.

Consider now a chain of two bubbles, one with n lines
and the other with ñ lines, connected through a single
vertex, see figure 13. Using momentum conservation at
that vertex we conclude that in order to have a solution,
ñ must be equal to n. In this case however, having two
bubbles instead of one impose no further constraints on
the external momenta. Hence, the Landau equations for
the pair of bubbles are equivalent to the ones of a single
bubble.

We conclude that a bubble is trivial if to one of its
vertices another bubble is connected.

Triangles

FIG. 14. A trangle sub-graph with three independent masses
m2
i . For p21 = (m2 ±m3)2 the triangle is trivial.

A triangle sub-graph consists of three vertices conected
by three lines, (see figure 14). To each line i = 1, 2, 3
we associate an independent mass mi, Feynman parame-
ter αi, and momentum ki that is oriented anti-clockwise
around the loop. To each vertex we associate an incom-
ing momentum pi, with p3 = k1−k2, etc. The associated
Landau equation reads

α1 k1 + α2 k2 + α3 k3 = 0 . (D2)

By dotting this equation with ki=1,2,3, we may express
it as a condition on the Gram matrix m2

1 k1 · k2 k1 · k3
k1 · k2 m2

2 k2 · k3
k1 · k3 k2 · k3 m2

3

α1

α2

α3

 = 0 . (D3)

Using momentum conservation, we express the Lorentz
invariants in terms of the external momenta as

k1 · k2 =
m2

1 +m2
2 − p23

2
, (D4)

and similarly for k1 · k3 and k2 · k3.
The solutions to the Landau equations (D3) can be

classified into three types.

a) If one of the external momenta, say p1, satisfies

p21 = (m2 ±m3)2 , (D5)

but p2 and p3 do not satisfy an analogous relation
then the only possible solution is with α1 = 0. This
is not an α-positive solution.

b) Suppose two of the external momenta satisfy con-
ditions equivalent to (D5). To have a solution with
αi 6= 0 also the third momenta has to obey a con-
dition equivalent to (D5) such that the product of
signs in (D5) is equal to −1. In that case, there is
a line of solutions given by the relation

± α1m1 ± α2m2 ± α3m3 = 0 , (D6)

where the signs in (D6) are dictated by the cor-
responding signs in (D5). Requiring that αi > 0
selects a line of solutions with one minus and two
pluses in (D6).

c) Finally, there are other solutions which are not of
type (a), or (b) above, in which the triangle may
be non-trivial.

While in principle a sub-triangle of type (b) may be
non-trivial, we observed that until V = 8 for quartic
graphs and V = 5 for sextic graphs, all such cases do
not lead to a new curve. Two examples of this are given
in figures 15 and 16. We assumed that this is general.
Namely, that any type (b) sub-triangle belonging to a
graph in the (4s, 4t) family does not lead to a new Lan-
dau curve. Under this assumption, if at least one of the
external momenta satisfies (D5) then the triangle is triv-
ial.

Let us now translate this condition into a graph-
theoretic criterion. A generic triangle will have bubbles
as internal edges, (see figure 17). As shown previously, a
bubble is equivalent to single leg of mass nim, where ni
is the number of bubble legs.

Suppose that we further attach an external bubble to
one of the vertices of the triangle, say the vertex where
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FIG. 15. An example of a sub-triangle (left) that is equivalent
to a 3-particle bubble (right). The top right vertex of the
triangle obeys condition (D5) with a (−) sign while the top
left vertex obeys this condition with a (+) sign. Therefore, in
order for an α-positive solution to be possible, the momenta
p entering the bottom vertex must satisfy (D5) with a (+)
sign, i.e. p2 = (m + 2m)2 = 9m2, which makes the triangle
equivalent to the bubble with three legs on the right.

FIG. 16. The trivial “acnode” graph (left) and the accumula-
tion graph (right) have the same Landau curve. Note that the
acnode graph has two trivial triangles (top right and bottom
left vertices satisfy (D5), or equivalently (D7)). No obvious
graph-theoretic operation relates the graphs. It is also not
clear to us how the Landau equations of the two are related,
except by looking at the α-positive solutions.

p3 in figure 14 enters. Condition (D5) for a triangle to
be trivial then reads

N3 = |n1 ± n2| , (D7)

where N3 is the number of legs in the external bubble
and n1 and n2 are the number of legs in internal bubbles
that are attached to the vertex.

FIG. 17. A triangle is trivial if two of its internal bubbles,
with n1 and n2 legs, are connected to an external bubble with
|n1 ± n2| legs.

