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Abstract. We investigate the Morita equivalences of (4+1)-dimensional topological orders. We
show that any (4+1)-dimensional super (fermionic) topological order admits a gapped boundary
condition — in other words, all (4+1)-dimensional super topological orders are Morita trivial. As
a result, there are no inherently gapless super (3+1)-dimensional theories. On the other hand, we
show that there are infinitely many algebraically Morita-inequivalent bosonic (4+1)-dimensional
topological orders.

1. Introduction

A physical system described by a Hamiltonian is gapped when the spectrum of eigenvalues for
the Hamiltonian has a gap between the lowest energy state and the vacuum. Such systems prevent
the existence of particles that are arbitrarily light. A gapped phase is an equivalence class of gapped
systems. Systems that can be continuously deformed into each other without closing the energy
gap are considered to be in the same phase. The low-energy limit of gapped phases may exhibit
topological behaviour. Such is true for some quantum field theories, which flow in the infrared
to topological theories [GKS18]. All of the dynamical degrees of freedom can be integrated out,
leaving only the topological excitations. The study of gapped phases in various dimensions has led
to interest regarding the topological nature of extended objects, or operators, in these phases. In
nontrivial cases, the content of operators and defects, as well as the algebraic structure of how they
interact, compile into a topological order [Wen90].

The classification of topological orders has been an interesting problem that combines the math-
ematics of higher category theory with the physics of gapped topological phases. By now the clas-
sification in lower dimensions is understood. In (1+1)-dimensions, topological orders are classified
by their spectrum of point operators together with anomaly information that manifests as a class
in ordinary or supercohomology. Some other well studied situation are in (2+1)d where topological
orders with nondegenerate local ground states are classified by modular tensor categories [Wen15],
and in (3+1)d where topological order with nondegenerate local ground states are (modulo a few
subtleties) always described by finite group gauge theories [LKW18, LW19, JF20b, JF20a].

This paper addresses the classification in (4+1)d. We focus on the case of super topological
orders, i.e. topological orders defined over the category SVec of super vector spaces, because
the existence of super fibre functors makes this case technically easier. Following the strategy of
[LKW18, LW19], the first step is to condense out all of the line operators in the topological order.
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The resulting topological order has no line operators, and our first result is a classification of these:

(1) {super (4+1)d topological orders with no lines} = {symplectic finite Abelian groups1}.
By reducing along a Lagrangian subgroup, we furthermore show that every super (4+1)d topological
order can be condensed all the way to the vacuum via a gapped topological boundary:

(2) {super (4+1)d topological orders}/Morita equivalence2 = {1}.
This is to be expected, as it agrees with the cobordism classification proposed by [Kap14]: a Morita-
nontrivial super (4+1)d topological order should have a nontrivial gravitational anomaly detectable
on (5+1)d spin manifolds, but every (5+1)d spin manifold is spin-nullcobordant.

By studying a spectral sequence introduced in [JF20b, JF20a], the classification (2) allows us to
compute the analogous group for bosonic topological orders. We find that there is an isomorphism:

(3) {bosonic (4+1)d topological orders}/Morita equivalence ∼= Z∞2 .

In other words, there are infinitely many pairwise-Morita-inequivalent bosonic (4+1)d topological
orders (and each has a gapped boundary to its time-reversal). This disagrees with the cobordism
prediction: the cobordism group of (5+1)d oriented manifolds is trivial. The origin of the disagree-
ment, and indeed of the answer (3), is in (2+1)d: the Witt groupsW and SW of Morita equivalence
classes of bosonic and super modular tensor categories, studied in [DNO11], are very large, whereas
the cobordism classification would have predicted a classification in terms of the central charge
alone.

The outline of our paper is as follows. Section 2 starts off by explaining how to reduce the
set of operators in a (4+1)d topological order to only the surface operators, and how to see that
their monoidality is given by a finite Abelian group. In principle this procedure works for the
bosonic and fermionic case, up to a small caveat that is remarked upon. In that section though,
we give the explanation specifically for super topological orders. We then review some aspects of
fusion and sylleptic 2-categories to understand the nature of how surface operators pair up given
three ambient dimensions. The build up is to see by way of a cohomology calculation that (4+1)d
topological orders are parametrized by a symplectic form carried by the finite group of surface
operators, establishing (1).

Section 3 outlines the method of symplectic reduction and its relation to Morita equivalence.
This allows us to prove (2) that (4+1)d super topological orders all admit a gapped boundary.
We furthermore give relationships between the bulk and boundary theories, where we interpret the
bulk (4+1)d theory to be a higher form of “centre” for the boundary theory. To juxtapose with
Section 2, we present a bosonic example of how the centre construction goes through. Lastly, we
address the question of lifting boundary theories into the bulk, and obstructions in doing so.

Section 4 explains how we recover a bosonic theory from a fermionic theory plus extra information
in “descent data”, and computes the group of Morita equivalence of (4+1)d bosonic topological
orders.

In many parts of the paper we will also draw analogies to lower dimensional theories when
instructive.

2. 5-dimensional Super Topological Orders

2.1. Condensing out the lines. An (n+1)-dimensional super topological order is defined in
[KW14, KWZ15, KWZ17, JF20b] to be a multifusion n-supercategory A with trivial centre.3 Triv-
iality of the center is an axiomatization of the principle of remote detectability. For our purposes we

1We give the definition of symplectic finite Abelian group at the start of section 3.
2By definition, two topological orders are Morita equivalent if they be separated by a gapped topological interface.
3All of our “n-categories” are “weak.” For example, a “2-category” is a bicategory. Multifusion 2-categories were

first introduced by [DR18], and the n-category generalization was developed in [JF20b, KZ20].
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will be considering only the fusion case. By this, we mean that there are no nontrivial 0-dimensional
operators. This is to say that the ground state of our topological order is nondegenerate [Yu20].
The principle of remote detectability, along with the fusion condition, implies that all codimension-1
operators arise as condensation descendants [JF20b, Theorem 4]. In an arbitrary 5d4 topological or-
der given by the fusion 4-category A, we therefore only need to consider operators of codimension-2
and higher. We will focus on the super case in which A is enriched over SVec.

We will deem two 5d topological orders as being Morita equivalent if they can be separated by
a gapped 4d topological interface; this is also known as Witt equivalence. One way to produce a
Morita equivalence is to perform a categorical condensation [GJF19a], where the condensation wall
that separates the two phases is gapped and described by its own higher category of operators.

