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Symmetry protected topological (SPT) phases are one of the simplest, yet nontrivial, gapped
systems that go beyond the Landau paradigm. In this work, we study an extension of the notion of
SPT for critical systems, namely, symmetry protected topological criticality (SPTC). We introduce
a systematic way of constructing a large class of SPTCs using decorated defect construction, and
demonstrate the concept with several concrete lattice model examples. Furthermore, we study the
physical observables that characterize the nontrivial topological signatures of SPTCs, and discuss
the stability under symmetric perturbations. Our formulation not only provides new perspectives
on several related preceding works [T. Scaffidi et al. Phys. Rev. X 7, 041048 (2017), R. Verresen
et al., arXiv:Phys. Rev. X 11, 041059 (2021), R. Thorngren et al., Phys. Rev. B 104, 075132
(2021)], but also leads to discovery of previously unknown types of SPTCs.



Contents

1 Introduction and Summary

1.1  Gapped Quantum Matter . . . . . . . . . . . . . e
1.2 Symmetry Protected Topological Criticality: Universal Features . . .. ... ..
1.3 Decorated Defect Construction . . . . . . . . ... ... ...

1.3.1 Constructing Gapped SPT . . . . . ... ... ... ... ... .....

1.3.2 Constructing SPTC . . . . . . . ... ... .
1.4 Signatures and Stability of Weak and Strong SPTC . . .. ... ... ......
1.5 OrganizationofthePaper . . . . . . . ... ... ... .. .. .. .. .. ...,

2 Weak SPTC: (1 + 1)d Spin Chains With Z, x Z, Symmetry
2.1 Spin Chain Construction . . . . . . . . . . . . v i v ittt e
2.1.1 Domain Wall Decoration . . . . . ... ... ... ... ........
212 Z{ X Z§ Weak SPTC . . . . v v oo e et e
213 MoreOnUpw . . . . o o i o
2.2 Trivializability Upon Stacking Gapped SPTs . . . . . . . ... ... ... ....
2.3 Signatures of Z4 x ZS Weak SPTC . . . . . . . . ...
2.3.1 Periodic Boundary Condition . . ... ... ... ............
2.3.2 Twisted Boundary Condition . . . . . . . ... ... ...........
2.3.3 Open Boundary Condition . . . . ... ... ... ............
2.4 Stability of Weak SPTC . . . . . . . . . . . . . e
2.4.1 Open Boundary Condition: Exact Degeneracy Lifted . . . . . ... ...
2.4.2 Twisted Boundary Condition . . . . . . ... ... ... .........

3 Strong SPTC: (1 + 1)d Spin Chain With Z, Symmetry
3.1 Spin Chain Construction . . . . . . . . . . . vttt
3.1.1 Domain Wall Decoration and Induced Anomaly . . . . . ... ... ...
3.1.2 TheModel . .. ... ... . ... ...
3.2 Signatures of ZL Strong SPTC . . . . . . . . . . .. i
3.2.1 Periodic Boundary Condition . . .. ... ... .............
3.2.2 Twisted Boundary Condition . . . . . ... .. ... .. .........
3.2.3 Open Boundary Condition . . . .. ... ... ... ...........
3.3 Stability of Strong SPTC . . . . . . . . . ... . . o

4 Strong and Weak SPTC in the Spin-1 System
4.1 The Model and Phase Diagram . . . . . . .. ... ... ... ..........
42 ZixZYx ZT Strong SPTC . . . . . . .o
43 ZixZYx ZTWeak SPTC . . . . . . . . e

A Stability of Boundary Degeneracy of Z3' x Z$ Gapped SPT

O ON Lt L W NN

10

10
10
11
12
13
14
15
15
15
17
18
19
19

21
21
21
23
24
24
26
27
28

30
30
31
33

34



B Spectrum of Levin-Gu Model under Different Boundary Conditions 35

B.1 Exact Solutions under PBC by Jordan-Wigner Transformation . . . ... .. .. 35
B.2 Mapping to XX Chain and Charge of Ground State . . . . .. ... ... .... 37
B.3 Spectrum under Open Boundary Condition . . .. ... ... ... ....... 39
C Equivalence Between Ground sector of Z, SPT criticality and Levin-Gu model 40
D Edge Degeneracy of SPTC 41
D.1 Edge Degeneracy of Zo X Zs Weak SPTC . . . . . . ... ... ... ... ... 41
D.2 Edge Degeneracy of Z, Strong SPTC . . . . . ... .. ... ... .. ..... 42
E Z; x Z, Strong SPTC 42
E.1 Lattice Hamiltonian . . . . . . .. . ... ... . ... .. .. ., 42
E.2 Charge of Twisted Boundary Condition . . . . . ... ... ... ........ 43
E.3 Open Boundary Condition . . . ... ... ... ... ... .. .. ....... 44

1 Introduction and Summary

1.1 Gapped Quantum Matter

The study of topological phases of quantum matter has led to tremendous progress in understand-
ing quantum many body systems beyond the Landau paradigm. The gapped phases are so far
relatively well understood. Based on their symmetry and entanglement properties, the gapped
phases can be classified into the following categories [1]:

1. Trivially gapped phase: There is a single ground state on an arbitrary spatial manifold, and
a finite energy gap from the first excited state in the thermodynamic limit. The ground state
preserves the global symmetry, and can be deformed to the trivial product state through
finite depth locally-symmetric unitary transformation without closing the energy gap. Its

entanglement entropy obeys area law while the subleading contributions vanish in the ther-
modynamic limit. The ground state is short range entangled [1].

2. Symmetry protected topological (SPT) phase: Similarly to the trivially gapped phase,
there is still a single ground state on an arbitrary closed spatial manifold and a finite en-
ergy gap from the first excited state in the thermodynamic limit. The ground state preserves
the symmetry and is short-range entangled. The global symmetry should be anomaly free.
However, unlike in the trivially gapped phase, when placing the system on a spatial man-
ifold with nontrivial boundaries, due to the nontrivial physics appearing at the boundaries,
there are either multiple ground states, or the energy spectrum becomes gapless in the ther-
modynamic limit. There is no finite depth locally-symmetric unitary transformation that
maps the ground state to a trivial product state. '

IThere are also exotic phases that do not require onsite unitary symmetries, but still satisfy the above properties,
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3. Topological ordered (TO) phases and symmetry enriched topological (SET) phases:
The low energy is described by a symmetric topological quantum field theory (TQFT).
The number of ground states depends on the topology of the spatial manifold. In particular
when the spatial manifold is S¢ there is only one ground state. The ground states also have a
finite energy gap from the first excited states in the thermodynamic limit. The entanglement
entropy of the ground state has a constant contribution besides the area law part, which
survives in the thermodynamic limit. This is termed topological entanglement entropy [7—
10]. There are also nontrivial physics (e.g. gapless edge modes, spontaneous symmetry
breaking or gapped TQFT) on the boundary when the spatial manifold is open. Finally, as
the line operators (worldlines of anyons) are topological, they do not obey area law, and the
theory is deconfined.

4. Symmetry breaking phases: There are multiple ground states even when the spatial man-
ifold is S?, due to spontaneous breaking of the global symmetry. These phases are within
the Landau paradigm. There are also phases where the Landau symmetry breaking order
and SPT/TO/SET orders coexist.

From the description above, it is clear that the SPT phase is the simplest, yet nontrivial, gener-
alization of trivially gapped phase that goes beyond the Landau paradigm. We use gapped SPT
phases to emphasize that the conventional SPT phases are for gapped systems.

1.2 Symmetry Protected Topological Criticality: Universal Features

In contrast to the gapped topological phases of quantum matter which are relatively well-understood,
a systematic understanding of gapless quantum systems is still under development. See [11-20]
for recent developments. When there are no symmetric relevant perturbations that drive the sys-
tem away from the gapless point, such a gapless system represents a gapless phase which typically
appears at infrared limit of the renormalization group flow. When there is at least one symmetric
relevant perturbation that drives the system away from the gapless point, such a gapless system
represents a (multi) critical point. In this work, we mainly focus on the latter situation. °

The main goal of this work is to construct analogues of SPT phases in gapless systems that
appear at the critical points/regimes, which we denote as the symmetry protected topological
criticality (SPTC), and to elucidate their topological properties. The notion of SPTC has been
studied in several works recently under various terminologies [11-13,21,22]. Most of the exam-
ples studied in these works share the following common features:

i.e. no degeneracy on closed manifolds and nontrivial boundary physics. They include Kitaev’s Fg state in 241d [2,3]
and wows theory in 4 + 1d [4-6]. We also consider them as SPT phases where the symmetry is the spacetime
diffeomorphism.

’Depending on the dynamical details, in some situations, the critical point may smear to a critical region, and
the second situation becomes to the first situation. One such example is the U (1) Dirac spin liquid, which spans
over a finite region in the phase diagram while interpolating between Neel and VBS phases. For simplicity, we will
schematically use criticality to include both cases.



1. The critical system has the global symmetry I'. I' should be anomaly free and is not spon-
taneously broken by the ground state under periodic boundary conditions.

2. When placing the system on an arbitrary spatial manifold with periodic boundary condi-
tions, the system should have a non-degenerate ground state with a finite size bulk gap
which decays polynomially with respect to the system size.

3. When placing the system on a spatial manifold with nontrivial boundaries, there are degen-
erate ground states with a finite size splitting decaying qualitatively faster (e.g. exponen-
tially, or polynomially with a larger decaying constant) with respect to the system size.

4. When placing the system on a closed spatial manifold where the boundary conditions are
twisted by the global symmetry I', a.k.a. twisted boundary conditions, the ground state
carries nontrivial [' symmetry charge.

5. The criticality is confined. In particular, if the criticality has a 1-form symmetry, it should
not be spontaneously broken.

All the above properties hold for gapped SPT phases except that the bulk gap decays to zero in the
thermodynamical limit, hence these properties should be the most natural ones that any candidate
SPTC should share.* We will use a more concrete working definition of the SPTC using the
decorated defect construction [11,13,24,25] in the following sections. We will see that the SPTC
has more subtle topological properties that are not shared with the gapped SPT.

We would like to justify the name SPTC, and compare it with the existing terminologies
in [11-13]. * In [11], [12] and [13], gapless systems satisfying the above five properties are
called “gapless symmetry protected topological phases", “symmetry enriched criticality" and “in-
trinsically gapless topological phases", respectively. In this work, we use SPTC instead for the
following two reasons.

a. We use “criticality” in SPTC because our systems arise at the critical points or critical
regimes with the codimension one or larger corresponding to symmetric gapping perturba-
tions, and do not represent a gapless phase which is stable in a codimension zero region of
the phase diagram under the symmetry. Hence we would like to avoid using “phase".

b. We use “SPT" in SPTC to emphasize the trivialness in the bulk: the global symmetry is
anomaly free, and there is no ground state degeneracy under periodic boundary conditions.
We would like to reserve symmetry enriched topological criticality (SETC) for the gapless
generalization of SET phases, where the global symmetry is allowed to be anomalous and
deconfinement is allowed to exist. See [23] for an example.

3We would like to comment that the fifth property is not implied by the first four. One example is the second order
phase transition between a (2 + 1)d topological order and a trivially gapped phase. This system does not have any
0-form global symmetry and thus trivially satisfies the first four properties. Yet, as discussed in [23], this model has
an emergent 1-form symmetry which is numerically demonstrated to be spontaneously broken, hence is deconfined.
The fifth property is introduced to exclude this possibility.

“We sincerely thank N.Jones, R.Thorngren and R.Verresen for helpful discussions and comments.
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However, SPTC does not mean that the critical point/regime can be gapped out by breaking the
symmetry, but instead should be understood as the gapless generalization of the gapped SPT
phases at the critical point/regime. In other words, SPTC means that the symmetry protects a
certain topological characteristics of the quantum criticality, and not the gaplessness of the system.
We will further comment on the relation between our critical systems and those discussed in
[11-13] in section 1.3.

Before proceeding, let us clarify the conventions and simplifying assumptions throughout this
work. We assume: (1) the spacetime dimension to be d + 1, and spatial dimension to be d; (2)
the global symmetry I is finite, unitary and onsite, and is of O-form; (3) we only discuss bosonic
systems. Generalizing to continuous symmetry, higher form symmetries, and fermionic theories
should be interesting, and are left to future investigations.

1.3 Decorated Defect Construction

We sketch the idea of constructing SPTC using decorated defect construction. We will spell out
the details by studying concrete examples in section 2, 3 and 4.