Boxes

A box sub-graph consists of four vertices, such that
each vertex is connected to two other vertices, see figure
18. For the box graph there are 4 external momenta pi
that flow into each vertex. Now, the kinematical invari-
ants are not only the ’masses’ p2i but also the Mandelstam
invariants s = −(p1 + p2)2 and t = −(p1 + p3)2.

FIG. 18. Box graph. Besides the “masses” p2i there are also
Mandelstam invariants s = (p1 + p2)2 and t = (p1 + p3)2 that
participate in the Landau equations. This makes it hard to
find a generic graph-theoretic condition for the box graph to
be trivial.

Because the Landau equations now involve s and t, a
generic graph-theoretic condition for the box graph to
be trivial is harder to find. However, for our purposes
we do not need to discard trivial sub-boxes to quench
the growth of graphs (identification of trivial triangles
and bubbles allied with requiring all legs to be cut by
4-particle cuts is enough, see table I.). Rather, after step
4 of the graph selection procedure described in section
III there are still trivial graphs remaining. We were able
to roughly discard half of them by identifying a trivial
sub-box (see table I). The remainder was eliminated by
numerical search for an α-positive solution (see appendix
E).

In figure 19 we present the boxes that were found to
be trivial by explicitly solving the Landau equations (see
[9]). Let us emphasize once again, that we call them
trivial because the corresponding Landau equations do
not admit an α-positive solution. It does not mean that
these boxes do not have a nontrivial double discontinuity.

FIG. 19. A few examples of trivial boxes. We have explicitly
checked that the presented graphs do not admit an α-positive
solution to the Landau equations.

Appendix E: Graph-theoretic implementation

In this appendix we describe how the graph selection
procedure outlined in section III is implemented in detail.
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Graph generation (step 1)

To obtain all graphs with V vertices and a certain max-
imal vertex degree, we start by generating all vacuum
bubbles with V + 1 vertices and the same maximal de-
gree. We then remove a quartic vertex. The four legs
that were connected to it become the external legs of the
scattering graph (see figure 20).

FIG. 20. Excision of a quartic vertex from a vacuum bubble
(left) leads to a graph with 4 external legs (right).

To generate vacuum bubbles we make use of nauty
and Traces [13], in particular the geng and multig com-
mands. The nauty/geng command generates all simple
non-isomorphic graphs with a given number of vertices
V and minimum and maximum vertex degrees ds and
Ds.

24 The nauty/multig command takes a simple graph
and turns each edge into a bubble (or multi-edge), ac-
cording to maximum vertex degrees Dm and maximum
edge multiplicity M . It outputs all possible graphs with
bubbles out of that simple graph. See the documentation
[13] for more information.

Finally, the output of nauty/multig (the adjacency ma-
trix [8] of each graph) is inserted into mathematica. Us-
ing the package igraph/M [14, 15] and default tools we
remove a quartic vertex from the vacuum bubble to ob-
tain a graph with 4 external legs. This procedure is ex-
emplified for the accumulation graph in figure 21.

FIG. 21. Simple vacuum bubbles are generated using
nauty/geng (left). Single lines are then replaced by bubbles
in all possible ways using nauty/multig (center). Removal of
quartic vertices (using Mathematica) leads to graphs with 4
external legs (right).

We now describe how the physical graph selection cri-
teria described in III constrains the parameters Ds, d and
Dm and M that enter into geng and multig, respectively.

24A simple graph is a graph without bubbles, only single edges [8],
(see figure 21).

• Ds = Dm = D. It is clear that if we are looking for
graphs with 4 external legs with maximum vertex
degree D then we can choose Ds = Dm = D as long
as D ≥ 4 (so that there is a quartic vertex that can
be removed from the vacuum bubble to generate
the graph with 4 external legs). This condition
is guaranteed because we are interested in D =
4, 6, 8, ....

• ds = 3. Since we are only interested in vacuum
bubbles it is clear that ds > 1. Taking ds = 2
will generate quadratic simple vertices which, when
run through multig, will give rise to bubble chains
(see figure 22) which are trivial sub-graphs (see ap-
pendix D). Thus, we should take ds = 3. Indeed, in
figure 21 we see that the accumulation graph comes
from a simple graph with cubic and quartic vertices
(left).

FIG. 22. Simple quadratic vertices (left) give rise to bubble
chains (right).

• M = 3. M is the maximum number of internal
lines that a bubble can have. Since we are only
interested in graphs with 4-particle cuts it is clear
that M ≤ 4 suffices. Taking M = 4 will generate
4-legged bubbles, which can be cut by a 4-particle
cut, however for such graphs there will be no cut
on any other channel (see figure 23).