The first main step in our classification of 5d topological orders is to use the method outlined
in [LW19, LKW18] to condense out all the lines in any super 5d topological order. Here is a
streamlined version of their construction, written in the language of [GJF19a, JF20b]:

Within the super fusion 4-category A describing the topological order, there is a symmetric super
fusion 1-category Ω3A of line operators. Suppose that we choose a functor F : Ω3A → SVec of
symmetric super fusion 1-categories. Such F is called a fibre functor, and in the super case always
exists [Del02]; since A is assumed to be fusion, F is unique up to isomorphism, although not up to
unique isomorphism.

This F can be “suspended” to a functor Σ3F : Σ3Ω3A → Σ3SVec, where Σ3Ω3A ⊂ A is the sub
4-category of operators which arise as condensation descendants from line operators, and Σ3SVec
is the 4-category of operators in the vacuum 5d super topological order. This Σ3F makes the
4-category Σ3SVec into a module for the fusion 4-category Σ3Ω3A. We may induce (aka base
change) this module along the inclusion Σ3Ω3A ⊂ A to produce an A-module

M := A⊗Σ3Ω3A Σ3SVec.

We set B := EndA(M) to be the super fusion 4-category of A-linear endomorphisms of M; then
M is a Morita equivalence A ' B5. Because we started with a fibre functor on the full category of
line operators in A, there are no nontrivial line operators in B, i.e. Ω3B = SVec.

Remark. In the case of bosonic topological orders, to condense all the lines would require choosing
a bosonic fibre functor Ω3A → Vec. Such a functor exists if and only if there are no emergent
fermions [Del02].

Since Ω3B = SVec, the result of [JF20b, Theorem 5] implies that B = Σ2C, where C := Ω2B is the
(sylleptic) fusion 2-category of surface operators (and junctions between them); the statement B =
Σ2Ω2B means that all three- and four-dimensional “membrane” objects can be built as condensation
descendants of surface operators. But ΩC = Ω3B = SVec, i.e. it is strongly super fusion:

Definition 2.1 ([JFY20]). A super fusion 2-category C is strongly super fusion if ΩC := EndC(1) ∼=
SVec.

An object in a (super) fusion 2-category is indecomposable if it is nonzero and cannot be written
as a direct sum of nonzero objects; recall from [DR18] that in a (super) fusion 2-category, an
object is indecomposible iff it is simple. Two indecomposable objects are in the same component if
they are related by a nonzero morphism; the set of components of a (super) fusion 2-category C is
denoted π0C. The second main step in our classification of 5d topological orders is a classification
of strongly fusion 2-categories that we established in [JFY20]:

Theorem 2.2 ([JFY20, Theorem B]). If C is a (super) fusion 2-category with ΩC ∼= SVec, then
every indecomposable object of C is invertible. The equivalence classes of indecomposable objects

4For the remainder of this paper whenever the dimension of an extended object or phase is given without the time
component specified, we will take that dimension to represent the full spacetime dimension.

5This construction presently outlined also goes by the name deequivariantization.
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in C form a finite group, which is a central double cover of the group π0C of components of C (in
particular, π0C is a group).

Since an invertible object always has the same endomorphisms as the identity, Theorem 2.2
implies in particular that the endomorphisms of any indecomposable object in C is equivalent to
SVec, a super version of the condition called “endotriviality” in [DR18].

2.2. Sylleptic and symplectic groups: bosonic case. In any 5d topological order, the surface
operators have three ambient dimensions in which they can compose. Thus the fusion 2-category
C is 3-monoidal, aka sylleptic. The definition of sylleptic monoidal 2-category, which can be found
in full in the appendix of [SP14], simplifies dramatically in the strongly fusion case.

To warm up, in this section we discuss the case of bosonic strongly fusion 2-categories, where
sylleptic structures are classified by the Eilenberg–MacLane cohomology introduced in [EM54].
Indeed, suppose that C is bosonic strongly fusion, meaning that it is a fusion 2-category with ΩC =
Vec. The bosonic case of Theorem 2.2 is [JFY20, Theorem A], which says that the indecomposable
objects in C form a finite group M , equal to the group of components since C is forced to be
endotrivial.

The full data of the monoidal structure on C consists of: a tensor functor ⊗, given by the group
law on M ; an associator αx,y,z : (x⊗ y)⊗ z ∼→ x⊗ (y ⊗ z); and a pentagonator πx,y,z,w

(4)

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z ⇑ π w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

αα

α⊗I

α

I⊗α

which must satisfy a certain equation that we will not reproduce in full. But by endotriviality, α
is no data: there is up to isomorphism a unique equivalence (x ⊗ y) ⊗ z ∼→ x ⊗ (y ⊗ z) for every
triple of indecomposable object (x, y, z). After trivializing α, the equation for π says simply that it
is a 4-cocycle in ordinary group cohomology with coefficients in C×. We will henceforth adopt the
following notation. Given a group M (Abelian if n ≥ 2), we will write M [n] for the Eilenberg–Mac
Lane space more typically written K(M,n), and Hk(−) without coefficients always means ordinary
cohomology with C× coefficients Hk(−;C×). To summarize the above discussion, we find that
bosonic strongly fusion 2-categories with C with π0C = M are classified by

(5) [π] ∈ H4
gp(M) := H4(M [1];C×).

Suppose C is a monoidal 2-category with tensor bifunctor ⊗, associator α, and pentagonator π.
A braiding on C consists of a natural (in both variables) equivalence bx|y : x⊗ y → y⊗ x,6 together
with hexagonators R(x|−,−) and S(−,−|x) that provide the monoidality of b:

(6)

(y ⊗ x)⊗ z y ⊗ (x⊗ z)

(x⊗ y)⊗ z ⇓ R(x|y,z) y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) (y ⊗ z)⊗ x

α

bx|z

α

bx|y

bx|yz

α

,

(z ⊗ y)⊗ x x⊗ (z ⊗ y)

z ⊗ (y ⊗ x) ⇓ S(z,y|x) (x⊗ z)⊗ y

z ⊗ (x⊗ y) (z ⊗ x)⊗ y .