1.3.1 Constructing Gapped SPT

The decorated defect construction was first devised to systematically construct gapped SPT phases,
starting from the known lower dimensional gapped SPTs [24—-26]. Suppose one would like to con-
struct a gapped SPT system with global symmetry I'. Assume I fits into the symmetry extension

1-A—->T—->G—=>1 (1.1)

where A is the normal subgroup of I, and G := I'/A. For simplicity, we assume that the extension
is central, i.e. G does not act on A.° One starts with a phase where G is spontaneously broken, and
on each codimension p G-defect one decorates a (d + 1 — p) dimensional gapped SPT protected
by symmetry A (i.e. A gapped SPT). As we would like to eventually proliferate the GG-defect
network to restore the entire I' symmetry, the decorations should be consistent such that GG-defect
of each codimension should be free of A-anomaly, and in particular, there are no gapless modes
localized on G-defects. Otherwise, if there are nontrivial gapless degrees of freedom localized on
the (G-defects, proliferation would not yield a gapped phase with one ground state. After defect
proliferation, the resulting theory is a gapped SPT protected by the [' symmetry. The topological
action of I' gapped SPT is given by the I' cocycle F +1 Which is a representative element in the
cohomology group [27]°

[Fil € HFHT,U(1)). (1.2)

SThe decorated defect construction of gapped SPTs was first discussed [24] in the special situation where the
extension (1.1) is trivial, i.e. [' = A x (G. The construction was later generalized to non-trivial extension (1.1) in [25].

SIf T" is a continuous symmetry, the cohomology group should be H?+! (BT, U(1)) where BT is the classifying
space of I'.



We remark that a given I can fit into multiple symmetry extensions with different pairs (A, G).
For a given extension (A, G), as long as we exhaust all possible ways of decorating A gapped SPT
on G-defects, proliferating the GG-defects exhausts all possible I' gapped SPTs. Hence different
choices of (A, ) yield the same set of I" gapped SPTs, and one can choose the most convenient
pair (4, G).

1.3.2 Constructing SPTC

Let us proceed to construct the I' symmetric SPTC by modifying the decorated defect construc-
tion reviewed in section 1.3.1. We still assume that the global symmetry I' fits into the symmetry
extension (1.1), and start with a gapped phase where G is spontaneously broken. On each codi-
mension p G-defect, one decorates a (d + 1 — p) dimensional A gapped SPT. We finally fluctuate
the G-defect network to the critical point, and define the critical point to be the SPTC.

Comparing with the decorated defect construction of the gapped SPT, the construction of the
SPTC has several important new features. As we no longer demand that fulling proliferating the
(G-defect network leads to a gapped SPT phase, the consistency condition for the decoration can be
relaxed. We classify all possible decorations into two categories, and denote the resulting SPTC
as weak SPTC and strong SPTC respectively.

1. Weak SPTC: The A gapped SPTs decorated on the G-defects satisfy the same consistency
condition as those for constructing the gapped SPT. Concretely, the GG-defect of each codi-
mension is free of A anomaly. This means that further increasing the GG-defect fluctuating
strength leads to a I' gapped SPT, and the weak SPTC is the phase transition between G
spontaneously broken phase and I' gapped SPT. In particular, when the extension (1.1) is
trivial, i.e. I' = A x G, the construction was discussed in [11] and [12] where the authors
denoted the transition point as gapless symmetry protected topological order and symmetry
enriched quantum criticality, respectively. See the left panel of figure 1 for the schematic
phase diagram of weak SPTC.

2. Strong SPTC: The A gapped SPT decorated on the G-defects satisfies only a weaker, mod-
ified consistency condition. Concretely, the symmetry breaklng phase we started with has a
partlcular anomaly of a particular (non-normal) subgroup T of I', where G C I'. The choice
of T and its anomaly should be considered as part of input data of the construction. The
defect decoration is constrained such that the anomaly of T in the G symmetry breaking
phase is precisely cancelled against the anomaly induced by the defect decoration.” After
decoration, the total symmetry group I' is anomaly free, and fluctuating the (G-defect net-
work to the critical point yields a [' anomaly free SPTC. We denote it as I strong SPTC. In
particular, when r = G, the construction was discussed in [13] under the name of intrinsi-
cally gapless topological phase. On the other hand, we will discuss an example of a more

"The phenomenon of induced anomaly also appear in the discussion of anomalous-SPT [25, 28] and symmetry
extended boundary of gapped SPT [29,30].
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Figure 1: Phase diagram of weak and strong SPTC. The horizontal axis is the strength of
G-defect fluctuation. For the weak SPTC (left panel), the GG-defects can be fully proliferated
and one obtains [' gapped SPT. For the strong SPTC, one can only fluctuate the G-defects to
the critical point. Further increase the fluctuation will not drive the system to I' symmetric
gapped SPT phase.

general class of strong SPTC in which Tis larger than G, in Section 4. See the right panel
of figure 1 for the schematic phase diagram of strong SPTC.

It is natural to assume that the process of defect decoration and the process of GG-defect fluc-
tuation commute with each other. Then we may simplify the decorated defect construction by
directly starting with a gapless critical system and decorating its G-defects. The gapless critical
system is obtained by fluctuating the GG-defects of the G symmetry breaking phase before deco-
rating the A gapped SPTs, and from section 1.2 we require such critical system before decoration
should have a non-degenerate ground state under periodic boundary condition, and is confined. ®
For the weak SPTC, we need to start with a critical point without any anomaly. While for strong
SPTC, we need to start with a critical point with a particular r anomaly.

As commented in section 1.3.1, for a given I, there can be multiple choices of the symme-
try extension (1.1). We noticed that the gapped SPT can be constructed using arbitrary (A, G).
However, this is no longer true for the strong SPTC. Note that one needs to specify an anomaly
of T (which includes (3) as an input data of the decorated defect construction of strong SPTC. By
definition, the resulting strong SPTC depends on the choice of symmetry extension (1.1), T and
the anomaly of T

In this work, we will explore examples of weak and strong SPTCs and discuss their topological
properties, and examine the stabilities under perturbations. We will find that in general, the strong
SPTC is more stable than the weak SPTC as well as conventional Landau transition, in the sense
that there may not be a relevant perturbation in strong SPTC that triggers the flow towards a I'
gapped SPT phase. This suggests the name strong vs weak. As this work mainly focuses on
various examples, a more systematic discussion of the classification of weak and strong SPTC
will be presented in a separate work [31].

8We will see in later sections that the defect decoration can be implemented by a unitary operation, which does
not change the energy spectrum. This implies that the ground state degeneracy should be one both before and after
defect decoration.



It is encouraging to note that the decorated defect construction allows us to study a large
class of the “gapless SPT" in [11-13] in a systematic way, which were originally constructed via
separate methods. As commented above, the decorated defect construction also points toward
new examples that have not been covered before. See the example in section 4. We would also
like to emphasize that [12] also discusses exotic critical systems (which have time reversal global
symmetry and don’t have gapped sectors) that go beyond the discussion of the present work.

1.4 Signatures and Stability of Weak and Strong SPTC

Given a gapless system with a non-degenerate ground state in the bulk with finite size, how can
we tell whether it is a nontrivial SPTC? If it is nontrivial, how can we tell whether it is weak or
strong SPTC? In this subsection, we propose two types of physical signatures that allow us to
characterize the nontrivial SPTCs and to distinguish between weak and strong SPTC:

1. Degenerate ground states in the presence of boundaries.
2. Nontrivial symmetry charge of the ground state under the twisted boundary condition.”

It is well-known that these two signatures are useful in probing non-trivial gapped SPT phases
[32-35]. The first signature is more limited in two aspects: (1) It is useful for (1 + 1)d sys-
tems [32, 33], but for higher dimensions the boundary is extensive and the degeneracy on the
boundary depends on the boundary dynamics. For this reason, we restrict ourselves to (1 + 1)d
systems when discussing the boundary degeneracy. (2) For a generic Hamiltonian respecting the
symmetry, the ground states on a finite open chain are only quasi-degenerate with exponentially
small splittings, instead of being exactly degenerate. This makes the identification of degenerate
ground states subtle, especially in the gapless systems. While we can still separate the quasi-
degenerate ground states with exponentially small finite-size excitation energies from gapless
excitations with power-law finite-size excitation energies, the distinction can be challenging in
practical numerical calculations.

On the other hand, the second signature is merely based on the global symmetry, hence (1) can
be applied to arbitrary spacetime dimension, and (2) is expected to be stable and exact for a generic
Hamiltonian in the given SPTC phase. This stability is also helpful for numerical calculations, as
we will see later. See [36] for an application of twisted boundary condition to Lieb-Schultz-Mattis
ingappability. Although the second signature seems to give a sharper probe, we still discuss both.
In fact, both of these two signatures are useful in distinguishing the nontrivial SPTC against trivial
ones. The first signature is relatively well-studied in (14 1)d gapless SPTs and has been discussed
extensively in [11-13]. The second signature is less studied for gapless theories, and we will
explore them through examples in detail. '°

9We expect that this property also applies to low energy states as well. We checked this property in an example in
section 3. Y.Z. thanks Jie Wang for helpful discussions on this point.

During the final stage of this work, the authors realized that the second signature was also discussed in the
updated version of [12].



“Weakness'' of Weak SPTC: The phase diagram of the weak SPTC (left panel of figure 1)
suggests that if we further stack a I' gapped SPT on top of the I' weak SPTC, the resulting critical
point becomes a Landau-like transition since the two sides of the transition are Landau symmetry
breaking phase and a trivially gapped phase. We will see this explicitly in section 2. This seems to
suggest that both signatures of the I' weak SPTC (boundary degeneracy and charge of the twisted
sector ground state) are the same as the I' gapped SPT. However, this is not entirely true. We
will find in section 2 that the weak SPTC exhibits interesting boundary properties that distinguish
it from the gapped SPTs. Concretely, if we place a (1 + 1)d I" weak SPTC on an open chain,
the number of ground states does not match that of I' gapped SPT. This phenomenon has been
discussed in [11, 12], where the authors attributed such mismatch of the ground state degeneracy
to the nontrivial tunneling effect between the edge modes through the gapless bulk. We will
also present an analytical justification of this phenomenon. On the other hand, the symmetry
charge of the ground state in the twisted sector is the same for both I' gapped SPT and I' weak
SPTC. This explains that the bulk topological properties of the I' weak SPTC inherit from the I
gapped SPT. Indeed there is a I' symmetric (relevant) perturbation that drives the weak SPTC to
the gapped SPT, which makes such critical point unstable upon infinitesimal perturbation toward
gapped SPT. This explains the “weakness" of the weak SPTC.

Stability of Strong SPTC: From the phase diagram of strong SPTC (right panel of figure 1),
we find that, by construction in section 1.3.2, further increasing the fluctuation strength of the
G-defects does not drive the system to a I' gapped SPT. However, as I' is anomaly free, there
can be another perturbation AQ that drives the system to an invertible phase (which can be either
the trivially gapped phase or the I' gapped SPT), as long as h is large enough. In section 3, by
inspecting a particular example which can be shown to be definitely in a strong SPTC, we find that
the perturbed system is in the trivially gapped phase only when the perturbation strength passes
a certain threshold h = h.. h. is finite and positive for a fixed system size L. Assuming that h,
does not decay to zero as L — oo, this suggests that the strong SPTC is stable and exists over a
finite range of the parameter h.!! The phase transition at 4 = h, can be probed by measuring the
symmetry charge of the ground state either under the twisted boundary condition (i.e. the second
signature) or under the periodic boundary condition, which jumps at & = h.. > From the field
theory point of view, O is an irrelevant operator when h < h., and becomes a relevant operator
when h > h.. This should be contrasted with the weak SPTC, where the symmetry charge of the
ground state under the twisted boundary condition is unchanged as the strength of the perturbation
increases, and is identical to that of the gapped SPT.

Weak vs Strong SPTC: We propose to use the second signature, i.e. symmetry charge under
twisted boundary condition (TBC), to determine whether a given SPTC is weak or strong. For a

Tn section 3, we check the behavior of k. as L increases. Up to L = 11, we don’t see h. decaying monotonically.
12In general, the charge of the ground state under PBC and TBC jump at different values of h. h.. is the smallest
value for which the charge under either boundary condition jumps.



given SPTC, one can deform the theory to a nearby gapped SPT (possibly by a finite perturbation
strength). If there are multiple choices of gapped SPT, one should deform the SPTC to all of
them separately. One measures the symmetry charge of the ground state under TBC both for the
SPTC and gapped SPT. If they happen to be the same, the SPTC should be weak. If the symmetry
charges don’t match for any choice of gapped SPT, the SPTC should be strong.

Most of the properties discussed in this subsection are obtained by studying concrete examples
in the body of this work. We expect (without proving) that these properties are general features
commonly shared by general models smoothly connected with the SPTCs. A systematic discus-
sion for general symmetries and dimensions will be presented separately [31].

1.5 Organization of the Paper

This paper is organized as follows. In section 2, we discuss in detail an analytically tractable
example of weak SPTC, where I' = Zy X Zy, A = Zo,G = Z5 and the spacetime dimension is
d = 1+ 1. In section 3, we discuss in detail an analytically tractable example of strong SPTC,
where ' = Z4, A = 7o, G = T = Zo and d = 1 4 1. We discuss a more realistic spin-1 model in
section 4, which hosts both weak and strong SPTC simultaneously. There are several appendices.
Appendix A shows the stability of boundary degeneracy of Z, x Z, gapped SPT. Appendices B, C
and D are devoted to further detailed discussions in section 3. Appendix E discusses an example
of strong SPTC which involves time reversal symmetry.

