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We demonstrate the applicability and advantages of Discontinuous Galerkin (DG) schemes in the
context of the Functional Renormalization Group (fRG). We investigate the O(N)-model in the large
N limit. It is shown that the flow equation for the effective potential can be cast into a conservative
form. We discuss results for the Riemann problem, as well as initial conditions leading to a first
and second order phase transition. In particular, we unravel the mechanism underlying first order
phase transitions, based on the formation of a shock in the derivative of the effective potential.

I. INTRODUCTION

The coherent description of strongly correlated quan-
tum systems is one of the great challenges of modern the-
oretical physics. While great progress has been achieved
in the last decades, theories like the Hubbard model or
QCD still provide many challenges to overcome, due to
their strongly correlated nature. Different methods usu-
ally have different strengths and complement each other.
Functional Methods are excellent at uncovering physical
mechanisms and relevant degrees of freedom. In partic-
ular, the Functional Renormalization Group (fRG), in-
troduced in [1–3], provides a very powerful tool to in-
vestigate the phase structure in strongly correlated theo-
ries, ranging from condensed matter systems to quantum
gravity. Truncations of the underlying functional partial
differential equation within this framework usually re-
sult in system of convection-diffusion equations. Despite
their successful investigation in a tremendous amount of
theories, their numerical treatment with non-analytic so-
lutions has so far not been studied in detail. In turns out
that this situation is relevant in the vicinity of a first or-
der phase transition, which demands the usage of suitable
numerical tools. The leading order equations within such
truncations governing the Renormalization Group (RG)
evolution can be cast into a conservative form, which is
very similar, in some aspects, to the equations studied
in hydrodynamics and in general, mathematical physics.
This already suggests the use of suitable numerical tech-
niques, incorporating e.g. the directed flow of informa-
tion.

Equations of this type generally lead to the forma-
tion of a discontinuity in the solution. Therefore, the
applied numerical scheme has to be able to handle non-
analyticities appropriately. A standard and robust choice
is the Finite Volume (FV) scheme, where the equations
are solved in a collection of small volumes. Schemes
of this type are capable of treating discontinuities in a
stable manner. However, they are lacking in accuracy,
since it is challenging to adopt higher order formula-
tions while preserving numerical stability. On the other
hand, Pseudo-Spectral methods are designed to have an
arbitrarily high order accuracy, since the solution is ob-
tained in a functional space spanned by a suitable basis.

However, non-analyticities in the solution usually lead to
spurious oscillations, which may ruin the stability of the
scheme. Discontinuous Galerkin (DG), introduced in [4–
8], schemes utilize the strengths of both methods. The
domain is decomposed in small volumes; therefore, dis-
continuities are well treated, and the solution is approxi-
mated locally within an appropriate basis to achieve high
accuracy. The demand for high accuracy in fRG calcu-
lations, combined with the convection dominated nature
of the equations, makes DG schemes a natural choice.
Here, we present the application of Discontinuous

Galerkin methods to the O(N)-model for N ≫ 1, within
the fRG framework. The paper is organized as follows:
To close the gap between the fRG as well as the DG com-
munity, and languages therein, we introduce both fields
in Section IA and Section IB, respectively. In Section II
the O(N)-model in the large N limit and the applications
of DG methods to the flow equation of the effective po-
tential are discussed. Numerical results are presented in
Section III, starting with the associated Riemann prob-
lem in Section IIIA. Initial conditions quartic in the field,
leading to a second order phase transition, are presented
and compared to results from the method of character-
istics in Section III B. Increasing the order of the poten-
tial in the initial conditions allows for a first order phase
transition, which is discussed in Section III C. Finally,
we close with conclusions and future perspectives in Sec-
tion IV.