bzy|x

α

by|x

α

α

bz|x

6We write the braiding as bx|y rather than bx,y to be consistent with later notation for Eilenberg–Mac Lane

cocycles. Higher Eilenberg–Mac Lane cocycles are like AT&T sales pitch: “More bars in more places.”
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R and S must solve various equations. When α and π are trivial, these equations say first that for
each x, R(x|−,−) and S(−,−|x) are 2-cocycles7, and they furthermore assert:
(7)

z ⊗ y ⊗ x

y ⊗ z ⊗ x R(x|z,y)⇒ z ⊗ x⊗ y

y ⊗ x⊗ z R(x|y,z)⇐ x⊗ z ⊗ y

x⊗ y ⊗ z ,

by|xby|z

bx|z

by|x

bx|zbx|zy

bx|yz ∼=

by|z

=

z ⊗ y ⊗ x

y ⊗ z ⊗ x S(y,x|z)⇐ z ⊗ x⊗ y

y ⊗ x⊗ z S(x,y|z)⇒ x⊗ z ⊗ y

x⊗ y ⊗ z ,

by|xby|z

bx|z

by|x

byx|z
bx|z

∼= bxy|z

by|z

(8)
w ⊗ y ⊗ z ⊗ x

⇑ S

w ⊗ x⊗ y ⊗ z y ⊗ z ⊗ w ⊗ x

R ⇓

y ⊗ w ⊗ x⊗ z

bw|yzbx|yz

bwx|yz

bwx|y bwx|z

=

w ⊗ y ⊗ z ⊗ x

⇒ R ⇐ R

w ⊗ x⊗ y ⊗ z w ⊗ y ⊗ x⊗ z

∼=

y ⊗ w ⊗ z ⊗ x y ⊗ z ⊗ w ⊗ x

⇒ S ⇐ S

y ⊗ w ⊗ x⊗ z .

by|w

bw|yz

bx|y

bx|yz

bwx|y

by|x

bw|y

bw|z

bx|z

bwx|z

The unlabeled isomorphisms are the naturality of b. If b is also trivial, then (7) and (8) simply
say:

R−1
(x|y,z)R(x|z,y) = S−1

(y,x|z) S(x,y|z),(9)

R−1
(wx|y,z) S(w,z|yz) = R−1

(x|y,z)R
−1
(w|y,z) S(w,x|y) S(w,x|z) .(10)

Suppose that we are in the bosonic strongly fusion case. Then α and b are automatically trivial,
but π may not be. In this case, the equivalent equations (8) and (10), as well as the requirements
that Rx|−,− and S−,−|x be 2-cocycles, receive corrections by π. (The equivalent equations (7) and
(9) do not require corrections, because π only appears when we need to coherently tensor four or
more objects.) The full result is that (π,R, S) are together the data of what is sometimes called an
“Abelian cocycle,” and what we will call a braided cocycle: they define a class in the Eilenberg–Mac
Lane cohomology

(11) [π,R, S] ∈ H4
br(M ;C×) := H5(M [2];C×).

Finally, suppose that C is a braided monoidal 2-category. A syllepsis v for C is an isomorphism
vx||y : bx|y

∼⇒ b−1
y|x for each x, y such that the diagram

(12)

b`|xy b`|x b`|y

b−1
xy|` b−1

x|` b
−1
y|` .

v`,xy

R(`|x,y)

v`||x v`||y

S(x,y|`)

commutes. In the bosonic strongly fusion case where α and b are trivial, v enhances (π,R, S) to a
sylleptic cocycle, defining a class

(13) [π,R, S, v] ∈ H4
syl(M ;C×) := H6(M [3];C×).

7These are 3-cochains if we include the x variable, but not ordinary 3-cocycles.
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In general, a theory with (only) grouplike p-spacetime dimensional objects with q-ambient dimen-
sions (hence p+q total spacetime dimensions) should be classified by degree (p+q+1) cohomology
of M [q]8. The original paper [EM54] calculates the values of Hp(A[q];B) for small values of p, q and

arbitrary Abelian groups A,B. In particular, writing Â := hom(A,C×) and M2 := hom(Z2,M),
sylleptic strongly fusion 2-categories C with π0C = M are classified by

H6(M [3]; U(1)) ∼= M̂2 ⊕
∧̂2M ,

where
∧2M := M⊗M

(m⊗m) denotes the alternating 2-forms on M . We will now explain the meaning of

these two summands M̂2 and
∧̂2M . Further discussion can be found in [DN20, §2.1].

The summand M̂2 measures the following [JFR21]: given an invertible surface operator m ∈M ,
consider wrapping the surface operator around a Klein bottle. This requires choosing an equivalence
m ∼= m−1, since the Klein bottle is not orientable. We have such an equivalence exactly when
m ∈ M2, in which case, by endotriviality, the equivalence is unique up to isomorphism. It also
requires choosing a Pin structure on the Klein bottle; let’s choose the nonbounding Pin structure.
Then this Klein bottle wrapped with m ∈M2 will evaluate to some element of C×. This gives the

map M2 → C×, or in other words the element of M̂2. Since the Klein bottle embeds into R4 ⊂ R5,

this class in M̂2 depends only on the braiding data and not the sylleptic form.

The summand
∧̂2M measures the following. Given surfaces with three ambient dimensions, then

to “braid” them means passing them around each other in a two-parameter family, topologically
a two-sphere. This procedure results in a phase factor that depends antisymmetrically on the
inputs. In terms of the data of a sylleptic 2-category, this antisymmetric pairing is given by
ω(x, y) = vx||y − vy||x, where v is a 2-cocycle and represents the sylleptic data. This is because v
tells how the surfaces go from above to below one another in the four dimension when we consider
the double braiding of two surfaces. At two locations, the surfaces switch places by going into the
fifth dimension. This process is depicted in Figure 1.

2.3. Sylleptic and symplectic groups: fermionic case. We turn now to the fermionic case,
which is the main focus of this paper. As explained in §2.1, we are specifically interested in sylleptic
strongly fusion super 2-categories C. By definition, the line operators in such a 2-category are ΩC =
SVec. The simple lines consist of the identity line 1 and a fermion line f , corresponding to the super
vector spaces C1|0 and C0|1 respectively. By Theorem 2.2, the components π0C form a group M .
The identity component, and hence every component, contains two simple objects. This identity
component is a copy of ΣSVec, equivalent to the 2-category of superalgebras and their super
bimodules. The identity object 1 corresponds to the superalgebra C, and the other simple object,
which following [EN17] we will call the Cheshire object c, corresponds to the superalgebra Cliff(1). It
is a fun exercise that the self-braiding c⊗c→ c⊗c is given by the fermion f [GJF19b]. The invertible
operators in the identity component form the symmetric monoidal higher group (ΣSVec)× =
C×[2].{1, f}[1].{1, c}[0] where the Postnikov extension data are given by Sq2 : {1, c} → {1, f} and

(−1)Sq2
: {1, f} → C×.

The collection of invertible operators in C is an extension of shape (ΣSVec)×.π0C. As in §2.2,
we will encode that C is sylleptic by placing the (invertible) objects {1, c}.π0C in degree 3. In other
words, setting M := π0C, we are interested in extensions of shape:

(14) (ΣSVec)×[3].M [3].