2  Weak SPTC: (1 + 1)d Spin Chains With Z, x Z, Symmetry

In this section, we study a concrete lattice model of weak SPTC: (1 + 1)d spin chain with global
symmetry I' = Zy X Zo. We let A = Zo, G = Zs, and the symmetry extension in (1.1) is trivial.
For clarity, we use the superscript A and G to label the two Z’s.

2.1 Spin Chain Construction

We construct the 1 + 1d spin chain with I' = Z# x Z$ global symmetry. Since there are two Z,
symmetries, it is natural to assign two spin—%’s per unit cell: the spin—%’s living on the sites are
charged under Z$ while those living in between the sites are charged under Z3'. The symmetry
operators are defined to be

L L
Ua=]]71 Ue=]]ot 2.1)
=1 i=1

where o and Tiil, a = x,v, z, are Pauli matrices acting on the two spin-%’s, and L is the num-
2

ber of unit cells. Both symmetry operators are on-site'? and therefore I" is anomaly free. As

I3A symmetry operator is on-site if it can be written as a product of local operators on mutually adjacent but
un-overlapping patches, U = [[, U;, where i labels the patches.
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explained in the introduction, we would like to start with a Z$ spontaneously broken phase, with
the Hamiltonian

L
Hy=-Y_ Ti Foiof,. (2.2)
=1

It has two ground states

)= > Hriah {of =£1)). (2.3)
{7 1}

TZ
i+d

Each of them spontaneously breaks Z$ but preserves Z3'.

2.1.1 Domain Wall Decoration

To construct a Z3' x ZS weak SPTC, we decorate each Z$ domain wall by a 0 + 1d Z# SPT in a
consistent way.'* Each Z§ domain wall is associated with a Z$ group element g. g = 0, 1 means
the domain wall is trivial/nontrivial, i.e. the adjacent ¢* spin configurations are the same/opposite,
respectively. We present the domain wall configuration using both the spacetime picture and the
Hamiltonian picture.

The Spacetime Picture: It is useful to first discuss the domain wall in the spacetime picture.
The spacetime is triangulated into 2-simplices. See figure 2 for an illustration. Each site ¢ is
assigned a Z, group element s; = 0, 1, which corresponds to 07 = (—1)% in the Hamiltonian
picture. Each link is assigned a Z, l-cochain g;; = s; — s;. The g;; is understood as a flat
background field for the Z$ symmetry, and it measures the local domain wall excitation on the
link. The locus where g;; = 1 form a closed loop [¢] in the dual spacetime lattice, representing
the worldline of the domain wall, a.k.a. the Z$ symmetry defect line. Decorating the Z$' domain
wall by a 1d Z# SPT [11,24] means that we insert a Z3' Wilson line, a.k.a. 1d Z3' SPT, supported

on [g]
exp (m/ a) = exp (m/ a Ug) 2.4)
9] My

in the path integral. The flatness of the Z# background field a ensures that the decoration is
consistent: the domain wall junctions do not have Z# anomaly. This fits into the construction
of weak SPTC mentioned in section 1.3.2. The equality in (2.4) used the Poincare duality to
transform the integral on [g] into the integral over the entire 2d spacetime M,. The topological
term on the right hand side of (2.4) is precisely the effective action of Z4 x Z$ gapped SPT.

141 (1 4+ 1)d, we only have codimension 1 defects, i.e. the domain walls. For this reason, the decorated defect
construction is more conventionally called the decorated domain wall construction.

11



Figure 2: Triangulation of 2d spacetime. The black and red solid links are where the back-
ground field g;; = 0, 1 respectively. The red dashed line in the dual lattice is the spacetime
trajectory of the Zy domain wall [g], i.e. Z, symmetry defect line. Flatness of g ensures that
[g] forms loops.

The Hamiltonian Picture: In the Hamiltonian picture, domain wall decoration is implemented
as follows [11]. We first identify the configuration representing the Z$ domain wall, i.e. 0707 =
—1. Then on the link (7,7 + 1), we stack a Z3' SPT (2.4), which assigns the wavefunction a minus
sign if Tiié = —1 (i.e. a;;4+1 = 1 in the spacetime picture) on the wall. Combining the two steps,
one assigns a minus sign to the two configurations (o7, Tii%, i) = (1,-1,-1),(-1,-1,1)
and leaves the wavefunction unchanged for other configurations. This operation can be realized

by acting the unitary operator

v

L :
Upw = z.llexp {%(1 —o)(1— Tlié)l exp {Z(l —o07)(1 = TZZ_’_%) (2.5)

on the states (2.3) [11]. In terms of the Hamiltonian, domain wall decoration just amounts to
conjugating the original Hamiltonian (2.2) by Upy, yielding

L
H, := Upw HoUlyy, = — Z(Ufﬁiégfﬂ +070741)- (2.6)

=1

The ground states of H; are still (2.3), but the first excited states associated with the domain wall
excitations are decorated.

2.1.2 73 x Z§ Weak SPTC

The next step is to fluctuate the decorated domain walls. It is helpful to discuss the fluctuation
without decoration first. The fluctuation is well-known to be achieved by adding a transverse field
AH = -\ Zle 0%, so that the Z$' spontaneously broken ferromagnetic phase of the Ising model
(when A < 1) is driven to the Zg preserving paramagnetic phase (when A > 1) where the domain
walls are fully proliferated. The transition happens at A = 1, which is of second order, and is
described by a critical Ising CFT.
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% Decoration Decorated < Gapped SPT
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Figure 3: Phase diagram of Z$' Ising CFT (before decoration) and Z' x ZS weak SPTC (after
decoration). The horizontal axis represents the transverse field \.

After domain wall decoration, the fluctuation should be realized by adding a decorated trans-
verse field Upyw AH U]TJW ==X ZZ VT ! orT? 1 . As the unitary transformation Upy, does not
change the energy spectrum, the crltlcal pomt algo takes place at A = 1. The decorated model
Upw (Ho + AH)ULW at A = 1, is the ZQA X Z2G weak SPTC [11] (see also section 1.3.2 for the
definition of weak SPTC)

L
HWeakspTcz—Z<U ﬂ102+1+0 01+1—|-7' 10 T+2> 2.7

=1
When A > 1, the domain wall is fully proliferated, yielding a Z3' x Z$ gapped SPT described by
the well-known cluster model [37-39]

L
HSPT:—Z(UZTZ+1U,+1+T 10sz+ ) (2.8)
i=1
See figure 3 for the phase diagram before and after decoration.
As commented in section 1.3.2, we can simplify the above construction of weak SPTC by
directly starting with the Z$ Ising CFT (whose Hamiltonian is given by H, — Z o?), and
conjugate it by Upyy. This simplification will be useful in section 3.

zlz

2.1.3 More On Upy,

We make a remark on the unitary operator Upy,. Although Hyeasprc and Ho—) | f , o} arerelated
through a unitary transformation Upyy, they are actually not equivalent as the Z3 x ZS' symmetric
Hamiltonians. Recall that two I' symmetric Hamiltonians H;, H, are considered equivalent if
there is a locally-symmetric unitary transformation U = exp(i ttol dtV (t)) where V (t) is a sum
of local operators satisfying [V (¢),T] = 0, such that UH,U" = H, [1,27]. Since Upy is a
product of local unitary operators and each of them only acts on one or two unit cells, Upy is
a local unitary transformation. Moreover, Upy on a closed chain with the periodic boundary
condition is symmetric in the sense that [Upy, '] = 0. Nevertheless, as each local operator

exp(Z(1 —o7)(1 — 77 1)) does not commute with U, and Ug, Upw is not a locally-symmetric
2
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unitary transformation. As an indication, Upy does not commute with the symmetry generator
I" on an open chain, in contrast to the closed chain discussed above. In summary, Hgppc and
Hy — ZZ.LZI o¥ are not related by Z3' x Z§ locally-symmetric unitary transformation, hence they
are not equivalent as Z4 x Z§ symmetric systems. This also justifies that the SPTC is protected
by the Z3' x Z'.

It is interesting to compare Upy, with the Kennedy-Tasaki (KT) transformation [40—42] intro-
duced for integer-spin chains. Although the KT transformation is also implemented by a unitary
operator Uk, there are several differences. First, Uk is non-local, unlike Upy which is as

discussed above a product of local unitary operators. Second, the KT transformation is useful
for an open chain rather than for a closed chain, which is mapped to a non-local Hamiltonian by
Ugkr. Lastly, it maps a gapped SPT phase (on an open chain) to an SSB phase, while Upy maps
a gapped SPT phase to a trivially gapped phase. The KT transformation will be relevant for the
discussion in Section 4.

2.2 Trivializability Upon Stacking Gapped SPTs

We show that upon stacking a Z4 x Z$ gapped SPT, the Z$ x Z$ weak SPTC is equivalent to Z§
Ising criticality via a symmetric local unitary transformation. This partially justifies the adjective
weak in its name.

Let us consider two decoupled systems. The first system is a Z5 x Z$ weak SPTC given
by (2.7). The second system is a Z$ x Z$ gapped SPT given by (2.8). Since two systems are
decoupled, the two Hamiltonians act on decoupled Hilbert spaces. We use the Pauli operators
{of 72 ! } for the first system, and {of, 7" ! } for the second system. The Hamiltonian for the
entire system is the sum

L
Hweaspre + Hspr = — Z <0iz7',i%0¢z+1 + 0707 + TZ-Z_%U?:TZZ% + 5fii%55+1 + 732_%5?5;%) :
i=1
(2.9)
The decoupled system has enlarged global symmetry (Z3' x Z$) x (Z§ x Z§), whose generators
are

L L L L
Us=117%1 Uo= Hggf, Us=17 Ua= Hg;f. (2.10)
=1

i=1 =1 =1

There exists a symmetric local unitary transformation'”
v

L .
Z7T z <z z ~zZ z ~z z ~zZ
Udiag = HeXp(Z(l —0707,)(1 — Ti+%Ti+l)) exp(z(l —07407)(1 = TH_%TH_%)) (2.11)
i=1

2

SWithout multiplying over i, each exponent in Uliag commutes with the diagonal symmetries U AU 4 as well as
UgUg. As discussed in section 2.1.3, this implies that Ug,e is @ symmetric local unitary transformation, which
establishes the equivalence between different systems.
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which (locally) preserves the diagonal Zs x Z,, where two Zs’s are generated by U Aﬁ 4 and Ugﬁc
respectively. It is straightforward to check that

L

Uldiag (Hweaksprc + HSPT>U(Lag = - Z (T,i

=1

R R 5%) 2.12)
which is simply the Hamiltonian of the Ising CFT, a.k.a. the Z$ Landau transition, stacked with
some trivially gapped degrees of freedom. In summary, we have shown that upon stacking a Z3 x
75 gapped SPT, the Z4 x Z§ weak SPTC (2.7) is related to an ordinary Z$ Landau transition by a
symmetric local unitary transformation. The above equivalence can be schematically represented
as

74 x 75 weak SPTC @ Z4 x ZS gapped SPT +— Z$ Landau Transition. (2.13)

This implies that the nontrivial topological properties of the weak SPTC in the bulk (such as
nontrivial charge of the ground state under the twisted boundary condition, see section 2.3.2) are
basically inherited from the gapped SPT sector. However, we will find in section 2.3.3 that the
boundary properties of the weak SPTC differ from those of the gapped SPT.

2.3 Signatures of Z3 x Z$ Weak SPTC

We discuss the physical signatures of the Z3 x Z$ weak SPTC (2.7) that allow one to distin-
guish trivial vs nontrivial weak SPTCs. As motivated in the introduction (see section 1.4), we
will consider the ground state degeneracy under open boundary condition (OBC), as well as the
symmetry charge of the ground state under twisted boundary condition (TBC). We summarize the
main properties in table 1.

2.3.1 Periodic Boundary Condition

On a finite chain with periodic boundary condition (PBC), the ground state of the Z$ x Z§ weak
SPTC is non-degenerate. To see this, we first consider the Ising CFT described by the Hamiltonian
Ho—=> iL:1 of. It is well-known that the critical Ising model has only one ground state on a finite
chain, and the first excited state is separated from the ground state by a finite size gap decaying
polynomially with respect to the system size. The non-degenerate ground state preserves the
Z‘Q“ X ZZG global symmetry. Moreover, as noted in section 2.1.2, Hyeasprc and the Ising CFT have
exactly the same energy eigenvalues because they are related via a unitary transformation Upyy,
which implies that Hweusprc also has a non-degenerate ground state on a finite closed chain, with
a finite size gap, and is Z$ x Z3' symmetric under PBC.

