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We thank the referee for his/her consideration for the
publication of our work in SciPost Physics and his/her
positive feedback on our manuscript. In our revised ver-
sion we have addressed all the comments and modified
our manuscript accordingly. Please, find below the re-
sponse to each of the issues addressed. The actions de-
note the corresponding modifications that we have im-
plemented in the new version of the manuscript.

REPORT OF REFEREE 1

The authors study topological multiferroic order in
twisted transition dichalcogenides bilayers (TMDs) in the
presence of spin-orbit interactions and applied electri-
cal field. Starting from a model Hamiltonian that cap-
tures nearest-neighbor hopping between the AB/BA sites
forming an effective honeycomb lattice, the authors ana-
lyze spin-/charge excitations (SDW/CDW) that emerge
due to on-site and nearest-neighbor interactions within
a self-consistent mean-field theory. They demonstrate
that spin-orbit interactions render this model a topologi-
cal multiferroic with non-vanishing Chern Number whose
magneto-electrical coupling can further be tuned by the
application of electrical fields. The topological charac-
ter manifests in the existence of interface modes between
either ferrimagnetic (FM), ferroelectric (FE) or multifer-
roic (FEM) domains. These findings are argued to exist
in super-moire potentials arising from twisted TMDs en-
capsulated in substrates, e.g. hBN, with slightly different
lattice constant. The authors demonstrate that the addi-
tional moiré potential leads to the formation of different
topological regions of the multiferroic and hence natu-
rally to the existence of topological interface modes.

The realization of topological states in twisted TMDs
with strong intrinsic spin-orbit coupling represents an
uprising field of research beyond the physics of twisted
multilayer graphene and aligns with recent theoretical
and experimental efforts. The discussion of topological
multiferroic order is novel and adds to the toolbox of cor-
related topological phases that can be realized via moiré
engineering. The connection to the super-moiré poten-
tial as possible candidate to host topological interface
modes displays an interesting avenue, in particular be-
cause such effects have been observed experimentally in
twisted trilayer graphene (TTG) to have major impact
on correlated quantum states. The manuscript is soundly
written and easy to follow for the reader. I therefore

recommend publication as long as the following (minor)
points are addressed properly:

Some technical aspects could be described in more de-
tail to provide further clarification or to eventually al-
low for easier reproduction of the results, especially since
there is no Appendix/Supplementary Material. Some as-
pects I came across are the following:

1. Concerning the TMD model Hamiltonian: The
nearest-neighbor honeycomb model has been widely
studied in the literature within, e.g. mean-field approxi-
mation, functional renormalization group studies, quan-
tum Monte Carlo etc. Most of these studies focus to
half-filling/filling in the vicinity to the van-Hove singu-
larity. Could the authors clarify how quarter-filling in
their manuscript is related to the position of the vHS?
This would make it easier to compare with existing re-
sults.

As these materials show nearly flat bands, fillings from
0 to 1 fall in a flat band featuring a nearly divergent
density of states. This applies both to the half-filled
case mentioned by the referee and quarter filled case ad-
dressed in our manuscript. Even if the chemical potential
does not fall in a van Hove singularity, the system is in
the strongly interacting limit due to the reduced band-
width of all the bands. The studies mentioned by the
Referee often focus in half filled cases as these limits are
the paradigmatic ones showing Mott insulating states.
Furthermore, from the computational point of view, some
many-body methods like quantumMonte Carlo may have
severe sign problems away from half filling, and there-
fore for those methodologies the half filled case is more
straightforward to tackle.