A. The Functional Renormalization Group

Here we give a very brief introduction to the fRG,
which should be sufficient to outline the underlying basic
ideas, more complete introductions/reviews can be found
in e.g. [9–11].
The fRG implements the idea of Wilsonian renormal-

ization, while providing a suitable regularization of the
underlying Quantum Field Theory (QFT). This results
in an exact equation (1) for the effective average action
Γk[Φ], where Φ is a vector collecting all quantum fields
of the theory under investigation. The effective average
action Γk[Φ] is the generator of One-Particle Irreducible
(1PI) correlation functions, where all fluctuations up to
momentum scale p2 ∼ k2 have been taken into account.
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FIG. 1: Graphical representation of the Wetterich equa-
tion (1). The line represents the full, regularized propa-
gator Gk, while the crossed circle denotes the regulator
derivative insertion ∂tRk, with respect to the RG-time

t = − ln
(
k
Λ

)
.

In the fRG momentum shells are integrated out around
the momentum scale k and is described by [1],

∂kΓk[Φ] =
1

2
Tr

{(
1

Γ
(2)
k [Φ] +Rk

)
ij

(∂kRk)ij

}
, (1)

where the trace integrates over momenta and internal
spaces, such as color space for a gauge theory. Rk is
the regulator that acts as like a mass and therefore regu-

larizes the effective propagator Gk =
(
Γ
(2)
k [Φ] +Rk

)−1

ij
.

The indices describe the different field and have to be
summed over. Finally, the scale derivative of the regula-
tor ∂kRk acts as a UV-cutoff and renders the theory UV
finite.

In this manner, (1) interpolates between the classical
action Γk[Φ] → S[Φ] for k → ∞ and the full quantum
effective action Γk[Φ] → Γ[Φ] for k → 0, which is the
generating functional for all correlation functions of the
quantum theory and therefore its solution. It is conve-
nient to work with a dimensionless RG-time

t = −ln

(
k

Λ

)
, (2)

which also captures the natural scaling of dimensionless
couplings. In (2) we have included an additional minus
sign compared to most fRG related works, to have a pos-
itive RG-time evolution. The reference scale Λ is also
usually used to as initial scale for (1), where one assumes
that the classical theory describes the underlying theory
sufficiently well, for more details on this and the related
issue of RG consistency, see e.g. [12]. Equation (1), and
related flow equations, are often depicted graphically, the
representation of (1) is shown in Figure 1.

Finding suitable truncations, i.e. an ansatz for the
effective average action Γk[Φ], is not an easy task and
usually one has to follow physical intuition, taking corre-
lations functions of the relevant degrees of freedom into
account. This corresponds to an expansion of correla-
tion functions in field space, as well as momentum space.
Truncations that keep dominantly the field dependence,
while taking the momentum dependence only to a low
order into account, are usually referred to as derivative
expansion, see e.g. [9, 13–32]. On the other hand, trunca-
tions that dominantly resolve the momentum dependence

of correlation functions, but quite often also resolve field
dependencies, are usually referred to as vertex expansion,
see e.g. [33–47]. In practice, often a mixed approach
must be used to achieve quantitative results, while the
qualitative features of the system under investigation can
often be captured by rather simple truncations.
In practice, the partial different equation part of the

resulting equations for a given ansatz are usually non-
linear convection-diffusion equations. During the most
part of the flow, these equations are also convection dom-
inated, since (1) is already designed to be dominated by
a single scale, set by the RG-time t, in all quantities. We
will come back to this point in Section III B 2. Addition-
ally, in our application to the O(N)-model in the large
N limit, this becomes exact, i.e. it the resulting flow
equation is a convection equation, c.f. (6). Moreover,
it can be cast into a conservative form, therefore we will
restrict the introduction to DG methods in some parts to
conservation laws to keep it simple. Having the equation
in a conservative form is particularly convenient, since it
allows us to understand how a jump discontinuity in the
solution forms and propagates.