8When p is large, the required cohomology theory is not ordinary cohomology. Indeed, any theory will have
k-dimensional operators built by inserting decoupled k-dimensional topological theories, and for large enough k there
are nontrivial invertible k-dimensional topological field theories. For most purposes the presence of these decoupled
operators does not affect the physics. However, these operators can arise as “higher fusion coefficients” for fusion of
lower-dimensional operators. The result of this is that classifications by ordinary cohomology must be corrected in
high dimensions.
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Y

X

••v−1
y||x

vx||ybx|y

b−1
y|x

Figure 1. The two domed cylinders in red and blue represent two objects X,Y ∈ C
respectively, living in four dimensions. The purple coloured regions show the domes
of the objects. Initially, we can think of one object being above the other. The
dashed lines indicate places where the two sheets pass over each other in the fourth
dimension, with the colour indicating which is above. The two marked points show
where one of the surfaces crosses over the other in the fifth dimension, changing the
order of which surface is above and below. The change in color of the dotted circle
represents the fact that after the syllepsis, the object which was initially on top, is
now on the bottom.

The classification of arbitrary extensions of this shape is somewhat complicated. But we know one
thing more: the fermion f , and hence also its condensate c, are invisible. This is sometimes referred
to as a local fermion, and any theory with this feature couples to spin structure and is equipped
with a Z2 fermion parity symmetry that induces a grading on the Hilbert space. In the language
of group theory, one can think of this as saying that the extension (14) is a “central extension,”
and so classified by untwisted cohomology (of M [3]) with coefficients in (ΣSVec)×.

Cohomology with coefficients in (ΣSVec)× is called (extended) supercohomology SH•. The name
is due to [WG18] given in the context of condensed matter and lattice constructions, but had ap-
peared in the mathematics literature beforehand as a generalized cohomology theory. See [GJF19b]
for a more topological treatment. By the Atiyah-Hirzebruch spectral sequence, SH• is built out of
three “layers” corresponding to the three homotopy groups of (ΣSVec)×. The bottom (Majorana)
layer records whether the group of simple objects {1, c}.M is or is not a split extension. The second
(Gu-Wen) layer records whether the isomorphism given by the braiding on two objects is even or
odd; the fermion in particular braids with itself up to a sign rather than braiding trivially. The
top layer records the associator data, i.e. a bosonic anomaly, of a suitable bosonic shadow to the
fermionic theory [BGK17]. There is a map H•(M [3]; C×) → SH•(M [3]) corresponding to viewing
a bosonic theory as a fermionic one.9

9It was predicted in [KTTW15] that the classification of fermionic theories with symmetries in d dimensions is

given by (twisted) spin cobordism Ωd+1
Spin(M). The Atiyah-Hirzebruch spectral sequence then allows us to compile the

information in the first three layers to compute an approximation of spin cobordism, this recovers supercohomology.
In low dimensions supercohomology well approximates spin cobordism, but as the dimensions get higher, the approx-
imation is more crude and more information coming from the deeper layers may be necessary. In our case however,
the supercohomology approximation is exact: while spin cobordism has layers below the Majorana layer, these layers
do not contribute to cohomology of M [3] because of the Hurewicz theorem.
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Proposition 2.3. For M any arbitrary Abelian group, SH6(M [3]) ∼=
∧̂2M = hom

(∧2M ,C×
)

,

the space of alternating 2-forms.

Proof. We converge to the supercohomology by way of the Atiyah-Hirzebruch spectral sequence
SH6(M [3])⇐ H•(M [3]; SH•(pt)). The entries on the E2 page can be filled in from the formulas in
[DN20, EM54]. This data assembles as:

Ei,j2 =

j

Z2 hom(M,Z2) Ext(M,Z2) hom(M,Z2) . . .

Z2 hom(M,Z2) Ext(M,Z2) hom(M,Z2) M̂2 ⊕ hom
(∧2M ,Z2

)
C× M̂ 0 hom(M,Z2) M̂2 ⊕

∧̂2M
3 4 5 6 i .

(15)

The entries which include hom and Ext in degree three through five are all isomorphic to M̂2, where
M2 denotes the 2-torsion of M , and the hat denotes Pontryagin duality. Specifically, hom(M,Z2) =

(M̂)2, and Ext(M,Z2) = M̂2, which can be seen from the short exact sequence Z2
(−1)x−→ C×

x2−→ C×.
The d2 differential are given by:

d2 : Ei,22 = Hi(M [3] ;Z2)→ Ei+2,1
2 = Hi+2(M [3] ;Z2) X 7→ Sq2X(16)

d2 : Ei,12 = Hi(M [3] ;Z2)→ Ei+2,0
2 = Hi+2(M [3] ;C×) X 7→ (−1)Sq2X .(17)

Notice that because we are really looking at Eilenberg-MacLane spaces in degree three, we do not
need to consider the entries in degree lower than three due to the Hurewicz’s theorem:

(18) H•(M [3] ;A) = 0 for • < 3 .

We claim that Sq2 : H3(M [3]; Z2) → H5(M [3]; Z2) is an isomorphism. To see this, note first
that H3(M [3]; Z2) ∼= hom(M ;Z2) by Hurewicz. Now given µ ∈ H3(M [3]; Z2), we can construct the
pullback µ∗ : H•(Z2[3]; Z2) → H•(M [3]; Z2). The ring H•(Z2[3]; Z2) is a polynomial ring in the
generators T, Sq1 T, Sq2 T, . . . where T has degree 3. In particular, H3(Z2[3]; Z2) = {0, T}, with
µ∗(T ) = µ, and H5(Z2[3]; Z2) = {0, Sq2 T}. Since Sq2 is natural, we have Sq2(µ∗T ) = µ∗(Sq2 T ),

confirming the claim. Thus the d2 differentials E3,1
2 → E5,0

2 and E3,2
2 → E5,1

2 are isomorphisms.
The d2 differentials supported in bidegrees (4, 1) and (4, 2) are injections by essentially the same

argument. Namely, for each m ∈ M2 = hom(Z2,M),we can restrict M̂2 = H4(M [3];Z2) along the
map m∗ : H4(Z2[3];Z2)→ H4(M [3];Z2). The only element in H4(Z2[3];Z2) is Sq1 T , which is not

annihilated by Sq2. Again by naturality, the d2 from E4,1
2 → E6,0

2 and E4,2
2 → E6,1

2 are injections.
All together, the E3 page reads:

Ei,j3 =

j

Z2 0 0 ∗ ∗
Z2 0 0 0 ∗
C× M̂ 0 0

∧̂2M
3 4 5 6 i .