FIG. 23. A graph with a 4-legged bubble has a 4-particle cut
on one channel. However, there is no space left for a cut on
the other channel.

We import the vacuum bubbles generated by multig
into mathematica and keep the ones with even degree
vertices.

Finally, we discard graphs which only have a cut in one
of the channels. This can be done at this stage without
explicitly performing the cuts in the following way.

First, we require all graphs to be bi-connected [8]. A
bi-connected graph can only be disconnected by remov-
ing two vertices. A non-bi-connected graph can be dis-
connected by removing a single vertex. Contracting the
bubble in figure 23 leads to a generic non-bi-connected
graph with arbitrary ‘gray blobs’ connected by a single
vertex. Similarly to the original graph, it only has a cut
in one of the channels.
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Second, we require that the quartic vertex that is ex-
cised from the vacuum bubble does not have any bubble
incident to it. This avoids the scenario represented in
figure 24 where two external legs, which were originally
part of a bubble, become incident to the same vertex.
Such graphs also only have a cut in one of the channels.
In practice, we can avoid generating such graphs by only
excising vertices which were also quartic vertices in the
original simple vacuum bubble.25

FIG. 24. Excising quartic vertices which are incident to bub-
bles (left) leads to graphs with cuts on only one single channel
(right). Note that a quartic vertex which is incident to a bub-
ble is a cubic simple vertex.

Graph selection (steps 2-5)

Here we describe how steps 2-5 of the graph selection
procedure described in section III are implemented in
detail. We make use of mathematica and the package
igraph/M [14, 15].

a. Trvial subgraphs

The function IGTriangles finds all triangles contained
within any graph. Once the triangles are identified we
select the cubic simple vertices (the vertices which can
have an external bubble attached to it). Then, the in-
cidence list [8] lists all incident edges to a given vertex.
From this we can explicitly check condition (D7). If any
of the vertices satisfies (D7) we have identified a trivial
triangle and the graph is discarded.

A similar approach is taken to find boxes, except that
there is no dedicated command to find boxes. We make
use of FindCycle to find 4-cycles (i.e. boxes). We then
compare the boxes with any of the trivial boxes in fig-
ure 19 using IGIsomorphic. In fact, given the handful
amount of graphs after step 4 (see table I) one can just
identify the trivial boxes by visual inspection.

25For example, in figure 21 we have 3 quartic vertices on the vacuum
bubble in the center. However, only the central vertex leads to a
graph with cuts on both channels. It is also the only quartic vertex
in the simple vacuum bubble (left).

b. Cuts

We are interested in minimal7 cuts that separate exter-
nal legs in pairs. There are three possible arrangements
between pairs of external legs, corresponding to s-, t- and
u-channels. To explicitly find these cuts for a given graph
we apply the following procedure (depicted in figure 25).

1. Identify the 4 vertices to which the external legs
are incident. We call these external vertices.

2. Connect the external vertices in pairs, in all three
possible ways (s, t and u-channels).

3. Find the source-to-sink [8, 47] minimal cuts which
separate a connected pair of external vertices
(source) from the other pair of external vertices
(sink). Here we use IGMinimumCutValue or
IGFindMinimalCuts (see below).

4. The cuts of the original graph can then be obtained
by matching the cut legs found in the previous step.

In step 3 of the graph selection procedure we only ask
if there is a 2 or 4-particle cut in at least two channels.
For this we make use of the fast IGMinimumCutValue
which gives the size of the smallest cut.

In step 4 we ask if all legs can be cut by a 2 or 4-
particle cut. Here, we make use of IGFindMinimalCuts
and select the cuts of size up to 4. If every internal leg
is contained in (the union of) these cuts we select that
graph.

FIG. 25. A cut can be found by connecting external vertices
(represented in black) in pairs. Each pair turns into two ver-
tices, source and sink, and the cut separating external legs
becomes a source-to-sink cut [8] which can be found using
graph-theoretic algorithms [47].

Numerical search for α-positive solutions (step 6)

Here, we describe how the final step of the graph selec-
tion procedure is implemented in practice. At this stage
no more than a handful number of graphs exists (see table
I). Explicit numerical search for a solution to the Landau
equations is therefore feasible.

We implement this step in mathematica (with the
package igraph/M [14, 15]). We are given as input a
graph, and the output is an α-positive solution (if found)
of the Landau equations at some fixed value of s. We
in particular searched along the s = t line point due to
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the existence of enhanced symmetry and consequent re-
duction of the Landau equations for some graphs (see
appendix C). We also set m = 1 without loss of general-
ity.