B. Discontinuous Galerkin methods

We review some basic facts about DG schemes follow-
ing [48], for simplicity we restrict ourselves to one spatial
dimension. For an introduction to foundations of numer-
ical methods for PDEs, that DG schemes build upon, e.g.
Finite Element and Finite Volume Methods, the reader
is referred to [49–51].
The problem is considered over a domain Ω, with

boundary ∂Ω, approximated by a computational domain
Ωh, composed by K non-overlapping elements Dk

Ω ≃ Ωh =

K⋃
k=1

Dk . (3)

The approximate solution is then represented by

u(t, x) ≃ uh(t, x) =

K⊕
k=1

ukh(t, x) . (4)

The local solution is approximated in each element by a
polynomial of degree N

ukh(t, x) =

N+1∑
n=1

ûkn(t)ψn(x) =

N+1∑
i=1

ukh(t, x
k
i )l

k
i (x) , (5)

where the first version is the modal expansion, expressing
the solution in terms of a local polynomial basis ψn(x).
The second approximation in (5) is referred to as nodal
expansion, which introduces N + 1 grid points xki and
lki (x) is the associated Lagrange polynomial. For calcu-
lations, we use the usual Legendre basis in the modal
expansions and the Legendre-Gauss-Lobatto quadrature
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points as grid points in the nodal expansion. A few more
details are given in Appendix A.

The main task at hand is to solve the conservation law,
which turns out to be the relevant form of the equation
in our application, posed as an initial value problem

∂tu+ ∂xf(u) = 0 , (6)

where we assume the flux f to be convex, and it may also
depend on the time t. We now require that the residual
is orthogonal to the basis function locally in each element∫

Dk

(
∂tu

k
h + ∂xf

k
h (u

k
h)
)
ψn dx = 0 , (7)

i.e. the space of test functions for which we require the or-
thogonality of the residual of the equation is chosen to be
the same as the function space of the solution approxima-
tion. Choosing the test function space and the function
space of the solution equal is referred to Galerkin method,
hence the name Discontinuous Galerkin methods. Addi-
tionally, due to the disconnected nature of the approach,
(7) has still more degrees of freedom than equations. To
resolve this, we integrate (7) by parts and obtain the
locally defined weak formulation∫

Dk

( (
∂tu

k
h

)
ψn − fkh (u

k
h)∂xψn

)
dx (8)

= −
∫
∂Dk

f∗ · n̂ ψn dx ,

where we have already replaced the flux on the right-
hand side with an approximation thereof, the numerical
flux f∗, discussed below. In the one dimensional case the
element boundary ∂Dk consists of two points and the
outward pointing normal vector is n̂ = ±1. Integrating
(8) once more by parts we obtain the strong formulation∫

Dk

(
∂tu

k
h + ∂xf

k
h (u

k
h)
)
ψn dx (9)

=

∫
∂Dk

n̂ ·
(
fkh (u

k
h)− f∗

)
ψn dx ,

which we also use throughout this work for all numerical
calculations. It is important to stress that the solution
is only defined element wise. The value of the flux at
the boundary is not necessarily equal to the value of the
flux on a boundary node, but depends on the solution
of all elements sharing that particular intersection, i.e.
two in one dimension. Therefore, the numerical fluxes
are define on each intersection and depend non-trivially
on the value of the approximate solution on all adjacent
elements. Specifying the numerical flux closes the set of
equations. For the case of a scalar conservation law one
can rely on the results for the choice of numerical fluxes
obtained in Finite Volume Methods, where the subject
has been studied extensively, see e.g. [48, 50]. The main
requirements are consistency, i.e. f∗(u, u) = f(u), and
monotonicity. We will refrain here from a more detailed

discussion on numerical fluxes and rather state that we
work with the Local Lax-Friedrichs flux [52] given by

f∗(u−h , u
+
h ) = {{fh(uh)}}+

C

2
[[uh]] , (10)

where an index − denotes the interior information of the
element while an index + denotes the exterior informa-
tion of the element. The brackets denote the average and
jump, respectively

{{u}} =
1

2

(
u− + u+

)
[[u]] = n̂−u− + n̂+u+ . (11)