(19)

In particular in total degree 6 the spectral sequence stabilizes on page 3, with the only nonzero

entry being
∧̂2M in bidegree (6, 0). �

Remark. We note that H6(M [3];C×) ' M̂2 ⊕
∧̂2M classifies 5d bosonic topological phases, but

the M̂2 is killed by a differential in the spectral sequence for supercohomology. Thus a bosonic
sylleptic form contains more information than its superization.
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Thus we find:

Theorem 2.4. The set of fermionic (4+1)d topological orders with no lines is equal to the set of
symplectic Abelian groups.

For the definition of symplectic Abelian group we refer the reader to §3.1.

Proof. The principle of remote detectability for topological orders ensures that there are no invisible
operators (trivial centre). In detail, the “trivial centre” requirement for a sylleptic fusion 2-category
is that its symmetric centre — its full subcategory on those objects x for which vx||− = v−1

−||x

— should be trivial. As explained at the end of §2.2, the class in
∧̂2M precisely records the

antisymmetric pairing 〈x, y〉 = vx||yvy||x. When applied to the group of surfaces, it means that the
symplectic pairing is nondegenerate. �

Remark. To make contact with lower dimensions, consider the familiar case of bosonic 3d topo-
logical orders. These are given by modular tensor categories (MTC). In the Abelian case, with M a
group, the braiding data of the MTC data is determined by a class in H4(M [2]). This is isomorphic
to the group of quadratic functions on M . The full braiding of lines is given by the symmetric
pairing

M ⊗M → C×(20)

a⊗ b 7→ q(a+ b)

q(a) q(b)
,

where q is a quadratic function. In 3d this is a one-parameter family in which the lines pass around
each other in a circle and we get a phase factor because it is a one-dimensional motion, and one
dimension lower than line operator is a phase. Furthermore, this phase depends symmetrically on
the two inputs, and here “nondegenerate” means that the symmetric pairing is nondegenerate.

If M2 is trivial, then H4(M [2]; U(1)) ∼= Sym2M̂ by completing the square. In general, the map

H4(M [2])→ Sym2M̂ has kernel. This is analogous to the kernel M̂2 of the map H6(M [2]; U(1))→
SH6(M [3]) =

∧̂2M . And indeed a similar analysis as in Proposition 2.3 shows that this kernel dies

when going to fermionic theories and SH4(M [2]) ∼= Sym2M̂ .

3. 5d Topological order from the boundary

3.1. Symplectic Reduction to Isotropic Subspaces. The symplectic form ω on M gives M
the structure of a symplectic Abelian group.

Definition 3.1. A symplectic Abelian group is an Abelian group G together with an isomorphism

ω : M → M̂ , with M̂ = hom(M,C×) such that ω(g, g) = 1 for every g ∈M .

This definition implies an alternating feature, ω = ω̂−1. Recall that by definition
∧2M = M⊗M

m⊗m ,

so a map ω : M → M̂ is the same data as a map ω : M ⊗M → U(1). This map solves ω(g, g) = 1

for all g iff it factors through
∧2M .

Example. An example of a symplectic Abelian group is when M is a product of groups B × B̂
with ω((b1, f1), (b2, f2)) = f1(b2) · f2(b1)−1.

If M is a cyclic group then M does not admit a symplectic form. Call the generator for the
cyclic group t, then ω(t, t) = 1 but ω(ta, tb) = 1ab = 1, and ω is not an isomorphism.

Suppose M is a symplectic Abelian group and N ⊂M is a subgroup. The symplectic orthogonal
N⊥ is the subgroup {m ∈ M s.t. ω(m,n) = 1 for all n ∈ N}. It is the subgroup corresponding to

M̂/N ⊂ M̂ under the isomorphism ω : M ∼= M̂ . From this description, we see that |M | = |N | ×
|N |⊥. A subgroup L ⊂M is Lagrangian if L = L⊥ as subgroups of M . Thus L is Lagrangian exactly
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when ω|L is trivial and |L| =
√
|M |. A Lagrangian splitting of M is a direct sum decomposition

M = L⊕L′ where both L and L′ are Lagrangian. The symplectic form on M then identifies L′ ∼= L̂.

Proposition 3.2 (Darboux theorem for finite groups). Every symplectic finite Abelian group admits
a Lagrangian splitting.10

The following proof is essentially given in [Dav07, Lemma 5.2].

Proof. Every finite Abelian group canonically factors as a direct sum of subgroups for different p,
and the symplectic form cannot mix different primes. We thus reduce to the case where the group
in consideration M has order pk for some prime p. We give the p = 2 case for clarity, and the

proof generalizes for other primes. Pick an element x ∈ M of maximal order, say 2a. Then x2a−1

is nontrivial and we choose an element y such that the pair ω(x2a−1
, y) 6= 1. We use the fact that

x2a−1
is order 2 and so by inspecting ω(x2a−1

, y) = ω(x, y)2a−1
, which is itself also order 2, we see

that y has order at least 2a. But a was maximal, so we have found two subgroups, generated by x
and y, both of order 2a. We note that these two groups are transverse because an alternating form
vanishes on a cyclic subgroup. Let N denote the subgroup generated by x and y. It is a product of
cyclic groups Z2a ×Z2a , which are themselves each Lagrangians in N . The restriction of ω to N is
the canonical split pairing ω(x, y), of x pairing with y. By construction, ω|N is nondegenerate. Thus
N and N⊥ are transverse (N ∩N⊥ = 0), so M = N ⊕N⊥. By induction of the previous procedure,
N⊥ can be further split into something Lagrangian, therefore M has a Lagrangian splitting.

�

3.2. Lagrangian subgroups as boundary theories. We now turn to investigate the boundary
(3+1)d theory of a 5d theory which also has only surfaces, and make some relations with the bulk.
The boundary is a braided strongly fusion 2-supercategory L with objects being surfaces that have
an L group fusion rule. The braiding β is a class in SH5(L[2]), which in this case, antisymmetrically
pairs objects.11 We can think of the bulk (4+1)d theory as the sylleptic centre of L denoted by
Z(2)(L), where the objects have fusion rule M with a sylleptic structure ω. Since all 1-morphisms
are trivial in the strongly fusion case, all the data is encoded in R,S and of particular importance
is the class in SH5(L[2]) encoding the braiding.

