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Figure 1: (a) Example of a three-color triaxial state. The directions A, B, and C form
an orthogonal basis. (b) Variant of the octahedral phase with AFM chains along the
diagonals of the hexagons. The axis are illustrative and not unique. The unit cell is
represented by the parallelograms.

A Classical ground state degeneracy near the chiral point

In section 3 we encountered an extended disordered region in the classical model with dom-
inant three-spin interactions. Generically, a classically disordered phase can be connected to
classically degenerate states and often appears at the boundaries between two ordered phases.
Its extended nature in the present problem may be traced back to the frustrated geometry of
the kagome lattice combined with the effects of the three-spin interaction.

The extensive degeneracy of the classical J1-Jχ model was discussed in Ref. [1] for J1 > 0
and both uniform and staggered chirality. Let us take the pure chiral model, J1 = Jd = 0, as
our reference point. The energy of the staggered chiral interaction is minimized imposing that
the spins in the up (down) triangles form a right (left)-handed orthogonal basis. An important
subset of theses states are the triaxial states [1], shown in Fig. 1 (a), in which each spin is
collinear with one of three directions represented by three colors. Triaxial states in the pure
chiral model have an extensive degeneracy which scales as 2N/6 and is associated with local
Z2 degrees of freedom. The latter is reminiscent of the degeneracy of coplanar states for the
antiferromagnetic Heisenberg model on the kagome lattice [2]. In the presence of nonzero
J1, the triaxial states can be generalized by considering three directions which are no longer
orthogonal. In terms of the angle θ that the spins form with the space diagonal, the energy for
a single triangle is E(θ ) = 3

4[J1S2(1+3 cos2θ )−
p

3JχS3 sinθ sin2θ]. For J1 < 0, the angle θ0

that minimizes the energy decreases with |J1| until we reach the critical value J1c = −S/
p

3.
For J1 < J1c , we obtain θ0 = 0, corresponding to the ferromagnetic state. On the other hand,
for J1 > J1c the classical ground state remains massively degenerate because one can construct
a subextensive set of states which are degenerate with a given three-color state, as explained
in Ref. [1].

The construction of classically degenerate ground states for the J1-Jχ model does not hold
once we add the exchange coupling Jd . In fact, starting from the pure chiral point, a small
Jd > 0 has an immediate impact: it selects triaxial states with AFM chains along the diagonals
of the hexagons, shown in Fig. 1(b). This state minimizes both the Jχ and Jd terms. As a result,
the extensive ground state degeneracy is lifted at first order in Jd > 0 and we enter the AFMd
phase, see Fig. 2 of section 3. The situation for Jd < 0 is distinct because FM chains running
along the diagonals of the hexagons are incompatible with triaxial states. Within the set of
triaxial states, those in which spins across the diagonals point in perpendicular directions, as
in Fig. 1(a), have lower energy than the AFMd state in Fig. 1(b). However, the criterion
of triaxial states with orthogonal spins across the diagonals still leaves an extensive residual
degeneracy due to the Z2 degrees of freedom. On the other hand, in the states obtained by the
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Figure 2: Ground state energy per site for the classically ordered phases: FMd, AFMd
and FM-stripe for J1 ≈ −0.02 and Jχ = 1. The energy of the triaxial state corresponds
to minimizing the chiral term. The energy coming from the gradient descent (GD)
minimization, Sec. 3, is also shown for comparison. Same color code as in Fig. 2

gradient descent minimization algorithm for small Jd < 0, such as the one illustrated in Fig.
3(f), the spins within the same unit cell remain approximately orthogonal to each other, but
the directions of the axes vary in an apparently disordered fashion between different unit cells.
Thus, they are not obviously related to triaxial states. While we have not been able to identify
the local transformations that may connect these ground states, our numerical results strongly
suggest that a massive classical ground state degeneracy persists in the regime of small J1 and
Jd < 0 up to some critical values beyond which the system enters the FMd or FM-stripe ordered
phases.

We can make this argument more quantitative by calculating the classical ground-state
energy per site. In Fig. 2 we show the energy for the AFMd, FMd, FM-stripe, and triaxial
states—the latter for the pure chiral point—comparing them with the energy of the gradient
descent minimization algorithm. In accordance with our qualitative analysis, for Jd > 0 the
AFMd order is immediately selected out of the set of triaxial states. For Jd < 0, on the other
hand, the ground state energy remains close to the energy of the triaxial state, and the FMd
state is reached only at Jd ≈ −0.15. Moreover, the energy difference between the FMd and
FM-stripe phases is rather small in this region. In the interval −0.15 ≲ Jd < 0, the structure
factor displays no Bragg peaks and we interpret this disordered region as partially inheriting
the extensive ground state degeneracy of the triaxial state.
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