From a physical point of view, the quarter filling in the
staggered honeycomb lattice offers a natural platform in
which electronic interactions can lead simultaneously to
the emergence of a charge order and a magnetization.
Compared to the well studied half-filling case, in which
electronic interactions lead to an antiferromagnetic insu-
lator, the quarter-filling case allows the stabilization of
charge order, thus leading to a net electric polarization
in the staggered honeycomb lattice. The onsite Coulomb
interaction U leads to a magnetic Stoner instability, in
the half-filling case this leads to an equal magnetization
in each of the sites since there are 2 electrons for 2 sites.
For the realistic case in which first neighbor coulomb in-
teractions V are smaller than onsite, U > V , a sublattice
imbalance will not be promoted, since this is energeti-
cally unfavorable, i. e., an electron is already occupying
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each site. In the quarter-filling case only 1 electron is
available for the 2 sites, the onsite interaction will again
promote a Stoner instability leading to magnetic order.
However, in this case, for U > V , V will be able to pro-
mote a sublattice imbalance, since the sites are not fully
occupied by an electron. Therefore, the quarter filling
case allows for the simultaneous emergence of magnetic
and electric orders.

Action: we have added in the new version of the
manuscript a more detailed explanation justifying the
choice of the quarter-filling.

2. The authors write: The interacting model is
solved using a self-consistent mean-field procedure includ-
ing all the Wick contractions, including magnetic symme-
try breaking, hopping renormalization, and charge order.
I would prefer to avoid the statement all Wick contrac-
tions as e.g. superconducting order is not accounted for
as another possible Wick contraction or do the authors
also account for this kind of instability, even though it
may be irrelevant for purely repulsive interactions? Fur-
thermore, what are the technical details of the mean-field
analysis? How many moiré unit cells were taken into ac-
count (or what momentum resolution was used to sam-
ple the Brillouin zone) for the self-consistent procedure?
Were the calculations performed in real- or momentum-
space? Did the initial guess for the self-consistent proce-
dure already include multiferroic order or was the initial
state chosen randomly?

As the referee points out in the question, the Wick
contractions that we have included correspond to those
that allow magnetic symmetry breaking, hopping renor-
malization, and charge order. Anomalous terms related
to the superconducting order are not included since we
are dealing exclusively with repulsive interactions.

The self-consistent calculations were carried out in the
unit cell of the staggered honeycomb lattice in momen-
tum space with a well converged 10×10 k-mesh. An ini-
tial guess with finite ferroic orders was used in the calcu-
lations.

Action: We rephrase the sentence regarding the Wick
contractions specifying that we do not include supercon-
ducting terms but just normal terms. We have also in-
cluded a more detailed description of the calculations.

3. Concerning the results of the mean-field analysis:
It is interesting that for U/t < 4 and up to V/t < 2
no charge-density wave is present, but the latter only
emerges for U/t > 4 in the multiferroic phase. Is there
an intuitive picture to understand why the formation of
CDW order is diminished at U/t = 0?

The onsite interaction U plays also an important role
in the stabilization of the CDW order. The relevance of
U since stems from inducing a spin symmetry breaking,
which in turn pins the chemical potential at the Dirac
point at the majority spin channel. This pinning allows
the first neighbor interaction V to drive a CDW state,
as such a symmetry breaking allows opening up a gap at

the Dirac point. Therefore, onsite interactions cooperate
with V to drive CDW at quarter filling. At low values
of U we have found in our analysis (but not shown, since
V > U) that a CDW can also be formed for big values of
V , i.e. V > U , but in this case the magnetic order does
of course not emerge.
Action: we have added a comment in the new version

of the manuscript addressing this point.
4. The authors write: Since the origin of the inter-

face modes is topological, small reconstructions at the in-
terface will not impact the boundary modes. For sim-
ple graphene, the edge termination (zig-zag/armchair) is
crucial for the existence of edge states. Have the authors
tried different edge terminations for the L/R domains
and found invariant results?
This can be easily confirmed in Fig. 6d where the

supermoiré potential induces regions with different topo-
logical invariant. In this case the boundaries have a dif-
ferent edge termination in each direction, but we can see
that the circular boundary modes emerge without be-
ing affected by those different terminations. In the case
of the device with two domains shown in Fig. 5, the
Chern numbers would be unaffected by the termination.
For topological states with a valley Chern number, if the
interface is too sharp and there is strong intervalley scat-
tering, a small gap could be opened driven by intervalley
scattering.
Action: we have rephrased that sentence and add a