Definition 3.3. Let L be a braided monoidal 2-category. An object in the sylleptic centre Z(2)(L)
is a pair (x, vx||−). A 1-morphism from (x, vx||−) to (x′, vx′||−) is a one morphism f : x→ x′ in L
such that the following diagram commutes for all y ∈ L:

10While it is true that all such M admit a Lagrangian subgroup, it is not the case that any Lagrangian at all fits

into the sequence L̂ ↪→M → L, see [Dav07, Example 5.4]
11The analogue of this class for a (1+1)d boundary to a (2+1)d bulk would be a class α ∈ SH3(L[1]) that provides

associator information regarding the lines in the (1+1)d theory.
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x⊗ y x⊗ y

⇓ vx||y

⇒ bf |y y ⊗ x ⇒ by|f

x′ ⊗ y x′ ⊗ y

⇓ vx′||y

y ⊗ x′

bx|y by|x

bx′|y by|x′

where the 2-morphism on the back face is the identity. The two morphisms are defined in the same
manner as in L.

Lemma 3.4. If L is a strongly fusion braided fusion 2-category, then Z(2)(L) contains no lines.

Proof. Consider the identity object (1, v1||−) of Z(2)(L), where v1||x is the following isomorphism:

1⊗ x ⇓ v1||x x⊗ 1

b1|x

b−1
x|1

.

A priori, v could be any x-dependent C× number satisfying a 1-cocycle relation i.e. v ∈ L̂. But
since 1 is the identity object, b1|x and bx|1 are both trivialized, and the identity object of the centre
is the one such that v is also trivialized, so we take v1||− = 1. Now consider morphisms of the
identity object, which is a morphism from 1→ 1, or id1. Then, we have the following 3-cell filling:

1⊗ x ⇓ v1||x x⊗ 1

1⊗ x ⇓ v1||x x⊗ 1 ,

b−1
x|1

b1|x

b−1
x|1

b1|x

where the vertical maps are just identity maps. But, because we are in the 2-category, the only
3-cell is the identity. �
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Remark. More generally, if B is any braided monoidal 2-category, then ΩZ(2)(B) is a full sub-1-
category of ΩB. However, the analogous statements for Z(1) and for 3-categories fail. For definite-
ness, Lemma 3.4 is to spell out the details of the case we care about.

Proposition 3.5. The sylleptic center of a trivially braided fusion 2-category L is L̂ × L and the
sylleptic form is the canonical one.

Proof. The trivial braiding indicates that [π,R, S] in (11) are trivial. As a consequence, the diagram
in (12) reduces down so that v satisfies the equation v`||xy = v`||xv`||y, thus v`||− is a homomorphism

L → C×. The object (x , vx||−) in the sylleptic centre is therefore an element of (L , L̂). �

Example. For clarity let us work bosonically in this example instead of using supercategories.
Suppose M admits L as a lagrangian, and take L = Z3. A particularly simple class of braided
fusion 2-category is L = 2Vecβ[Z3], where β ∈ H5(Z3[2]). A computation shows that H5(Z3[2]) =∧̂2
Z3 = 0, which means the only category is 2Vec[Z3] with the sylleptic centre

(21) Z(2)(2Vec[Z3]) = ̂2Vec[Z3]× 2Vec[Z3].

In general, if L was a group such that β 6= 0, then Z(2)(L) = L̂ .L , a nontrivial extension of the

boundary category. In terms of the groups, (21) implies that M = L̂×L, where L̂ = M/L⊥ = M/L.

Therefore, M fits into the short exact sequence L̂ ↪→M � L.

Remark. The centre gives the corresponding Djikgraaf-Witten (DW) theory for the boundary,
with anomaly given by a class in SH6(M [3]). The act of going from the sylleptic centre to the
boundary can be done by first “forgetting” the sylleptic structure, and then applying a Dirichlet
boundary condition aka a braided map from a braided monoidal centre to the boundary. The
objects in the kernel of this map are precisely the “Wilson lines” of the DW theory. The boundary

condition contains not only a condensation L̂ but furthermore a trivialization of ω|
L̂

, which is given

by a class in SH5(L̂[3]).

We can also ask which boundary theories can be lifted to the bulk; this is the equivalent of finding
a splitting of the bulk to boundary map. The objects in the image of the splitting map are the “ ’t
Hooft lines” of the DW theory. A priori there can be an obstruction to the lifting [DN20], which
means that the lines in the bulk do not split neatly as a direct sum of “electric” and “magnetic”
lines. There exists an obstruction for a braided 4-cocycle {π(−,−,−,−), R(−|−,−), S(−,−|−)} to have
sylleptic structure given by

(22) θ : H5(L[2])→ Ext(L, L̂) ,

with the kernal of this map precisely given by L̂2. The map from H6(L[3]) → H5(L[2]) maps

between the two L̂2 subgroups, with H6(L[3]) attained from H6(M [3]) via a restriction map. The

subgroup of L̂2 in H5(L[2]) contains information regarding the data of π,R, S. The remainder of
the group is braiding information that cannot be lifted to being sylleptic. There is furthermore

a map from H6(L[3]) → SH6(L[3]) that surjects onto
∧̂2 L. This is summarized in the following

diagram:

H6(L[3]) ' L̂2︸︷︷︸⊕∧̂2 L SH6(L[3]) '
∧̂2 L

H5(L[2]) SH5(L[2]).

The map from SH6(L[3])→ SH5(L[2]) is therefore the zero map as composition of the left vertical
map and the horizontal map gives zero; we then have:
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Proposition 3.6. Only the fermionic boundary theories with trivial braiding can be extended, in a
way such that multiplication data is consistent with the lift to the bulk, to a sylleptic form.

Remark. It is possible that all surfaces on the boundary can be lifted, but not necessarily canon-
ically. In the case of a 3d Z3 DW theory with nontrivial anomaly, this has a Dirichlet boundary
condition with Z3 many lines. The bulk however has Z9 many lines. Any line on the boundary
can be lifted, but there is no way to do this in a way that is compatible with the tensor product.
The lines on the boundary cube to the trivial line, but lifting it to the bulk means that the cube is
nontrivial.

3.3. Morita trivial 5d phases. If M admits L as a Lagrangian subspace then the corresponding
5d topological order upon symplectic reduction is Morita equivalent to the trivial theory. More
succinctly this is know as being Morita trivial. This reduction procedure is depicted physically in
Figure 2.

L
M M � L := L⊥/L

Figure 2. The wall is braided fusion 2-category with objects in L⊥, separating the
original theory A from the vacuum. Similar to the case of quantum Hamiltonian
reductions, the wall is a bimodule for the two categories on either side.

Example. Consider in (1+1)d the category I given by Vecα=0[Z2], where α ∈ H3(Z2[1]) is the
trivial associator. Then the (2+1)d bulk theory is T = Z(Vec[Z2]) = Vec[Z2] ×Vec[Z2]. Con-
densing out a Z2 subgroup from T amounts to the reduction (Z2 ×Z2) � Z2 = Z⊥2 /Z2 = {∗}.
Physically, this is equivalent to taking the (2+1)d Toric code and condensing out the m or e par-
ticle. The lines left “unscreened” are in Z⊥2 , and another identification by Z2 gives the trivial
theory.