The constant C in (10) is chosen as the maximal wave
speed in a local manner as

C ≥ max
u±

|∂uf(u)| , (12)

which is related to the fastest propagating mode. To be
more precise, the numerical flux also ensures the conver-
gence to the correct result in situations where disconti-
nuities are present, i.e. it ensures the convergence to the
correct solution. This solution can be interpreted as be-
ing fixed by an entropy condition or as the inviscid limit
of the equation with an infinitesimal viscosity term.
Additionally, boundary conditions have to be specified

for all inflow boundaries, given by n̂ · (∂uf) < 0.
Finally, we would like to note that (9) can be written

as

Mk∂tu
k
h + Skfkh =

[
lk(x)(fkh − f∗)

]xk
r

xk
l

, (13)

resulting in a fully discretized scheme, where we have
introduced the two matrices

Mk
ij =

∫
Dk

lki (x)l
k
j (x) dx

Sk
ij =

∫
Dk

lki (x)∂xl
k
j (x) dx . (14)

In the usual manner, the discretized operators (14) are
calculated for a reference element and the appropriate
mappings to the actual elements invoked.

II. O(N)-MODEL

We consider the O(N) model in d-dimensional Eu-
clidean spacetime. The field can be described by a col-
lection of N scalar fields ϕa(x) with a = 1, · · · , N . The
action for N scalar field is

S =

∫
ddx

{
1

2
(∂µϕa)

2 + V (ρ)

}
, (15)

where V (ρ) is the interacting potential. The O(N) sym-
metry acts on the fields as an orthogonal transformation
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ϕa → Oabϕb. Consequently, the O(N)-invariant terms
are those constructed by the modulus of the fields ϕaϕa.
Given this symmetry, the potential is restricted to de-
pend only on O(N)-invariant terms, namely the combi-
nation ρ = 1

2ϕaϕ
a. This quite simple model can never-

theless describe an immense variety of physical system at
different energy scale, from the Higgs sector of the stan-
dard model to the phase transition in ferromagnets. The
O(N) model is the prototype used to investigate phase
transition in different type of systems. For N = 4 and
d = 4 the model describes the scalar sector of the stan-
dard model (at zero Yukawa couplings). It also captures
the essential features of the chiral phase transition in
QCD in the limit of two flavors. Moving to lower en-
ergy scales, N = 3 corresponds to the Heisenberg model
that describes the phase transition of a ferromagnet. In
condensed matter, i.e. d ≤ 3, there are many other ap-
plications of the O(N) model, as for example N = 2 can
describe the helium superfluid phase transition or N = 1
is the liquid-vapour transition. The motivation for the
wide range of applicability of such a simple model comes
from the universal behavior of physical systems close to
a phase transition; under these circumstances the micro-
scopic details of a system are not important, only a few
characteristics like the underlying symmetry govern the
physics close to the phase transition.

For this reason, the O(N) model is the perfect proto-
type to understand relevant mechanisms that govern a
phase transition.

A. Flow equations

To derive flow equations, we need to truncate the ef-
fective action, i.e. we need to choose an ansatz. Here we
work in a derivative expansion, i.e. we expand the action
in terms of gradients of the field. The zeroth order of the
expansion is usually referred to as Local potential approx-
imation (LPA). For our intended purpose, i.e. N ≫ 1,
this approximation becomes exact [53]. Within LPA the
ansatz for the effective action is given by

Γk[ϕ] =

∫
x

{
1

2
(∂µϕa)

2 + V (t, ρ)

}
, (16)

where V (t, ρ) is the effective potential, which depends
only on the RG-time as well as the O(N) invariant
ρ = 1

2ϕaϕ
a. Having specified the ansatz for the effective

action, we can derive a PDE for the effective potential by
evaluating the right-hand side of (1). This requires the
knowledge of the regularized propagator, or equivalently
the two-point function

Γ
(2)
ab (t, ρ, p) =

[
p2 + V ′(t, ρ)

]
δab + 2ρV ′′(t, ρ)δaNδbN ,

(17)

where we introduced the shorthand notation V ′(t, ρ) =
∂ρV (t, ρ) and specified the field direction where it can
acquire a non-vanishing expectation value. Plugging (17)

into (1), using a regulator that’s diagonal in field space,
and carrying out the trace up to the momentum integral
one obtains

∂tV (t, ρ) =
1

2

∫
q

[(
N − 1

q2 + V ′(t, ρ) +Rk(q)
(18)

+
1

q2 + V ′(t, ρ) + 2ρV ′′(t, ρ) +Rk(q)

)
∂tRk(q)

]
.