2.3.2 Twisted Boundary Condition

We show that on a closed chain with boundary condition twisted by Z4' (or Z$), the ground state
of the Z4' x Z§ weak SPTC carries nontrivial symmetry charges under Z$ (or Z3') respectively.
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74 x 7§ 74 x 7§ 74 x 7§
Weak SPTC | Landau Transition | Gapped SPT
GSD 1 1 1
PBC:
73 x 7§ Charge (0,0) (0,0) (0,0)
GSD 1 1 1
74-TBC:
2 74 x 7§ Charge (0,1) (0,0) (0,1)
GSD 1 1 1
ZS-TBC:
2 74 x Z§ Charge (1,0) (0,0) (1,0)
OBC: GSD 4—2 1 4

Table 1: Ground state degeneracy and symmetry charges of the ground state under PBC, TBC
and OBC. Z (or Z§)-TBC means the boundary condition is twisted by Z' (or Z$). We compare
these properties between weak SPTC, Landau transition and gapped SPT, all with the same global
symmetry Zg‘ X Zg’. The 4 — 2 means that Hyeasprc has four ground states under OBC, but two
of them are lifted under a symmetric perturbation localized on the boundary.

The same idea has been widely used to characterize nontrivial gapped SPT order [34, 35,43-49],
and here we used it to characterize the weak SPTC (and also strong SPTC in section 3).

Twist By Z5': We first twist the boundary condition using the Z3' symmetry (labeled by Zj -
TBC), and measure the Z$ charge of the ground state. Twisting the boundary condition by Z3
means imposing a Z3' domain wall between sites L — % and L + % by changing the sign of the

term 77 07T 1. The weak SPTC Hamiltonian (2.7) becomes
2

L— +1
L—1
Z? A z z  Z z X, _Z A z z z z T __Z
Hyeaspre = — E Ti T4 10041 +t0;0;1+ Tim10i T 1 ) = O0pTp 101 = 00y + TL-10LTp4l-

i=1

(2.14)

It is useful to note that the twisted and untwisted SPTC Hamiltonian are related by a unitary
. z4 4 .
transformation Hy2  qprc = 07 Hweasprco7, hence the ground state of H?feakSPTC is alscl non-
degenerate. Denote the ground state under PBC as |GS), and that under Z#-TBC as |GS>tZW2 . We

have

IGS)% = 57 |GS) . (2.15)
It follows that
Ue |GS)2 = Ugoi ULUG |GS) = —o7 |GS) = — |GS)Z (2.16)

which shows that |GS>tZW2G has Z$' charge 1. '

16We used the fact that the ground state under PBC is neutral under ZS$. More precisely, (2.16) only shows the
relative charge, i.e. the ZS charge of the ground state under TBC minus that under PBC, is one. The relative charge
will be useful in section 3.
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Twist By Z$: We can alternatively twist the boundary condition using Z$ symmetry (labeled
by Z$-TBC), and measure the Z charge of the ground state. Twisting the boundary condition
by Z$ means imposing a Z$ domain wall on the link between L-th and Ist sites, by changing the

sign of the terms o707 and 0777, 0f. The weak SPTC Hamiltonian (2.7) becomes
2
. L-1
ZZ J— zZ T z z __Z z T, -z zZ T z z __Z z T, _z
Hyzakspre = — E (Ui Tiv1%i1 + 070541 T Ti-10iTiql + OLTL+1%1 + 001 — TL—190Tp4 1

i=1

(2.17)

. . 7$ G
Note that afr@.ﬁ%af '+, commutes with every term in Hy? \ sprc» the ground state \GS)thf should be
its eigen-vector

e 26 i . s [1GS)E, i=1,..L—1
OiTit 10041 IGS): = UpwTiy 1 Upw GS) = B |GS)§ -1l (2.18)
Consequently, the ground state has Z charge 1:
a L G L G G
UlGS)y =[] 711680 = — [ [(0707,1) 1GS)f = —IGS)y - (2.19)

i=1 =1

In summary, we find that when we use Z’; ' to twist the boundary condition on a closed chain,
the ground state of the twisted Hamiltonian has nontrivial ZS’A charge. This is the property distin-
guished from the Z4 x Z$§ Landau transition, where its ground state under the twisted boundary
conditions does not carry any nontrivial symmetry charge. This tells us that we can use the sym-
metry charge of the ground state in the twisted sector as a topological invariant to distinguish the
nontrivial weak SPTC from trivial weak SPTC (e.g. second order Landau transition). On the other
hand, the symmetry charges under TBC coincide with those of the gapped SPT. We summarize
the results in table 1.

2.3.3 Open Boundary Condition

As the nontrivial boundary modes protected by the global symmetry is a signature of gapped SPT,
we will find that same is true for the weak SPTC. We use the symmetry to analytically show
that the ground states of Hweasprc have to be exactly degenerate under OBC, but the number of
degeneracy differs from the gapped SPT. However, it should be noted that the exact degeneracy
of the ground states in a finite open chain is a special property of the particular Hamiltonian
Hweasprc. In section 2.4, we further discuss perturbations in the bulk, and we show that the exact
degeneracy is lifted, with an exponentially small splitting. This implies that the ground states of
a generic Hamiltonian which belong to the weak SPTC are only quasi-degenerate in a finite open
chain.

We place the spin system on an open chain. The left most spin is the o spin, and the right most
spin is the 7 spin. The o spins are supported on ¢ = 1, ..., L, and the 7 spins are supported on
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1+ % = %, wo L+ % We first choose the OBC such that only the interactions completely supported
on the chain are kept. The Hamiltonian is

L1 L
HOBC _ Z,.T z 1 g%o? _ z T,z (2 20)
WeakSPTC — OiTit10it1 T 0301 Tim10i Tyl .
i=1 =2
and the symmetry operators are
L L
x x
Us=]]7s Us=]]or (2.21)

We find that the set of operators {of, 77 L1
2
hence the ground state degeneracy must be at least the dimension of its irreducible representation.
To find the representation, we choose the maximally commuting subset of operators as {07, Ti 1 }
2

011 Ua, Uc} all commute with the Hamiltonian,

and denote their eigenvalue of a particular ground state |¢)) by (a,b), where a,b = +1. It is then
possible to generate other ground states with different quantum numbers as follows:

1 | Tp4l
1) a | b
Ualty) | a | =b (2.22)

Ug |¢) —a b
UAUG ‘¢> —a —b

This shows that there must be at least four exactly degenerate ground states of Hopsepre of four

different sets of quantum numbers. Numerical exact diagonalization confirms that the ground state
degeneracy is exactly four.

However, symmetry does not forbid us to perturb (2.20) by adding symmetric boundary terms.
We can add a boundary interaction

AH v%faism = (2.23)

x
which changes the original OBC to a new OBC. This interaction does not commute with 77 L1
2
so the set of operators commuting with the Hamiltonian HSEqpre + AHGES spre reduces to
{o%, oLT; L Ua,Ug}. As a consequence, the dimension of irreducible representation reduces

2
from four to two. Indeed, numerical exact diagonalization confirms that there are only two exactly
degenerate ground states under the new OBC. This degeneracy splitting was already noted in [11,
12]. Here, we provide a simple analytical argument of this splitting by finding the representation.
In appendix A, we show that arbitrary finite range perturbation does not lift the 4-fold exact
degeneracy of the Z4' x ZS' gapped SPT.

2.4 Stability of Weak SPTC

In this section, we discuss the stability of the weak SPTC by examining the signatures found in
section 2.3 under the perturbations in the bulk as well as on the boundary.
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2.4.1 Open Boundary Condition: Exact Degeneracy Lifted

In section 2.3.3, we found that the Hamiltonian (2.20) together with the boundary perturbation
(2.23) has two exact degenerate ground states under OBC. However, the question remains if such
an exact degeneracy is a generic feature of the (weak) SPTC. To clarify the issue, let us add a
74 x 7§ symmetric perturbation in the bulk

L—1
V=-h) olol,. (2.24)
=1

where for definiteness we take A > 0. After turning on V/, one can not find local boundary
operators which commute with the Hamiltonian, and the discussion in section 2.3.3 does not imply
exact degeneracy. Indeed, by exact diagonalization, we find that the exact two fold degeneracy is
lifted. It is important to observe that the splitting due to the perturbation decays exponentially with
respect to L. One can see this from the degenerate perturbation theory. Denote the two degenerate
ground states in the unperturbed theory as |+) and |—), which satisfy (+| Hle of |-y = 1. The
degenerate perturbation theory tells us that the splitting between the two lowest states is of the
order of the matrix element

(+VP|=) (2.25)

where p is the order of the perturbation. We will consider the smallest p for which the matrix

element is non-vanishing. Since o777, 107, |£) = [+) for i = 1,..., L, the matrix element
2

vanishes unless V? contains the symmetry operator [ | iLzl o?. This is possible only when p = L /2,
which implies that (2.25) is of order h%/2.!7 When h < 1, the energy split decays exponentially
as ~ e~ L1os(1/h)/2 This makes it possible to distinguish the quasi-degenerate ground states from
gapless excitations in the finite open chains, by looking at the scaling of their energy eigenvalues
measured from the finite-size ground states.

2.4.2 Twisted Boundary Condition

Does the lift of exact two fold degeneracy found in section 2.4.1 imply instability of the weak
SPTC under the perturbation V, or that exact boundary degeneracy is not a good criteria of weak
SPTC but weak SPTC is still stable? We use the TBC to determine whether the weak SPTC is
stable under V.

For instance, when p = 1, we have a term (+|o¥07,; |—) where i = 1,..., L — 1. By using afo+%af+1 |£) =
), we find (+|ofofy, [=) = (+lof 17 0fofof, =) = —(Hlofoi0f 77 107 =) = —(+lofofi,[-)

which shows that (+|of0f,; [—) = 0, and hence (+|V [~) = 0. Similar argument also applies p < L/2. When

p = L/2, there is a nonvanishing term (| H1‘L=1 oF |—-) = 1 in the expansion of (2.25), hence the degeneracy is lifted

at p = L/2-th order perturbation. When L is odd, one can modify the perturbation (2.24) by further adding —ho7,
and one can repeat the same discussion.
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Figure 4: Z3' charge, Z§ charges of the ground state and the finite size gap between the
ground state and first excited state under PBC, Z4'-TBC and Z$ TBC, as a function of the
perturbation strength h. The system size is L = 10.

The perturbed Hamiltonian under Z4'-TBC and Z$-TBC are

HZg‘pert

We

and

H We

akSPTC —

ngert .
akSPTC —

Z§
WeakSPTC ~—

L
WeakSPTC — E 0; 0115
i=1

L
1
h E 0; 0115
i=1

(2.26)

(2.27)

AG
respectively. H\)ZviakspTc are defined in (2.14) and (2.17). However, the method used in section 2.3.2

ZA’G

to show nontrivial ground state symmetry charge of Hyz2,, sprc N0 longer applies to HVZV“‘;:SP;?C. But
by exact diagonalization, we found that the Z3' x Z$ charge is unchanged under any boundary
condition as long as h < h,, where h, ~ 1.19 for L = 10. See figure 4 for numerical calculation
of the charge and gap under various boundary conditions. A, in general depends on L, which we
do not study in this paper. When h = h,, the Z$ charge under Z4-TBC jumps, and at the same
time the finite size gap of the Hamiltonian under Z3'-TBC closes. Note that the symmetry charge
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remains unchanged and the finite size gap remains open under PBC at h = h.. When h > h,, the
theory is in a gapped phase where Z3 is spontaneously broken. These results suggest that there is
a topological phase transition at h = h,., between the gapless Z3' x Z$ weak SPTC region and Z
SSB phase. '®

We conclude that the Z‘Q“ X ZQG weak SPTC exhibited by Hweqsprc 1s stable against perturbation
V as long as h < h.. We expect that the lesson we learnt here is generally valid: charge of
the twisted sector is a robust feature against small enough perturbation, and can be used as a
topological invariant for the weak SPTC. The weak SPTC can be also characterized by the quasi-
degeneracy of the ground states due to the edge states in open chains. However, this is a less
sharp probe in practice, as we need to distinguish the quasi-degenerate ground states with an
exponentially decaying gap from gapless excitations whose energies are scaled by powers of the
system size. Moreover, as commented in section 1.4, another advantage of symmetry charge under
TBC is that it is generalizable to higher dimensions.

3 Strong SPTC: (1 + 1)d Spin Chain With Z, Symmetry

In this section, we study a concrete lattice model of strong SPTC: (1 + 1)d spin chain with Z,4
global symmetry. We let A = Z,, G = Z,, and the symmetry extension (1.1) is now nontrivial.
We still use superscripts A and G to label the two Zs’s, and use superscript I to label Z,.

The strong SPTC has been studied in [13], under the name of “intrinsically gapless topological
phases". As emphasized in the introduction, the novelty here is that we discuss the strong vs weak
SPTC in the same framework through decorated defect construction, and present a simpler and
more analytically tractable model than that in [13]. The signature of boundary degeneracy as
well as the string order parameter have been extensively discussed in [13]. Here, we will instead
emphasize the usefulness of TBC as a probe of nontrivial SPTCs and its stability upon perturbation
to the trivially gapped phase. See also [50] for the discussions of a boson-fermion coupled model
which is related to our spin model by Jordan-Wigner transformation.