The algorithm is as follows.

1. Each bubble of n internal legs is replaced by a single
line with mass n. The graph becomes a simple
graph.

2. A random direction is assigned to the internal edges
of the graph, the corresponding incidence matrix
[8] is found and momentum conservation at each
vertex follows (see below for more details).

3. The momentum conservation equations are solved
in terms of a set of independent momenta (the loop
momenta). Then, the on-shell action ψ as defined
in eq. (C2) is computed and from there the dis-
criminant D is found from eqs. (C4) and (C5).

4. The Landau equations follow from (C8). Since we
are searching for the α-positive solution under the
assumption that it is unique. We can relate differ-
ent αi = αi′ if the graph is automorphic under the
map i → i′ (see appendix C). The automorphisms
are found using GraphAutomorphismGroup.

5. To solve the Landau equations numerically, we
square the LHS of (C8) and sum over i (after the
reduction described in the previous step is per-
formed). The solutions to the Landau equations

will be the minima of
∑
i

(
∂D
∂αi

)2
= 0. We perform

a random search using FindMinimum with random
starting points αi ∈ (0, 1) and s ∈ (−1000, 1000).
The search stops when an α-positive solution is
found. A maximum of 1000 attempts was set.

Naturally, as the number of vertices increases, the sys-
tem of equations becomes bigger, and the search for solu-
tions becomes slower. Fortunately, at step 6 of the graph
selection (see table I), the majority of graphs for which
this procedure was implemented enjoy some degree of
symmetry, which drastically reduces the computing time.
For example, Z2 symmetry roughly halves the number of
independent αi’s in the Landau equations of a generic
large graph.

For V > 8 all quartic graphs after elimination of trivial
boxes (step 5) consist of triangle chains depicted in figure
4 and slight variations. For one particular variation (see
figure 26) there is no automorphism relating different αi.
For graphs with V ≥ 8 belonging to this family we were
not able to perform 1000 attempts . However, we believe
that any graph belonging to this family is trivial given
that for V = 4, 5, 6 this can be proven analytically (iden-
tification of trivial triangle or box) and for V = 7 no
solution was found in 1000 attempts.

FIG. 26. Asymmetric variation of the triangle chain repre-
sented in figure 4. It is obtained by expanding into a bubble
one of the vertices connecting to an external leg. This varia-
tion exists for both planar and non-planar iterations (repre-
sented by the gray vertex). For the first three iterations one
can prove analytically that such graphs are trivial. For the
fourth iteration, no solution was found in 1000 attempts. For
the succeeding iterations we do not have a numerical argu-
ment for the absence of α-positive solution.

FIG. 27. A graph can be represented in terms of the incidence
matrix defined above.

Incidence matrix and momentum conservation

The incidence matrix aij is defined as aij = ±1 if edge
j is incident and directed into (+) or out of (−) vertex
i, and aij = 0 if edge j and vertex i are not incident (see
figure 27).

It is instructive to consider a particular example. Con-
sider the generic box graph in figure 28. Its incidence
matrix is written in table III.

A few comments are in order. Note that for internal
legs, the entries in the corresponding column add up to
0, while for an external legs we get +1 or −1 if the leg is
incoming or outgoing, respectively.

The degree of a vertex is given by summing over the
absolute value of the entry of the corresponding row. For
the box graph we confirm that all vertices are cubic.

Importantly, the incidence matrix directly encodes mo-
mentum conservation at each vertex. If we multiply each
column of the incidence matrix by the momentum that
flows on the corresponding edge and sum over each line

FIG. 28. Directed box graph.
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aij p1 p2 p3 p4 k1 k2 k3 k4
1 +1 0 0 0 −1 0 0 +1
2 0 +1 0 0 0 0 +1 −1
3 0 0 +1 0 +1 −1 0 0
4 0 0 0 +1 0 +1 −1 0

TABLE III. The incidence matrix aij of the box graph in fig-
ure 28. The columns are labelled according to momentum
flowing on the corresponding edge, while the vertex i is la-
belled according to the incoming external momentum pi.

we obtain momentum conservation on that vertex.

Momentum conservation at i:
∑
j

aijqj = 0 , (E1)

where qj is the momentum flowing on edge j.
Applying equation (E1) to the incidence matrix (given

in table III) we find the expected relations

p1 − k1 + k4 = 0 , p2 + k3 − k4 = 0 ,

p3 + k1 − k2 = 0 , p4 + k2 − k3 = 0 .
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