As regulator we chose the usual Litim regulator

Rk(p) = (k2 − p2)Θ(k2 − p2) , (19)

which provides the optimal [54] choice in LPA. Addition-
ally, we rescale ρ and V (t, ρ) with factors of 1/N − 1,

ρ→ (N − 1)ρ (20)

V (t, ρ) → (N − 1)V (t, ρ) ,

which allows for easy access to the large N limit. Putting
(18), (19) and (20) together, the integration becomes
trivial and we arrive at the flow equation for the effective
potential

∂tV (t, ρ) =−Ad(Λe
−t)d+2

(
1

(Λe−t)2 + V ′(t, ρ)
(21)

+
1

N − 1

1

(Λe−t)2 + V ′(t, ρ) + 2ρV ′′(t, ρ)

)
,

with Ad = Ωd(2π)
−d/d and Ωd = 2πd/2Γ(d2 )

−1 is the
volume of a d−1 dimensional sphere. Please note that Γ
denotes only in this context the usual Gamma function.
Due to the rescaling (20) it is very easy to go to the limit
N ≫ 1, i.e. we drop the last term in (21)

∂tV (t, ρ) = −Ad
(Λe−t)d+2

(Λe−t)2 + V ′(t, ρ)
. (22)

Before doing calculations we still have to fix the dimen-
sion d as well as the initial UV-scale Λ in (22). For the
dimension we chose d = 3, enabling us to investigate
phase transitions of first and second order. The choice of
the UV-cutoff is completely arbitrary, and therefore we
chose Λ = 1 a.u.. Where a.u. denotes arbitrary unit, and
consequently all dimensionful quantities are rescaled by
appropriate powers of Λ to make them dimensionless in
a practical manner, but not from an RG perspective. To
keep the notation concise, the rescaled quantities are not
denoted in a different manner but are understood dimen-
sionless for the remainder of this work. This theory has
been studied extensively within the fRG, see e.g. [55–57].

B. Numerical treatment

The flow equation (22) is non-linear, since the deriva-
tive of the potential with respect to the field expectation
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value appears on the right-hand side in a non-linear man-
ner. However, for numerical purposes, and to apply DG
schemes, it is preferable to formulate the problem in con-
servative form. As V (t, ρ) is related to the zero-point
energy of the underlying QFT, its equation should not
depend on itself, as it is already the case in (1), and con-
sequently also in (22). As a direct consequence, the first
derivative of the potential is a conserved quantity, in the
sense of (6). Therefore, we introduce the derivative of
the potential as a new variable

u(t, ρ) = ∂ρV (t, ρ) , (23)

as well as the flux

f(t, u) = Ad
(Λe−t)d+2

(Λe−t)2 + u
. (24)

Because all derivatives of a solution of a PDE must also
satisfy the PDE, we can take a derivative of (22) to obtain
an equation for the derivative of the potential u, which
is easily expressed in terms of the flux (24)

∂tu+ ∂ρf(t, u) = 0 . (25)

Therefore, we are left with the task of solving a scalar
conservation law with a flux that depends explicitly on
the RG-time, allowing us to make immediate use of the
spatial discretization presented in Section IB. As bound-
ary condition we need to specify the flux at large field
values, the inflow boundary. However, in this case it is
naturally suppressed for physical initial conditions, c.f.
(24). Therefore, we have fixed the flux at the boundary
to a flux with the initial derivative of the potential. Ad-
ditionally, we have verified explicitly that we obtain nu-
merically equivalent results by setting the flux to zero at
the boundary. Both cases are therefore sufficiently close
to the true boundary conditions, i.e. fixing the flux to the
initial conditions at infinite field values. It is noteworthy
that the flux (24) is convex for all RG-times. Addition-
ally, we would like to note that the weak formulation has
already been used in the context of the fRG in [58].