discussion on the smoothness of the interface between
different domains.
5. How is the momentum dependence of the interface

spectral function A(w, kx) related to the sketch in Fig.
5 a) and what is the length of the domains in numer-
ical simulations? From the sketch, I would intuitively
expect that the system is periodic in y-direction and the
interface separates the junction into the left/right domain
along x. Then the momentum ky would describe the bulk
dependence. Maybe it would be helpful to add a small
coordinate system in Fig. 5a) or to add a more detailed
instruction why/how the spectral function A(w, kx) is
computed.
The domains are semi-infinite domains in the y direc-

tion. The left one going from y → −∞ to y = 0 and the
right domain from y = 0 to y → ∞. The domain wall
occurs at y = 0. In the x-direction the lattice is periodic,
and hence this is the direction for which kx describes the
bulk dependence of the spectral function in the domain
wall.
Action: We have clarified this issue in the new version

of the manuscript and added a coordinate system to Fig.
5a accordingly to make the description of the analysis
more intuitively.
6. Concerning the super-moiré potential in the last

section: Can the authors give the functional form of
the moiré potential and how it couples to the Wannier
moiré orbitals? The potential looks to preserve the D 6h
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symmetry of the original honeycomb lattice, though the
LDOS in the multiferroic state only seems to preserve
D 3h. Is that due to the inversion-breaking Rashba SOC
term? Furthermore, how are the Chern Numbers calcu-
lated for different regions of the super-moiré? Was the
set of parameters for the mean-field Hamiltonian (m, ∆z,
λR) the same as in the section before?

For computational reasons, the supermoiré potential
is chosen to be commensurate with the supercell of the
original moiré cell (staggered honeycomb unit cell) and
it takes the following functional form:

ESM (r) =
∑
i

cos

(
bi · r
n

)
, (1)

where bi are the reciprocal lattice vectors of the moiré
supercell (the summation runs over the 3 bi vectors re-
lated by the C3 symmetry). The product bi · r equals
2π when r takes the value of the lattice vectors of the
original moiré unit cell, and n is an integer that com-
mensurates the supermoiré length LSM with the original
moiré length LM as LSM = nLM . The function in eq.
(1) allows to generate a modulated potential as the one
shown in Fig. S1 for LSM = 5LM . We can see that the
cosine functions of the supermoiré potential give rise to
a 6 fold symmetry. The modulation caused by the su-
permoiré potential in the original staggered honeycomb
lattice can be seen in Figs. 6bc.

In our calculations the amplitude of the supermoiré po-
tential ESM is normalized to the range ESM/t = [0, 1.3].
The Chern numbers in the different regions are taken

as the ones that would correspond in the uniform limit for
the corresponding local values of the parameters. There-
fore, they are not explicitly computed locally for the mod-
ulated system. This would be formally possibly using a
Green’s function formalism. Nonetheless, for big enough
domains, as those considered in our manuscript, the local
Chern number in the moire can be directly inferred from
its value in the uniform case with the associated local
Hamiltonian parameters.

Action: We have included the functional form of the

supermoiré potential and the corresponding discussion,
and added a note on how the Chern numbers are inferred.

I hope the authors appreciate the comments given
above, which should not distract from the high quality of
the manuscript.

We thank the Referee for their useful and positive feed-
back, and we hope that they find our manuscript suitable
for publication in Scipost Physics.

Typos:

Action: We have corrected the typos pointed out by
the referee and overall improved the readability of the
paper.

We hope that, given our response to the different sug-
gestions and the changes included in our manuscript, the

FIG. S1. Supermoiré potential generated with eq. (1) for
LSM = 5LM . A periodicity of 5 times the original moiré
supercell can be identified.

Referee finds our manuscript suitable for publication in
Scipost Physics.
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