Theorem 2.4 relates 5d theories to symplectic Abelian groups and by Proposition 3.2, we see
that:

Proposition 3.7. All 5d super topological orders are Morita trivial.

A 5d phase which is not Morita trivial has boundary conditions that are necessarily gapless, an
immediate consequence is:

Corollary 3.8. All 4d fermionic boundaries can be gapped.

While there are 4d fermionic gapless theories, by introducing the appropriate interactions we
can introduce a gap and hence there is no robust gapless phase. We now present the reverse story
and the way of reconstructing a theory from the vacuum. We will show that every fermionic 5d

topological order can be built non-canonically by gauging a one-form symmetry L̂[1], and a zero-
form symmetry G, both acting on the vacuum. If the set of lines, Ω3A, is super Tannakian, then
G = Aut (F ) and Ω3A ∼= SRep(G). The first step of condensing out the lines can be “undone” by



14 JOHNSON-FREYD AND YU

gauging the group G which acts on the group M of surfaces. The symplectic form associated with
M is now a G-equivariant class ω̃ ∈ H6(M [3]/G).

After condensing the lines, there is a similar map C : Ω2A → 2SVec which tells how to condense

surfaces by choosing Lagrangian subspaces. Gauging by the dual group L̂ which acts on the vacuum
then undoes this procedure. For Abelian group, gauging by a group or the dual group is always
possible by the notion of “electromagnetic-duality”. The important point to stress is that the choice

of Lagrangian subgroup L from M was not canonical, and so doing the gauging by L̂ is also not
canonical. In contrast, the zero-form group G is canonically determinded based on the lines of A.

Remark. This two step procedure can not necessarily be combined to a one step condensation

by a “2-group” symmetry L̂[1].G. We take for example the 5d toric code, with a G = Z3 action

that permutes the three strings. A nontrivial extension of L̂[1] by G will spoil the duality between
switching the electic and magnetic lines.

Example. We give an analogous story by considering the (2+1)d Toric code. This is only analogous
because the theory is not a symplectic Abelian group, rather the pairing is symmetric. We choose
the set R = {1, e} to be Tannakian from the set {1, e,m, f} of all the lines. As an R module, the
Toric code is R⊕mR. The map F takes R and condenses it to the vacuum. This forms a gapped
(1+1)d boundary where, as an R module, the lines {1,m} live. The group G is the group generated
by {1,m}, as can be seen when we consider the fact that a zero-form symmetry in (1+1)d is sourced
by lines.

Remark. Since M is a group of surface operators which are codimension-3 it defines a two-form
symmetry. This group has an anomaly that is precisely the symplectic form. For a general isotropic
N ⊂M we can consider gauging the N -symmetry. The importance of being isotropic is to ensure
that that the symmetry is non-anomalous and can be gauged. By gauging the symmetry we build
a gapped domain wall between the original theory M and a new theory given by M � N . In the
gauging procedure, N screens out those operators in M which do not commute with N , and so the
unscreened operators are N⊥. But also the gauging procedure identifies the operators in N . The
result is that the new procedure is described by the symplectic reduction N⊥/N .12 We note that
M � N itself is naturally symplectic by defining ω([a], [a′]) = ω(a, a′) where [a], [a′] are classes in
N⊥/N , i.e. a, a′ ∈ N⊥, and they are defined up to shifting by b, b′ ∈ N . If N = L is Lagrangian,
L⊥/L = {∗}, and so we do not have to assume that L participated in a Lagrangian splitting to
show Morita triviality in proposition 3.7.

4. Bosonic 5-dimensional Topological Orders

The passage from bosonic to super topological orders is much like going from R and extending
to C, its algebraic closure. Consider a time reversal symmetry ZT2 that acts C-antilinearly and
squares to the identity. Working with an algebra A of operators over the complex numbers with
a ZT2 symmetry is the same as working over the real numbers. The ZT2 descends A into AR, an
R algebra, so that A = AR ⊗ C. In the same spirit as the 0-categorical case, there is a way to
1-categorically extend Vec to SVec, where the latter is “algebraically closed”[JF17].

A bosonic topological order A is equipped with an action of the categorified Galois group
Gal(SVec/Vec) = ZF2 [1], and Galois descent says that the algebra of a bosonic higher category can
be considered as the algebra of a ZF2 [1]-equivariant higher supercategory. As remarked in Section
2, the fibre functor F may not allow for complete condensation of the lines if we are working boson-
ically. If the lines are Tannakian i.e. Rep(G) then we can condense out all the lines, the problem
then reduces to the analogous problem discussed in the previous sections, with the symplectic form
a class in H6(M [3]). If the lines are Rep(G, z), where z is a central element of order two, then it

12For an associative algebra A, gauging by the action of a connected and simply connected Lie group G is also
called quantum Hamiltonian reduction.
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is always possible to condense to only {1, f}, i.e. SVec. Furthermore, in a 5d bosonic theory not
only are there surface operators, but there are nontrivial 3d “membrane” operators. The surfaces
operators still form a group under fusion by [JFY20, Theorem A]; in this dimension the surfaces and
lines can always unlink. But now either of the lines {1, f} can wrap membranes, each detecting the
other. This data compiles into a bosonic 3-category A, with π0A = ZF2 . The “magnetic membrane”
is the unique invertible object in the nontrivial component that enacts the ZF2 one-form symmetry
and will square to something in the identity component. The whole 3-category is describable by
an extension

(23) C×[5]. Z2︸︷︷︸
{1,f}

[4].(Z2.M)︸ ︷︷ ︸[3]

surfaces

.ZF2 [2] ;

C×[5] means “four-form C× symmetry” the Z2 in surfaces is given by {1, c}, which are the two
simple objects in ΣSVec as stated before in §2.3, with the caveat that now c2 ∼= c⊕ c. The fibre

(24) C×[5].Z2[4].(Z2.M)[3] = (C×[5].Z2[4].Z2[3]).M [3]

is the 2-category of surfaces, and the base ZF2 [2] are the two components of the 3-category. We
can make a simplification of the fibre as follows. Any surface in s ∈M actually corresponds to two
surfaces s1 or s2, being off from each other by the c. But because we have the magnetic brane, M,
we can act with this brane on either of the surfaces. The intersection of M with s1 or s2 is either
the line 1 or f , however we know that M acting on c gives f . Therefore, it is possible to identify
which s1,2 is the one that is also “charged” with c. This gives us the freedom to always choose the
“neutral” line, and so the term Z2[3] can be ignored. Left with only the surfaces in M , we may
condense them all out via the procedure in §3.1. We are left with only having to understand the
ZF2 [2] objects.