3.1 Spin Chain Construction
3.1.1 Domain Wall Decoration and Induced Anomaly

Domain Wall Decoration: ~ We construct the (1 + 1)d spin chain with Z} global symmetry, by
applying the decorated defect construction reviewed in section 1.3.2. Concretely, we start with
a ZS$ symmetry spontaneously broken phase with a nontrivial anomaly of Z$, and then decorate
the ZS§ domain wall by Z$ SPT. We will show below that the domain wall decoration induces a
nontrivial Zg; anomaly due to the nontrivial extension (1.1), and two Zg anomalies are designed
to cancel against each other. Thus the entire Z symmetry is anomaly free. We further proliferate

18This means that SPTC is stable under perturbing to Z4' SSB phase, at least for a given finite system size. However,
by construction, it is unstable under perturbing to Z3' x Z$ gapped SPT phase. Note that from table 1 the symmetry
quantum numbers of weak SPTC are the same as those of the gapped SPT.
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the decorated Z$ domain wall, and fine tune the system to the critical point. The resulting critical
point is the Z} strong SPTC.

Induced Anomaly: We explain why the domain wall decoration induces nontrivial Z$ anomaly.
Let us denote the background fields of Z$ and Z4' as g and a respectively, both of which are 1-
cochains. The Z! background field is 2a — g, where ¢ is a lift of ¢ to a Z! valued cochain, i.e.
g =g mod 2. By requiring the Z} background to be flat, we find

§(2a —§) =26a—6G=0 mod 4 3.1)

which implies
1
da = Bock(g) := §5§ mod 2, dg=0 mod 2. (3.2)

Bock(g) is the Bockstein of g, which is defined as in (3.2). As (2.4), decorating the Zg domain
wall by a 1d Z% SPT means stacking a Z5 Wilson line to the worldline of Z$ domain wall.
However, due to the nontrivial bundle constraint (3.2), the domain wall decoration is not gauge
invariant, and equivalently it induces a nontrivial dependence on the extension to the 3d bulk M3,

exp (m/ a) = exp <z7r/ alU g) = exp (m/ gUuU Bock(g)) : 3.3)
[g] M> M;

In the second equality, we applied total derivative to promote the 2d integral to the 3d integral
and used (3.2). A physical interpretation of (3.3) is that domain wall decoration induces a Zg’
anomaly. We will denote this anomaly as the induced anomaly.

However, the SPTC by definition should be free of Z} anomaly, and the system should be
independent of the extension to Ms. This demands that the Z$ spontaneously broken system
before domain wall decoration should already exhibit an opposite anomaly of Z$, which is given
by the same inflow action

exp (m/ gU Bock(g)> . (3.4)
M;

After domain wall decoration, the anomaly (3.4) from the low energy cancels against the induced
anomaly (3.3) from the domain wall decoration, and the total system is anomaly free.

As commented at the end of section 2.1.2, one can simplify the discussion by directly starting
with a critical system with a non-degenerate ground state and a Z$ anomaly (3.4). A standard
candidate is the critical boundary theory of (2 + 1)d ZS SPT, known as the Levin-Gu model [35].
We then decorate the ZS' domain walls (via conjugating by the unitary operator Upyy in (2.5)).
We will take this simplified strategy of domain wall decoration below.
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3.1.2 The Model

We still let the o spins (living on integer sites) to be charged under Z$, and 7 spins (living on half
integer sites) to be charged under Z4'. The Z. symmetry is generated by

L .
i
Uf—-IIaiem)(4(l @+9> (3.5)
i=1
: x x YR _ Y% x T Yy z z _ Y : :
under which of — o}, 0" — —0; > Ty = Ti1e Tipl T T 7 Titl- Since Ur is

on-site, Z is anomaly free. The normal subgroup Z3' is also generated by an on-site operator

L
Us=Uf =[]0 (3.6)
=1
We propose the Hamiltonian for the Z strong SPTC, and justify that it comes from the con-
struction at the end of section 3.1.1. The Hamiltonian is
L

_ E ' z T, _z Y
HStrongSPTC - (Ti_%o'i TfH_% + T
i=1

oit? L+ af_lTYT_lUf) : 3.7
2

To justify whether (3.7) comes from the Levin-Gu model with an anomalous Z$ symmetry by
domain wall decoration, we conjugate the same Upy as (2.5) on (3.7) to obtain a pre-decorated
model

L

T - T z T T _x z T

_1
- 2
=1

and the pre-decorated Z. symmetry operator becomes

L L :
im
UpwUrULy, = Haf Hexp (Z(l - O'fT;i;Uerl)) : (3.9

=1  i=1
As the last term in (3.8) commutes with the rest of the terms, the ground state should be the
eigenstate of 7. 1 with eigenvalue 1. See appendix C for a more detailed discussion on this
point.!” In the low energy sector, we simply substitute T L = 1 in (3.8), and obtain the low
energy effective Hamiltonian

L

UDWHStrongSPTCUEWhow =— Z (0f — 07 10707,,) (3.10)
i—1

which is precisely the Levin-Gu Hamiltonian [35]. The Z3' normal subgroup decouples from the
low energy. Only Z§ acts nontrivially on the low energy degrees of freedom

L L :
im
UpwUrUL o liow = Haf Hexp (Z(l - Ufaf+1)> . (3.11)
=1 =1

191n fact, all the low energy states with energy E — Egs < 1 satisfy r =1
2
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Z Z

Strong SPTC Landau Transition
PBC: GSD 1 1
GSD 1 1
Z4{-TBC:  Relative Z§ Charge 0 0
Relative Z} Charge 2 0
GSD L=o0dd:2; L=even:4 1
Z}-TBC:  Relative Z4 Charge 1 0
Relative Z} Charge lor3 0
OBC: GSD >2 1

Table 2: Ground state degeneracy and symmetry charges of the ground state under PBC, TBC
and OBC. We focus on the system size L = 0,1,3,4,5,7 mod 8 to ensure trivial ground state
degeneracy. Relative Z3' (or Z%) charge means the difference between the corresponding charge
under the TBC and that under the PBC. We compare these properties between the strong SPTC
and Landau transition, both with the same global symmetry Z!.

The Z$ symmetry operator is realized in a non-on-site way, which is demanded by the Z$' anomaly
(3.4) at the low energy. This justifies that the proposed Hamiltonian (3.7) comes from the pre-
scribed construction in section 3.1.1.

3.2 Signatures of Z! Strong SPTC

We discuss the physical signatures of the Z! strong SPTC (3.7). An immediate fact to realize
is that there is no Z} gapped SPT in (1 + 1)d.?® Thus it is not possible to stack a gapped SPT
to unitarily connect it to another possibly more trivial SPTC. For this reason, the origin of the
nontrivial SPT order at the critical point here is less obvious, in contrast to the Z5' x Z$ weak
SPTC. This motivates us to use strong vs weak to distinguish these two SPTCs. In this subsection,
we discuss its properties under various boundary conditions. We summarize the main results in
table 2.

3.2.1 Periodic Boundary Condition

We have motivated in section 1.2 that any SPTC should have one non-degenerate ground state,
with a finite size splitting with the first excited state. Thus we would like to check the ground state
degeneracy of (3.7) under PBC to be one.

As we find in section 3.1.2, the number of ground states of the Z strong SPTC is identical to
that of the Levin-Gu model (3.10). In appendix B.1, we show, by Jordan-Wigner transformation,

2The (1 + 1)d bosonic SPT with a discrete symmetry G is classified by H2(G,U(1)). In our case, G = Zg4, and
it is well-known [27] that H?(Z4, U(1)) = 0 is trivial, hence there is no nontrivial Z, SPT phase in (1 + 1)d.
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that the number of ground states of the Levin-Gu model depends on L mod 4 and is given as

2, L=2 mod4
GSD;, = ‘ (3.12)
1, otherwise.

Thus the number of ground state of the Z! strong SPT criticality under periodic boundary condi-
tion is also given by (3.12).

Let us further discuss the Z, charge of the ground state. Denote the ground states of (3.10),
(3.8) and the (3.7) as |GS), ¢, |GS) . and |GS) respectively. Suppose the Z§ charge of |GS), in
the Levin-Gu model (3.10) is ¢, g, then by definition we have

UDWUFUEWhOW GS) g = (=1)"|GS) 5 - (3.13)

As 74 decouples from the low energy, we also have U DWUFULW |GS)
Since |GS)

— (~1)m [GS)

pre

= Upw |GS), we can then compute the Z) charge of |GS) via,

pre*
pre

Ur |GS) = Uby (Upw UrUfy) |GS), . = (—1)%e UL, |GS)

ore = =226 |GS).  (3.14)

pre

So the Z! charge g of the ground state |GS) is related to the Z$ charge of |GS), ; via ¢ = 2qig
mod 4.

We are left to determine the symmetry charge of the Levin-Gu model, ¢, . While the ground-
state degeneracy was obtained exactly in Eq. (3.12) by the Jordan-Wigner transformation as dis-
cussed in Appendix B.1, we could not find ¢; ¢ from the Jordan-Wigner transformation. Never-
theless, we can utilize an alternative mapping to the XX chain as discussed in Appendix B.2, to
determine ¢ for even L’s. The analytical result for even L’s was confirmed by exact numerical
diagonalization for small L’s, which also gives q g for odd L’s. As a result, extending the L
mod 4 dependence of the ground-state degeneracy (3.12), we find that the symmetry charge of
the Levin-Gu model ¢; g depends on « = L mod 8: ¢, = 0 for « = 0, 1,7, while g, = 1 for
a = 3,4,5. As presented in Eq. (3.12), for « = 2,6, the ground states are two fold degenerate.
We find that, each of the two degenerate ground states has qig = 0 and ¢ g = 1.

We conclude that the ZY charge ¢ of ground state of (3.7) is

0, a=01,7
Ur|GS) =e™?|GS), ¢=2qc =12, a =345 (3.15)
0&2, a=2,6.

From the above result, it appears that the ground state degeneracy is not well defined in the
limit L — oo. While we do not completely understand the physical mechanism behind the peri-
odic dependence of the ground-state degeneracy on the system size, the ground-state degeneracy
for o = 2,6 might be interpreted as a consequence of an effective twist [S1]. The effective twist
can be seen by mapping the Levin-Gu model to an XX chain. In appendix B, we showed that
under a unitary transformation, the Levin-Gu model with PBC can be mapped to an XX chain
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with PBC and one ground state when L € 47, and XX chain with the twisted boundary condition
and two degenerate ground states when L € 47 + 2. This is analogous to the phenomenon that
an antiferromagnetic chain of odd length is effectively subject to a twisted boundary condition.
Here we simply consider the sequence of systems only with « € {0,1,3,4,5,7}. This would be
reasonable if the ground-state degeneracy for o = 2,6 is indeed due to an effective twist; we just
consider the sequence of effectively untwisted systems.”! Then the ground state degeneracy in the
thermodynamic limit is regarded as one, consistently with our definition of SPTC.

There still remains the periodic dependence of the Z} charge in the ground state on the system
size: for o = 0, 1, 7, the ground state is neutral under Z., while o = 3, 4, 5, the ground state gets
a minus sign under the Z. transformation. However, this minus sign can always be absorbed by
suitably modifying the definition of Ur in (3.5). In fact, in the following sections, we will only
be interested in the relative charge of the ground state between the periodic and twisted boundary
conditions, which turns out to be system-size independent.

3.2.2 Twisted Boundary Condition

We further discuss the charge of the ground state under the TBC. We can either twist by Z., or its
normal subgroup Z3'.

Twist by Z5':  We twist the boundary condition by Z2' (labeled by Z3 TBC). The Hamiltonian is

L—-1
Z§4 _ E z T, _z Y x Y Z, T z z T, _z Y T, Y Z,.T _z
HstrongSPTC - - <Ti—%ai7—i+% +Ti7%0-i Ti+% +O—iTi+%ai+l +TL-%O-LT% +TL,%0LT% _O-LT%Jl
i=1
_ =z z
- ULHStrongSPTCUL
(3.16)

where Hgongspre 18 (3.7). We have already encountered the same algebra below (2.14). Denote
zs

A
the ground state of Hgyongsprc and Hs,Zt?ongspTc as |GS) and |GS), 2,

‘GS>tZwéq =07 |GS). As UPUEUT = —oj, we find

respectively. Then we have

Ur |GS)EE = —¢imi/2|GS) 22 = ¢im(a+2)/2 |GS)Z2 (3.17)

where ¢ is the Z, charge of |GS) under PBC, given by (3.15). (3.17) means that the Z! charge
of the ground state with the Z4 twisted boundary condition differs from that with the periodic
boundary condition by two. We thus define the difference between the Z} charge under Z3'-
TBC and that under PBC to be the relative Z. charge, which is two. Relative charge is more
physical since there are ambiguilities in defining the absolute charge as we noticed in the previous
subsection. The nontrivial relative Z3' charge shows that the strong SPTC we constructed in (3.7)
is topologically nontrivial. We also note that the proof applies to all the states.