The time dependence is treated with the method of
lines, i.e. we use the usual machinery of ordinary differen-
tial equations (ODE). Preferably one uses a suitable ex-
plicit scheme in this context as numerical stability can be
ensured, when the size of the time steps respects the as-
sociated Courant–Friedrichs–Lewy (CFL) condition, see
e.g. [48]. The condition states that stability is ensured
as long as the physical light cone of the system is con-
tained in the numerical one, see e.g. [51]. Therefore, it is
related to the propagation of information and is bounded
by the physics of the system, e.g. in relativity it should
always be less than the speed of light. However, the equa-
tion encountered here is quite peculiar from this point of
view, since the characteristic speed of information ∂uf
is not bounded and time dependent. As we will show
in section Section III B 2 in the limit t → ∞ the wave
speed generally diverges exponentially fast for a subdo-
main. Therefore, the time step required by the CFL con-
dition also decreases exponentially fast and becomes in-
feasible in this region. This can be circumvented using

implicit methods, and we resorted to the family of Back-
ward Differentiation Formula (BDF) methods, where we
used SUNDIALS [59] through its Mathematica interface
[60]. Additionally, we have compared our results for all
qualitatively different solutions to a strong stability per-
severing scheme Runge-Kutta scheme [61], with a time
step chosen through the CFL condition.
The numerical schemes outlined here are generally ap-

plicable, in particular also to future applications in rel-
ativistic hydrodynamics [51, 62–66]. Additionally, the
high-performance aspects of DG methods, see e.g. [67–
69], are a promising perspective for complex fRG settings,
where the computational complexity grows fast.

III. RESULTS

A. Riemann problem

The Riemann problem is a well-known problem, usu-
ally studied in fluid dynamics, and is designed to under-
stand how discontinuities arises and evolve. It consists of
finding the solution to the PDE at hand with piecewise
constant initial condition

u(0, ρ) =

{
uL ρ ≤ ξ0
uR ρ > ξ0

. (26)

Where we restrict ourselves to the case uL/R ≥ 0, due to
the possibly divergent flux (24) otherwise. For these ini-
tial conditions, the solution will either develop a shock or
a rarefaction wave, depending on whether the character-
istic curves intersect or not, respectively. For our problem
at hand, i.e. equation (25) together with the flux (24),
information is propagating from large ρ to small ρ, there-
fore we will have a propagating shock when uL > uR, and
consequently a rarefaction wave when uL < uR.

1. Analytic investigation

For the case of a propagating shock the position ξ of
it must satisfy the Rankine-Hugoniot condition, see Ap-
pendix C for a derivation or e.g. [48],

dξ(t)

dt
=

[[f ]]

[[u]]
, (27)

where the difference bracket is defined in (11). Since
the flux (24) does not depend on field space, the solu-
tion will trivially stay piecewise constant. From (27) it
can immediately be seen that the speed of shock is time
dependent and exponentially suppressed for large times,
since it is the case for the flux (24), independent of the
values of uL/R. The differential equation (27) can be
solved analytically, where we employ as initial condition
ξ(t = 0) = ξ0. The solution of (27) together with (24) in
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(a) Derivative of the effective potential u(t, ρ)
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FIG. 2: RG-time evolution of u(t, ρ) for the Riemann problem (32). The dots represent the analytic result of the
position of the shock (28) and the boundaries of the rarefaction wave (31). The numerical results were obtained
with K = 1500 elements and a local accuracy of order N = 3. The results for the derivative of the potential were

post-processed with a minmod limiter.

d dimensions is

ξ(t) = ξ0 +Ad
Λd

d (uR − uL)