The fermionic Witt group inherits an action by ZF2 [1] due to the fact that the spectrum 13

SW• =
(
Σn−1SVec

)×
. W• is then the fixed-point spectrum of ZF2 [1] via categorified Galois

descent [JF20b]. Therefore the cohomology of W•(pt) is given by the twisted SW•-cohomology,
SW•(ZF2 [2]), of the space ZF2 [2] = B(ZF2 [2]) . We compute this twisted cohomology by the following
Atiyah-Hirzebruch spectral sequence:

(25) Hi(ZF2 [2]; SWj(pt))⇒ SW i+j(ZF2 [2]) =W i+j(pt) .

The homotopy groups of SW•(pt) in low degrees are given by

SW0(pt) = C× , SW1(pt) = Z2 , SW2(pt) = Z2(26)

SW3(pt) = 0 , SW4(pt) = SW , SW5(pt) = 0 , SW6(pt) = 0 .

In degree four, SW known as the fermionic Witt group gives the set of (2+1)d super topological
orders modulo gapped interfaces. Another way to think about this group is that it gives the
anomalies for 3d super MTCs 14, and two theories related by a gapped interface have the same
anomaly.

13Spectrum can be substituted interchangeably with the term “generalized cohomology theory”, which was used
in the introduction.

14This is a braided fusion category with trivial centre which is equipped with a “ribbon structure,” which allows
the corresponding (2+1)-dimensional TQFT to be placed on any oriented manifold. The TQFT is said to be isotropic.
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The E2 page is therefore:

(27) Eij2 =

j

0 0 0 . . .
0 0 0 . . .

SW SW 0 hom(Z2,SW) . . .
0 0 0 0 0 0 0
Z2 Z2 0 Z2 Z2 Z2 Z2

2 Z2
2 . . .

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .
C× C× 0 Z2 0 Z4 Z2 Z2 Z2 Z2

0 1 2 3 4 5 6 7 8 i .

The twisted d2 differentials are:

d2 :Ei,22 = Hi(ZF2 [2] ;Z2)→ Ei+2,1
2 = Hi+2(ZF2 [2] ;Z2) X 7→ Sq2X + TX(28)

d2 :Ei,12 = Hi(ZF2 [2] ;Z2)→ Ei+2,0
2 = Hi+2(ZF2 [2] ;C×) X 7→ (−1)Sq2X+TX ,

where T is the generator of H•(ZF2 [2] ;Z2) in degree two. The E3 page is

(29) Eij3 =

j

0 0 0 . . .
0 0 0 . . .

SW SW 0 hom(Z2, SW) . . .
0 0 0 0 0 0 0
Z2 0 0 Z2 0 0 Z2 . . .
Z2 0 0 0 Z2 0 0 0 0 . . .
C× C× 0 0 0 Z4 Z2 0 0 0

0 1 2 3 4 5 6 7 8 i .

Remark. The generators of H5(ZF2 [2] ;Z2) are Sq2 Sq1 T and T Sq1 T . The d2 differential annihi-
lates

(
Sq2 Sq1 T + T Sq1 T

)
leaving a Z2 in bidegree (5,2). The Z2’s and Z4 in total degree four

survive on E∞ [JF20b, Remark V.2]. The main result in [JFR21] implies that the Z2 in bidegree
(5, 0) survives on E∞.

There is potentially a d3 differential that maps hom(Z2,SW) → E5,2
3 = Z2, after which the

spectral sequence stabilizes in total degree 6. Thus W6(pt) is the kernel of this d3. By [DNO11,
Proposition 5.18] we have

(30) SW = SWpt ⊕ SW2 ⊕ SW∞ ,

where SWpt is generated by the Witt classes of Abelian super MTC, SW2 is an elementary Abelian
2-group, and SW∞ is a free group of countable rank. It was proved in [NRWZ20, Theorem, 7.2]
that SW2 is a group of infinite rank 15, which means that on E∞ the entry in (2,4) will also have
infinite rank even after the d3 differential. As a result, W6(pt) is also a group of infinite rank. By
construction, W6(pt) is the group of Morita equivalence classes of 5d topological orders, and so we
have verified equation (3):

Theorem 4.1. There are infinitely many 5d bosonic topological orders which are “chiral” in the
sense that they only admit gapless boundary. �

15In particular the spin MTC SO(2n+ 1)2n+1, n ≥ 1, are pairwise Morita inequivalent.
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This starkly contrasts our conclusion in section 3.1 for the fermionic case, where SW6(pt) was
trivial. The source of the difference lies in the fact that the magnetic membrane lives in the bosonic
world. If we were to “fermionize” all of the bosonic theories, i.e. couple to spin structure, then the
infinite rank group would trivialize.

To gain a more physical intuition for these ungappable and chiral bosonic objects we comment on
their construction in a manner similar to [FHHT20], used for SPTs. The main takeaway for SPTs is
that when constructing an SPT, we can place lower-dimensional invertible phases along homology
cycle representatives dual to Stiefel-Whitney classes. This is what was done for the dual of the
generalized double semion model in 5d to show that it is equivalent to a twisted Dijkgraaf-Witten
dual stacked with lower dimensional SPT phases.

This takeaway leads to a construction of the chiral 5d phases gauranteed by Theorem 4.1. Pick
a spin-MTC C representing an order-2 class in SW2 that is in the kernel of the d3 differential. We
place the 3d topological order built from C along a representative of w2, by this we mean we place
C along the homology cycle that is dual to w2 (and away from w2 we can just flood the phase with
the vacuum). The choice of representative for w2 should not change the theory, the reason for this
culminates from the fact that C2 is super-Witt trivial and furthermore C is in the kernel of d3.
The fact C is order 2 has to do with protecting our theory under changes of representatives by a
ZF2 [1]-symmetry. Being in the kernel of d3 is telling us that changes of triangulation that might
lead to higher order anomalies do not show up.

To see why any 4d boundary theory can not be gapped, note that a representative of w2 in
the bulk will end along a representative of w2 on the boundary. But C is nontrivial, so that
representative of w2 on the 4d boundary will necessarily carry a 2d chiral theory, namely a chiral
edge mode for C. For instance, suppose C is SO(2n+1)2n+1, or some product thereof that is within
the kernel of d3. Then the 4d boundary condition will see chiral WZW modes supported on a
representative of w2.
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