2ISee also [52] for the system size dependent ground state degeneracy in the (1 + 1)d Luttinger liquids.
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Twist by Z.: We further use the Z. symmetry to twist the boundary condition (labeled by Z%
TBC). The Hamiltonian is

L-1
Z z z xT T, _z zZ_ T _Z
Hegtongsprc = Z; (TZ. 107 T+1 +77 é0 7! ! + o] T+1O'Z+1> - TL_%OLTZ; + Tz_%JLT% +opTiof.
(3.18)
The ground state ]GS)tZ;‘: satisfies
i \GS} P = o? J0i |GS>§ (1<i<L-1), T4 |GS)t = —0j0] ]GS) . (3.19)
We then measure the Z3' charge using U, in (3.6),
L-1 . .
U4 |GS)% = — [ (¢ici.)) oioi IGS) st = — [GS)q! (3.20)

i=1

which means that the ground state carries Z3' charge 1. This also implies that if |GS)§ is an
eigenstate of Ur, then it should carry Z. charge 1 mod 4 or 3 mod 4.

In fact, by exact numerical diagonalization, we find that there are two degenerate ground states
if L is odd and four if L is even. If we organize them into eigenstates of 7Y half of them have
charge 1 mod 4 and the other half have charge 3 mod 4. Since there are different charges, an
arbitrary linear combination of them is generically not an Z} eigenstate. However, as all of the
ground states have Z' charge 1, an arbitrary linear combination of them also has Z5' charge 1.

From (3.15), the Z5' charge of the ground state under PBC is always trivial, independent of the
system size. Moreover, as we find in (3.20) the Z# charge of the ground state under Z! TBC is
one, independent of the system size. We thus found that the relative Z' charge is size-independent,
and it shows that the strong SPTC we constructed in (3.7) is topologically nontrivial. Since (3.19)
also holds for all low energy states with energy £ — Egs < 1, the above proof of nontrivial Z'
charge of the ground state also applies to low energy states.

In summary, we have checked that using either Z2'-TBC or Z!-TBC one can probe the topo-
logical nontriviality of the Z} strong SPTC.

3.2.3 Open Boundary Condition

We proceed to discuss the ground state degeneracy under the OBC. When placing the Z, strong
SPTC on an open chain, as in section 2.3.3, we let the left most spin to be o spin, and right most
spin to be 7 spin. The Hamiltonian is

L

OBC _ § z oY E
HS[rongSPTC - (Ti—éo- T 1 + T 1 ’i +%> U 7— 1O'Z+1 (3.21)

- 2
=2

and the symmetry operator is

L L .
U = o [ exp (%(1 - TZ_;)) . (3.22)
=1 =1
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Figure 5: Z charge of the ground state under PBC, relative Z charge of the ground state
under Z$ TBC, relative Z4 charges of the ground state under Z! TBC, and the gap between
the ground state and first excited state under PBC and two TBC’s. The horizontal axis is the
perturbation strength (3.23). The system size is L = 11.

We find that the set of operators {of, 0777 1 Ur} commute with the Hamiltonian (3.21). The
irreducible representation of the above algebra is two, hence the ground states of (3.21) are at
least two fold degenerate. In appendix D.2, we show that the ground state degeneracy is four for
L € 27 + 1, and two for L € 27Z. We emphasize again that the exact degeneracy can be lifted
exponentially by a generic symmetric perturbation, as in section 2.4.1.

3.3 Stability of Strong SPTC

As discussed in section 2, the Z5' x ZS weak SPTC is unstable upon perturbation towards the
gapped SPT phase. It immediately enters the Z4 x ZS' gapped SPT phase when transverse field A
passes the critical value \. = 1. How about the stability of the Z strong SPTC against perturba-
tion into a gapped phase with a unique ground state?

First of all, since Z£ is non-anomalous, in principle, there is no obstruction to deform the
system to Z, symmetric gapped phase with a unique ground state [53]. Secondly, since there is no
7~ gapped SPT, the only gapped phase with a non-degenerate ground state is the trivially gapped
phase. In this subsection, we will examine the most obvious Z} symmetric perturbation that can
drive the strong SPTC into a trivially gapped phase,

L
0> (o7 7iy) (3.23)
i=1

where h > 0. When h > 1, as Tl?i , anticommutes with the first and second term of the Hamilto-
2
nian (3.7), and o} anticommutes with the third term, only (3.23) survives and it is in the trivially
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L | Z% Charge under PBC | ZL Charge under Z4'-TBC | Z3' Charge under Z!-TBC
4 1.01 1.01 1.01
5 1.30 1.30 0.50
7 0.44 1.32 0.98
8 0.70 0.70 0.70
9 0.86 0.86 0.86
11 0.28 1.12 1.01

Table 3: Lowest h where the symmetry charge of the ground state under three boundary conditions
jumps, for L =4,5,7,8,9,11.
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Figure 6: System size L dependence of the first transition out of the Z! strong SPTC.

gapped phase. This means that there must be at least one phase transition as h increases from zero
where either the Z] charge under PBC, or the relative Z3' charge under Z!-TBC or relative Z%
charge under Z4-TBC jumps. We perform the exact diagonalization numerically, and record the
lowest A where the charges jump in table 3. We also plot the charges and the gaps under various
boundary conditions for L = 11 in figure 5.

From the plots in figure 5, we find that the Z. charge under PBC and both relative charges
under TBC’s are unchanged until / reaches the first critical value A, ~ 0.28. This first transition
is probed by the charge jump under PBC, where the finite size gap closes simultaneously. When h
further passes h., the system goes through a sequence of transitions, some are probed by the Zj'-
TBC, some are probed by the Z.-TBC and the others are probed by PBC. When £ is sufficiently
large (h > 2), the system enters into a trivially gapped phase, and all charges become trivial.

For different system sizes, for instance L = 5 as shown in table 3, the first transition can
be probed by the relative charge under TBC instead. Hence it is important to examine all the
boundary conditions and find the minimal /. where the charge jumps. We plot the minimal A, for

29



each L in figure 6.

The above discussion seems to suggest that strong SPTC is more stable than the weak SPTC.
Let us however make a cautionary remark. As observed in figure 6, the critical perturbation
strength h. depends on the system size L. Logically, there are two possibilities:

1. h. — 0 when L — oo: This would suggest that in the thermodynamic limit, strong SPTC
is unstable upon infinitesimal perturbation (3.23). However, it still requires a phase transi-
tion to go from the strong SPTC and trivially gapped phase, since the symmetry quantum
numbers of the ground state under TBC don’t match between the two.

2. h. converges to a finite value when L. — oco: This would suggest that strong SPTC is
stable against small enough perturbation (3.23).

From figure 6, h. does not monotonically decrease as the system size increases, and the data does
not rule out either possibility. It should be interesting to study the asymptotic behavior of h,. either
numerically or analytically (by understanding the CFT of the Z} strong SPTC) in the future.” It
would also be interesting to study more sophisticated perturbation than (3.23) which can drive the
system to the trivially gapped phase, and discuss the transition for small perturbation strength.

4 Strong and Weak SPTC in the Spin-1 System

In this section, we briefly introduce a more realistic spin-1 model which hosts the strong SPTC
and weak SPTC simultaneously. This model is studied in detail in [54] by one of the authors in
this work (L.L.) together with Yang, Okunishi and Katsura. We briefly review the results there,
and fit them into our framework.

4.1 The Model and Phase Diagram

The Hamiltonian is given by

1
H(Q, /\) = (1 — )\)HBLBQ + (1 + )\)UKTHBLBQU[T(T — % < 0 < arctan 5, (41)

22Since the system without perturbation (3.7) is decorating the Levin-Gu model (whose CFT description is a free
fermion) by an anomalous SPT (which are gapped degrees of freedom), one may attempt to propose that the CFT of
(3.7) in the low energy is simply the free fermion, and identify the perturbation in (3.23) as one of the free fermion
operators. However, this is not entirely correct — the perturbation (3.23) can not be fully described by the free fermion
operators. As the perturbation strength h increases, the gap between the two set of degrees of freedom decreases, as
we explicitly see in Figure 5. Further increasing h above a certain threshold reopens a gap and thus drives the system
to trivially gapped phase. This process involves the dynamics of gapped sector, and hence can not be fully described
merely by the free fermion operators. An analytical understanding of h. should require a CFT description including
the gapped sector from the domain wall decoration, which we leave to the future study.
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Figure 7: The phase diagram of (4.1) when 6=0.

where
HBLBQ = COS 9(5_’; : S_”i+1) + sin 9(5; . §i+1)27 (42)
Ukr = | [ exp(inS;S5). (4.3)
u<v

—

S is spin-1 operator. Uk is a non-local unitary operator implementing the Kennedy-Tasaki (KT)
transformation [40—42]. Under the KT transformation, A <+ —\, and A = 0 is the self-dual point.
For each # and )\, the Hamiltonian (4.1) preserves three global symmetries:

1. Z3: 7 rotation in z direction, generated by [ | ; '™

2. Zj: /2 rotation in y direction, generated by [ [, 'z 5]
3. Z7T: translation symmetry.

The phase diagram of § = 0 is obtained in [54], as shown in figure 7. See [54] for the full 2d
phase diagram in the (A, @) plane.

4.2 7ix 7Y x Z* Strong SPTC

Let us start by discussing the self-dual point A = 0 which we argue to be a strong SPTC. Taking
the low energy limit around this point, some degrees of freedom decouple, and the 3-dimensional
Hilbert space per site in the spin-1 model reduces to 2-dimensional Hilbert space per site, hence
effectively becomes a spin—% model. The spin—% Hamiltonian turns out to be the XXZ model [54]:

L L
HA< 1) ==1+XN))) ool +(1-X))) ool (4.4)
j=1 =1

This model also has three global symmetries:

1. Z%': generated by [, o7
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2. 7Y generated by L io?!
3. Z7T: translation symmetry.

We use the primes to distinguish the symmetries of the spin-1/2 model from those of the spin-1
model. Denote their background fields as A, A] and Ar. The symmetries 7%,7% and ZY C ZT

z

have a mixed anomaly [51,55,56] whose inflow action is

3 Al AT A
wag = €™ Iz AyALAT (4.5)

However, in the entire Hibert space of spin-1 system, the Z3' x Zg/ is realized as Z3 x ZY symmetry
with the following extension:

Y'Z = RUZ'Y, (4.6)

where RY = Hle exp(inSy), Y = Hle exp(imSy/2) and Z' = Hle exp(imS?). exp(irSy)
has eigenvalues {—1, —1,1}. In the low energy limit, the spin—% model only acts nontrivially on
the first two components of the spin-1 Hilbert space under the eigenbasis of exp(mS;-’), hence
exp(imSy) = —1 in the spin- model, Y’, Z' in (4.6) reduces to the standard spin-1 operators
0% = exp(inS}) and ioc? = exp(irS}/2). In terms of the background fields, (4.6) gives us the
restriction

dAy = A, A, mod 2 4.7)

where Ay is 1-cochain for Z} normal subgroup of Z4 symmetry. In summary, we can identify
75 and 7Y in the spin-% theory with the Z3 and Z/Z} in the spin-1 theory respectively.
Besides, since exp(mSj-/) = —1 for each site in the low energy sector, the ground state is
stacked by a weak gapped SPT phase protected by translation and Z$ symmetry [57]. This is
represented by the topological action '™ ay AYAT 3 by (4.7), it depends on the extension to a

3d bulk M3,

i ary A AT _ i [y Ay AL AT (4.8)

This induced anomaly from stacking a weak gapped SPT phase cancels against the mixed anomaly
(4.5) in the low energy. Thus the total spin-1 system is anomaly free. This shows that the spin-1
system is a strong SPTC, protected by the total symmetry Z3 x Z4 x ZT.

The total symmetry can be decomposed into two extensions,

15 ZEXZY X ZY S ZEx ZY x ZF — 7Y — 1, (4.9)
and
1 = ZY = Z5x 7Y x 73 — 72 x Zy — 1. (4.10)

Note that (4.10) is still a nontrivial extension. Comparing with (1.1), we see that the Z3 x Z4 x ZT
strong SPTC can be constructed either by starting with G = Zgl SSB phase or G = Z3 SSB phase,
which exactly correspond to the regimes A > 0 and A < 0 in figure 7. Moreover, from (4.5), the
anomalous symmetries in the low energy are I = Zgl x 73 x ZF. This provides an example
where the SSB symmetry G is strictly smaller than the anomalous symmetry T, which generalizes
the construction in [13].
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4.3 75 x 7Y x Z¥ Weak SPTC

Let us further consider the critical point at A = —\;. The two phases around this critical point are
7% SSB phase and a nontrivial gapped SPT protected by ZZ x Z3 , a.k.a. the Haldane phase. This
fits into the phase diagram of weak SPTC in the left panel of figure 1.

Moreover, at A = — )\, the Hamiltonian (4.1) has a unique ground state under periodic bound-
ary condition for a finite system size but has two ground states under the open boundary condition
(up to exponential splitting). There are also three string order parameters with nonzero expec-
tation value in the Haldane phase O, = (S}, [[,,-;-, exp(i7S})Sh) (u = z,y,2). When the
system is turned into this critical point, only O, remains nonzero but the other two decay to zero
algebraically quickly. All these evidence suggest that the critical point at A\ = —\; is a nontriv-
ial weak SPTC. As the system has total symmetry ZZ x Z4 x ZT, we name the critical point as
7% x 7Y x 7F weak SPTC, although only a subgroup ZZ x Z3 protects the gapped SPT in the
nearby phase.
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A Stability of Boundary Degeneracy of Z; x Z$ Gapped SPT

We find in section 2.3.3 that if we suitably change OBC by adding boundary interactions, the
ground state degeneracy can be lifted from four to two. In this appendix, we would like to argue
that exactly degenerate ground states of the Z5' x Z$ gapped SPT, which is always four, does not
lift under arbitrary symmetric perturbations localized at the boundary.

Let us truncate the system in the same way as section 2.3.3. The o spins are supported on
1t =1,..., L, and the 7 spins are supported on 7 + % = %, e L+ % Let us begin by choosing one
particular OBC such that the Hamiltonian is

L

FJOBC _ P

Heopr = E 0T 10 E T 10 7'+2 (A.1)
1=2

Suppose the boundary perturbation at the left end is supported on 2 sites, 1, % A generic symmet-
ric perturbation takes the form

AHGEE = (o7)" (r5)8 (A2)

where 3, s € {0,1}. ** Let us find the local operators that commute with both Hgp IBC and AHZEEC.

HOBC

Any interaction commuting with Hgyp are composed of the building blocks o7, of ’7'% S Tr +%0L,

Tii1 and all the terms that already exist in (A.1). Using these building blocks, a generic term that
2
might anticommute with the boundary perturbation takes the form
O = (o) (05" (0573 0%) " (T g T, ) (A3)
2 2 2 2
where u; 234 € {0,1}. Requiring [0, AH$p"] = 0, we find that the coefficients need to satisfy
the linear equations

B (ur + us) + ﬁ% (ug +u4) =0 mod 2. (A.4)

Note that 3, s are given, while u’s are variables to be determined. There are 4 variables, and
one equation, hence one is free to choose arbitrary value of uy, us, such that u;’s for ¢ = 3,4 are
constrained by the equation. One solution would be u3 = #3 — uy, uy = 1 — us. On the other
hand, the algebra between the operators {O“1"2"s44 ], Up} are

1o o / ! Lo o !
Ou1u2u3U4 Ou1u2u3u4 — (_ 1>u1u2+u1u2 Ou1u2u3u4 Ou1u2u3u4 ’

UAOU1MQU3U4 — (_1>u20u1u2u3u4UA7 (A.S)
UGOU1U2U3U4 — (_1)U1OU1U2U3U4UG.

The commutation relations only depends on u, us! Hence we are free to choose two commuting
independent operators 0?34 and O°'“3"“4 whose common eigenvalues (a, b) label the ground

BFor perturbations supported on 3 sites, one also allows o7o3. But for 2 site perturbation, Pauli Z operators are
forbidden by the symmetries.
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states |(a, b)), where uz 4 and uj, are arbitrary solutions of (A.4). The four orthogonal ground
states are thus given by

|(CL, b)> ) |(—CL, b)> = Uc |(a’v b)> ) |(CL, _b>> =Ua |(CL, b)> ) |(_a7 _b)> =UaUg |(a’v b)> :
(A.6)
The above discussion can easily be generalized to perturbation supported on arbitrary number
sites. We thus conclude that, for the Z5' x Z$ gapped SPT, the exact four fold ground state
degeneracy on an open chain is stable under boundary perturbation.

B Spectrum of Levin-Gu Model under Different Boundary Con-
ditions

In this appendix, we show the energy spectrum of Levin-Gu model [35] under different boundary
conditions analytically. The analytic results are confirmed by the numerical calculation.

B.1 Exact Solutions under PBC by Jordan-Wigner Transformation

The Hamiltonian of Levin-Gu model is
L

Hig=—)Y (o} —0i 0707,,) (B.1)

i=1
which respects the Z, symmetry generated by

L

L .
im
Ug = Haffnexp (Z(l — Ufaf+1)> : (B.2)
=1 =1

We apply the Jordan-Wigner (JW) transformation which maps spin operator to fermion oeprator
i—1
of = (V) =1-2flf, of =T[=1)" (! +£) (B.3)

j=1

where n; 1= f} fi 1s fermion density operator. Note that when 7 = 1, we simply have o] = flT + fi.
We also assume PBC of the spins, i.e. of' = o}, ;.

Applying the JW transformation to the Levin-Gu model, we can rewrite (B.1) in terms of the
fermions,

L
Hg=—-L+ Z <2fz‘sz‘ + (fzT - fi)(fiTJr? T fi”)) (B4

=1

with boundary condition
L
fir=—(=DFf, F=> n, (B.5)
j=1
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After Fourier transformation and Bogoliubov transformation, this Hamiltonian is diagonal

1
o = e (dhen ) (Pl = (B.6)
k

where wy = 4| cosk|. There are zero modes if k can be either 7 or 2, and whether they are
realizable depends on the boundary condition. It turns out that dependlng on L € 47,47 + 2 or
27 + 1, the boundary condition behaves differently. We discuss them separately.

Casel: L € 4Z

If (—1)F = —1, the fermion chain has PBC. This means k = 2 wherej =0,---,L—1
Therefore, when j = £ and 7 = 22, we have two zero modes at k = 7 and k = 32“ . Since

(—1)F = —1, the ground states are: cﬁ |VAC>PBC and c/ o |VAC)pgc. The ground state energy is

EPSC = —2 | = —dcot(). B.7
Z|cos co (L) (B.7)

If (—1)¥ = 1, the fermion chain has anti-periodic boundary condition (ABC) where k = %

Since L € 47, there is no zero mode. the ground state is [VAC) 5 with ground state energy:

L-1
2j+ 4
E&SC = —2§ . B.
| cos( )\ (D) (B.8)

As E§3C < EEEC, the Levin-Gu model has an unique true ground state which is vacuum of ABC
after Jordan-Wigner transformation.

Case2: L € 47 + 2

If (—1)" = —1, the fermion chain has PBC where k = 221" j=20,---,L—1. Since L =
dm—+2 € 47+ 2, there is no zero mode. The ground states are el ]VAC)PBC, czﬂm ) |VAC) ppc»
4m—+2
cgﬁ(?,m +1) |VAC) pp and cz,r sm2) | VAC)ppc. The ground state energy is
Am—+2 4m+2
EFBC = —2 4 LI, 4sin(2). B.9

If (—1) = 1, the fermion chain has ABC where k = w Since L = 4m + 2 € 47 + 2, there
are two Zero modes at j = m and j = 3m+ 1. The ground states are double degenerate [VAC) ,5-
and cﬂ cl o |VAC) ,pc With energy

2j + )7
EABC — —2]2;|cos %ﬂ:—zﬂm(%). (B.10)
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Since
4
sin(%)

the Levin-Gu model has double degenerate ground states which is vacuum of ABC.

— lein(z

EABC _ EPBC — _cot(Z )=

ot

—4cot(%) (1 - cos(%)) <0 (B.11)

Case3: L c2Z+1

If (—1)¥ = 1, the fermion chains has ABC where k = W and where j = 0,--- , L — 1. Now
since L = 2m + 1 € 27 + 1, there is no zero mode. The ground states is [VAC) , with energy

(25 + 1)m (25 + )m
Eg_l?C_—22|cos o 1) ——4Z|cos o 1 VTR o, (B.12)
If (—1)F = —1, the fermion chain has PBC where k = 2 where j = 0, , L. Now since

L =2m+1 € 27 + 1, there is also no zero mode. Here we note that the energy of |VAC)pp is
the same as (B.12)

ERS =2 Z | cos( =—4 Z | cos(

“ (2m —2j + 1)m (25 + V)7
=—4 —2=—4 ——)| —2. (B.13
Z|cos )| Z|< Sy 2 (B13)
Since there is no zero mode, the ground state energy in (—1)f = —1 sector must be higher than

EVRE which coincides with the ground state energy (B.12) under the ABC and the unique true

ground state is |[VAC) ,pc.
In summary, the ground state degeneracy of the Levin-Gu model under PBC is two if L €
47, + 2, and one otherwise. This proves (3.12).

B.2 Mapping to XX Chain and Charge of Ground State

When the system size is even (L = 2m), there is a unitary transformation [58]

m + z'_ 1_ z
U= Hexp ™y H 7 UQ]HeXp — % 41)( %) (B.14)

which maps the Levin-Gu model to a XX chain with imaginary hopping constant.

m
o z x _ _x T T z z T
UlU' = (035-10%; — 053;05541 — 03, _105; + 03;05,.1)
j—l
= — E w 0+ he (B.15)
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+ o z . x . . . .
where 0" = o7 + io7. The imaginary hopping XX chain can be further mapped to a standard XX

chain by a unitary transformation

L :
i
U, = Hexp(?yag). (B.16)
j=1
The resulting Hamiltonian is
L
UWUHGUU = =) (0505, + 0j07,,) (B.17)
j=1
with boundary condition

Ol4j = iLaj, Ol4j = iLa;“". (B.18)

After taking the continuum limit [59, 60]
a
2

the low energy theory of standard XX chain is the free boson theory and the energy of eigenstate
|m, n) is**

0

(0% +io") x e, 0¥ x —0,0, (B.19)

(Epn — Fog) o %(W + 4n?) (B.20)

where the integer pairs (m, n) are determined by the boundary conditions 0(x + L) = 0(x) 4+ 2mm
and ¢(x + L) = ¢(z) + 27n. By combining (B.17), (B.18) and (B.20), we conclude as follows.

1. When L € 47, the Levin-Gu model is equivalent to the XX chain with PBC where m € Z
and n € Z. Its energy minimizes at a unique value (m,n) = (0,0), and the unique ground
state is |0, 0).

2. When L € 47 + 2, the Levin-Gu model is equivalent to the XX chain with ABC where
m € Z+1/2and n € Z. Its energy minimizes at two distinct values (m,n) = (+3,0), and
there are two degenerate ground states |+3, 0).

This is consistent with the results from JW transformation in (B.1).
Moreover we can obtain the Z, symmetry (B.2) after transformation

|~

L B) .
m x z z x
=1 7

-

After taking the continuum limit (B.19), the Z, symmetry operator in the low energy is given by

U, = iT exp (%/@C(bd:p - %/@Odm) . (B.22)

24Since we are only interested in ground state degeneracy, we don’t consider excitations of the oscillator modes.
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The charge of the state can be found by acting U, on |m, n),

im(n—

Ui |m,n) = i7e™mm) Iy n) (B.23)

Therefore when L € 47, the charge of ground state |0,0) is (—1)%/*. When L € 47 + 2 the
charges of ground states |43, 0) are +(—1)"7". This proves (3.14) for even L.

B.3 Spectrum under Open Boundary Condition

In this section, we use the transformations (B.14) and (B.16) to discuss spectrum of Levin-Gu
model under OBC
L—1
HYEC == " (of — 07 y0707,,) - (B.24)
=2
There are two boundary operators o7 and o7 commuting with Hamiltonian.
When L € 27, the Hamiltonian (B.24) and the boundary operators o7 ; after the transforma-
tion are given by

Ly
2

UWUHECUWUT = = (05, 105, + 05,105,450 + 03,0501 + 03,05;,,) . (B.25)
j=1

U UoiUTUT = 0%, U Ui UTUT = (—1)2H 0%, (B.26)

After taking the continuum limit, the boundary operators are — sin 6(z = 0) and (—1)2+! cos f(z =
L). As the ground state should be the eigenstate of the boundary operators —o7, (—1)%“0;,
—sinf(z = 0) = £1,(—=1)2" cosf(z = L) = +1. They determine the boundary conditions
f(x = 0) = £F and 0(x = L) = Oor 7. The ground state energy under these four boundary
conditions are exactly the same.

When L € 27Z + 1, we only do the transformation (B.14) for even number of sites, say,
i=1,...,L — 1. We still do 7/2 rotation along y direction, i.e. U; in (B.16), on the L-th site. The
Hamiltonian (B.24) and the boundary operators after the transformation are given by

L-1 L-3
T2 T2

UWUHRPCUTU = =) (03, 105, + 05,05,1) + Y (035110510 + 05;05,,1) (B27)
j=1 j=1

U, Uc?UUl = =07, U UGUTUf = 0. (B.28)

After taking the continuum limit, the boundary operators are —sinf(z = 0) and sinf(x = L)
which implies boundary conditions are f(z = 0) = +7 and 6(z = L) = %7, and the signs
are uncorrelated. Unlike even size, the states with different boundary conditions have different

energies,

1
E(;F%;t%) — E(i%;‘:g) 0.8 Z (B.29)

where the signs are correlated. Therefore the true ground states are double degenerate and are in
the sector with boundary conditions 0(z = 0) = 6(z = L) = £7.
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C Equivalence Between Ground sector of Z, SPT criticality
and Levin-Gu model

In this section, we show the ground state of the pre-decorated model (3.8) of Z. strong SPTC is
the same as the Levin-Gu model (3.10) with 7* = 1.
Let us begin with the pre-decorated model (3.8) with PBC, which we reproduce here

L
UDWHSPTCULW = — Z (af — af_lTi%Jlei%UfH + Tl.’i%> ) (C.1

i=1
Since the last term commutes with all other terms, the Hibert space can be divided into sectors
with different 7% configurations. In different sectors, the sign of term o7 _ 0707, is decided by

X X

7177 1. Itis easy to see that the number of terms with 7, 7% , = —1 must be even, since
2 2 2 2
HZ.L:1 T 1 T 1= 1. We prove the splitting of ground state energy of first two terms in (C.1) with

different 7 configuration is order of 1/L or exactly zero. Therefore, when L is large enough, the
state in the ground state sector of (C.1) satisfies 7';’fF 1= 1 for each 1.

When L € 27 + 1, we can prove the first two terms in (C.1) with any 7 configuration can be
mapped to the standard Levin-Gu model by a unitary transformation.

This implies the ground state energy of any 7 configuration is same as that of the standard
Levin-Gu model. To see the unitary transformation, let us assume that the sign of two terms
o; 10707, and 07_j0707,, are both —1 where 1 < i < j < L. There is always a uni-
tary transformation which can cancel these two —1 and preserve sign of other terms: If 7,5 are
both odd (even), the unitary transformation is Hl <ok<j o5 (Hi <ok+1<; 0511)- If 7 1s odd (even)
and j is even (odd), the unitary transformation is [[; o, 05 [Ti<opi1<; 31 (Tl coner o3
[[.<ok41<i O3141) Which can do the job only when L € 27Z + 1. Since the number of terms with
—1 sign is even, we can cancel these —1s step by step and obtain the standard Levin-Gu model at
last.

When L € 27, we apply the unitary transformation (B.14) and (B.16) on the first two terms
and then obtain XX chain with several minus coupling constants :

L

_ 1 z _z 2 xr __x
Hyr 2 = E (H5j4105 0541 + 1454105 07541) (C2)
i=1

where ;! and p? can be 4=1. They are decided by the configuration of 7 but we don’t need to
know the exact relationship. We only use the fact that [ 4+ [" € 27 where [ and [’ are number of —1
in p! and p2.%°

We note that the spectrum of Hamiltonian (C.2) only depends on /,!’ mod 2, and is indepen-
dent of the configuration of u' and 2. The reason is as follows. The sites of —1 in ' can be

Bwe only focus on the “fundamental domain" where 1 < ¢ < 57 < L and do not use periodicity ¢ ~ ¢ + L here.
6] + 1 € 27 can be seen from the transformation (B.14) and (B.16), which maps o3, , — 03, ,03;, 03; —
T xT z xT z xr xT z T z z z
03,1054, —05;_105;05; 1 — 05,05, 1 and —05,05,,1105, 9 — 05;05,.1.
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labeled as 1, ;415 [, iy s1s """ K, jp1 Where ji < jo < --- < ji. After the unitary transformation
f;;z 1 0% Myl s Mjip jioa+1 Will become 1 without changing spectrum. Similar for ;2.

As | + ' are even, there are only two equivalence classes for spectrum: [ = [’ = 0 and [ =
I' = 1. The first case is XX chain with PBC. In the second case, we can choose pi} | = 17 ; = —1
without loss of generality. This is XX chain with the ABC. The splitting between ground state
energy of these two boundary conditions is order of 1/L which completes our proof.

Besides, one can apply this argument to the Z, SPTC with TBC and OBC as well. Gener-
ally, the ground state sector is Hilbert subspace which has eigenvalue 1 of the third term in the

Hamiltonian (3.16), (3.18) and (3.21).

D Edge Degeneracy of SPTC

In section 2.3.3 and 3.2.3, we discussed the degeneracy of weak and strong SPTC under OBC
by studying the dimension of irreducible representation of operators commuting with the Hamil-
tonian. In this appendix, we rederive the degeneracy under OBC in an alternative way. We first
undecorate the domain wall which maps the SPTCs to the Ising and Levin-Gu models under OBC
respectively, and then use the results in section B to rederive the degeneracy.

D.1 [Edge Degeneracy of Z, x Z, Weak SPTC
In section 2.3.3, we studied the Z, x Z, weak SPTC under OBC, with the Hamiltonian (2.20),

L-1

HS%%z—Z(U T+1UZ+1—|—UZOH_1> ZT 107’ Y (D.1)

i=1
After Upyy transformation, the Hamiltonian is given by

L—1 L

Ubw HEUby = = (s +oioin) = Yo (D2)
i=1 i=2

TLal decouples from the Hamiltonian which gives two ground state degeneracy. The o5 commutes

with Hamiltonian which gives two fixed boundary conditions on the left end and the right end is

free boundary condition. Therefore we have four exact ground states. But this is unstable under

symmetric perturbations as noted in section 2.3.3. We can add the boundary term (2.23) which

becomes

—O'ETEJF% (D.3)

after conjugated by Upw, i.e. domain wall undecoration. Now 77 4110 longer decouples, which
lifts degeneracy due to free boundary condition on the right, and ground state degeneracy reduces

to two.
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D.2 Edge Degeneracy of Z, Strong SPTC
In section 3.2.3, we studied the Z, strong SPTC under OBC, with the Hamiltonian (3.21)

L L-1
OBC __ z T _z y x Y zZ_T z
Hgpre = — E (Ti_%UZ- Titl T 7. 10; TZ.JF%) - E OiTip 10041 (D.4)
=1

- 2
=2

After undecorating the domain wall, we obtain the Levin-Gu model under OBC

L-1 L-1

OBC 77t o T T z T T _x z T z T T _x
Upw HgprcUpy = — Tivl = E :(Ui — 01T 10 7}-+%U¢+1) — (07 — ULATL_%ULTLJF%)‘
=1 =2

D.5)

The ground state should be the eigenstate of 7" , (¢ < L + 1) with eigenvalue 1. The low energy
2
effective Hamiltonian is :

L-1

OBC
UDWHSPTCU}BW‘IOW == Z(U;‘E —0;10;07) — (0] — 02710?'2%)- (D.6)
i=2

Since 7/, commute with effective Hamiltonian, we can redefine 77, as 07, and (D.6) becomes
2 2

(B.24) with system size L+1. We thus conclude that when L € 27Z+-1, the ground state degeneracy
is four and when L € 27 the ground state degeneracy is two.

E 7] x Z, Strong SPTC

In this section we discuss another example of strong SPTC which respects the Z] x Z, symmetries.
We will also discuss the PBC, TBC and OBC.

E.1 Lattice Hamiltonian
Let us assign three spin—%s 7,0 and p per unit cell and the Hamiltonian is:
Hyryz, =Y (uffj’;%uj-ﬂ + OHGTY W10y O a;?‘) — YT (B
J J
This Hamiltonian respects the following symmetry:

L+ pf 1—u?

Zy :Up = H( 5 oj + 5 Lioc!)K,  Uf = H,u;” (E.2)
i i

z;: U =[] (E.3)
i

where T stands for time reversal, and K is the complex conjugation.
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To see that (E.1) is a Zy x Z, strong SPTC, we show that it can be obtained by starting with
a 7% x Z3 anomalous critical theory, and decorating the Z3 domain wall by 1d Z; gapped SPT,
where Z} is generated by UZ. Let us apply Upy of 7 and p on both the Hamiltonian (E.1) and the
symmetry operators (E.2) and (E.3).

1+ p .lz 1—%‘17

UpwUrUby = [ ( : ot + o oYK, (E.4)

J
UpwU,Uby = U, (E.5)
UDWHZE{XZQUEW = Z( i1t ajTHla 4t oy T 1a’”,uf JZ+ Z,uf (E.6)
J J
In (E.6), since the last term commutes with all other terms, the energy eigenstates are eigenstates
of u. Similar to the proof in the Z, strong SPTC, we can consider the spectrum of first four terms

in the Hamiltonian (E.6) with different configurations of ;. These four terms can be mapped to
an XX chain by applying the unitary transformations (B.14):

H({4}) Z T T O T T o (E.7)

According to the proof in appendix C, we know the spectrum of the (E.7) is invariant if we flip
even number of p*. Thus, the spectrum of first four terms in (E.6) is that of XX chain with
boundary condition: o7, ; = +o7 and 07 ,; = o7, where we take + sign if there are even or odd
number of ;* = —1 respectively. After taking the continuum limit (B.19), these two boundary
conditions are PBC and ABC for 6 respectively. The splitting between the corresponding ground
state energy is also of order 1/L. Thus in the low energy state sector, one can find that ;§ = 1. The
effective Hamiltonian and symmetry are those of the boundary model of 2+1d Z2 x Z, SPT [58]:

1+T 1T 1 _1T 1
Upw UrUby low = [ [( o Mage T3, (E.8)
J
Upw Hyz 2, Ubyy low = Z( T T 05T 050+ 0f T 07T
J

). (E.9)

Moreover the proof on the equivalence between ground state sector and XX chain can be general-
ized to twisted boundary conditions and open boundary conditions. We conclude that the ground
state sector of different boundary conditions is always Hibert subspace which has eigenvalue 1 of
the last term in the Hamiltonian (E.10) and (E.14).

E.2 Charge of Twisted Boundary Condition

We show that the charge of the ground state under TBC is nontrivial, implying that (E.1) is a
nontrivial SPTC. Let us start by twisting the boundary condition using the Z7 symmetry, which
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we denote as Z3-TBC. The Hamiltonian (E.1) becomes

L L-1
Zy zZ T z Z,, 2 T z z x , T x z X, .z z T, _z
Hyt 7, = Z<Mj7—j+%'uj+1 T O T 1100 T 05 5 + a7) = Ti—lHi Tl — TL—%MJ'T%)
j=1 j=1
The ground state satisfies
sziéjuL;?T;% =1 (0<j<L) leﬁ%,u;jTg =—1. (E.10)
which implies that the ground state has a nontrivial Z4 charge
L
z z; _ Z3
[T 168)5 = —las) - (E11)
j=1
On the other hand, if we twist by Z5 symmetry, the SPT criticality Hamiltonian becomes
2 L-1 L
Hyton = D2 UGT b + O 1 0) + D (0505 + 07 = 72y pis, )
j=1 7j=1
—HLTIMY = OLpLTI0]
It is straightforward to check that |GS) 2 has 7} charge 1:
U, |GS)% = U, iUV, |GS) = —7i [GS) = — IGS)% | (E.13)
2

E.3 Open Boundary Condition

To consider OBC, we truncate the spin chain so that o-spins and p-spins liveon¢ = 1, ..., L, and
T-spins live on i = 2, ..., L + ;. We only keep the terms in (E.1) that are fully supported on the
spin chain. The Hamiltonian is

gTBXCZQ Zluj j—i—lﬂ’]-l—l + o; Iu] ]+1luj+1 '+1 + ZO_;I:“;: + 0-; - ZT 1[L] ]+7. (E14)
=1

There are two boundary operators ,ufT?, and 7/ , commuting with Hamiltonian. Since both of

+
them anticommute with U, there must be at least two exactly degenerate ground states of (E.14).
The exact ground state degeneracy can be determined by undecorating the domain wall, by

applying Upw on (E.14):
UpwH oj%sch U]T)W ZT 1+UJTJ+1O']+1+ZO' +ZT 1unf z 1+01u17'3 Zuf
=2
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and the two boundary operators becomes py and 77 e

2 < j < L. The Hamiltonian in the low energy then 51mp11ﬁes to

In the ground state sector uj = 1 for

L1 L L
UDWHOBXCZQUTW‘IOW = Z( Titl —i—o* 7' 1a]+1 Z Z % % af/ffrg. (E.15)
j=1 j=1 j=2

Under the unitary transformation (B.14), this Hamiltonian is mapped to

L L
0 (U I, ) U = S5 0,5+ 3y + 3 g o
~ ) (E.16)
and the two boundary operators become pif and 77 L The Hamiltonian (E.16) can be understood
as an XX chain on an open chain with size 2L and one spin—— per unit cell.

Similar to the Z, strong SPTC, we can redefine pj as 7{. After taking the continuum limit
(B.19), 0* and 7" are mapped to sin . Thus ui = £1 and 77 j L= +1 correspond to the boundary
conditions sin §(x = 0/L) = £1 which implies 6(z = 0/L) = £7. There is an energy splitting
between the ground states of two boundary conditions

1
-3/-39 ~ PG p/-5-p T (E.17)

In summary, the ground state degeneracy under OBC is two.
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