[
F̃2 1

(
uR
Λ2

)
− F̃2 1

(
uL
Λ2

)

− e−dt F̃2 1

(
uR
Λ2
e2t
)
+ e−dt F̃2 1

(
uL
Λ2
e2t
)]

, (28)

where F̃2 1 (z) = F2 1 (1,−d
2 , 1 − d

2 ,−z) and F2 1 is the
Gaussian or ordinary hypergeometric function. Specify-
ing to d = 3, Λ = 1 and uR = 0 it is possible to simplify
(28) considerably

ξ(t) = ξ0+
1

6π2

[
e−t − 1 +

√
uL × (29)

×
(
cot−1(

√
uL)− cot−1

(
et
√
uL
) )]

.

We have chosen the specific value of uR = 0, because it
will be the situation encountered later in the case of a
first order phase transition, c.f. Section III C. The form
(29) gives us access to the infinite RG-time limit

ξ∞ ≡ ξ(t→ ∞) = ξ0 +

√
uL cot

−1
(√
uL
)
− 1

6π2
. (30)

Therefore, the shock freezes in at large RG-time, and it
does so exponentially fast at late times. Where the latter
statement can be seen from the expansion of the cot−1

term in (29).
Having discussed the analytic case of a shock wave, we

turn now to the case of a rarefaction wave, i.e. uR > uL.
From the perspective of the characteristic curves, the one
at the left boundary is moving faster than the one on the
right boundary. Compared to the previous case, here the
characteristics aren’t overlapping, but rather there is a

lack of characteristics. Nevertheless, the problem admits
a unique solution, but unfortunately due to the explicit
time dependence of the flux (24), the explicit solution
cannot be constructed in the usual manner. The speed
of the boundary points ξB however is directly related to
the associated characteristics and therefore their explicit
solution is easily constructed

ξB

L/R(t) =ξ
B

0 − AdΛ
d

2

[
e−dt

uL/R + (Λe−t)2
− 1

uL/R + Λ2

− d(Λe−t)d−2

Λd(d− 2)
F2 1

(
1, 1− d

2
, 2− d

2
,−

uL/R

(Λe−t)2

)

+
dΛ−2

d− 2
F2 1

(
1, 1− d

2
, 2− d

2
,−

uL/R

Λ2

)]
.

(31)

Similarly, as for the case of a propagating discontinu-
ity (28), the propagation of the boundaries of the rar-
efaction wave is also exponentially suppressed and only
propagates a finite amount in field space. This can easily
be inferred from (31) for d = 3. Since we did not en-
counter any rarefaction waves during our investigation of
first and second order phase transition, c.f. Section III C
and Section III B, we will refrain from an in-depth dis-
cussion at this point.

2. Numerical investigation

Having discussed the solution of the Riemann problem
at length from an analytic point of view in Section IIIA 1,
we now turn to its numerical investigation. Here it is
convenient to investigate both cases at the same time.
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FIG. 3: RG-time evolution for the second order problem (33) for λ2 = −0.1. The full lines are a semi-analytic result
obtained by the method of characteristics, while the hexagon dots are the respective results obtained by a numerical

simulation with K = 30 elements and a local accuracy of order N = 5.

To be more precise, we chose as initial conditions

u(0, ρ) =


0.1 0 < ρ < 0.02

0 0.02 < ρ < 0.05

0.1 ρ > 0.05

. (32)

The solution to the initial conditions (32) will evolve a
shock in the solution from the jump at ρ = 0.02 and a
rarefaction wave for the jump at ρ = 0.05. Our results are
shown in Figure 2. The derivative of the potential u(t, ρ),
which is resolved numerically, is shown in Figure 2a and
the corresponding effective potential, obtained by inte-
grating, in Figure 2b. We find the expected agreement
with the analytic results of Section IIIA 1. For the cal-
culation we used K = 1500 equally sized elements in the
domain 0 ≤ ρ ≤ 0.08 with a local interpolation order
of N = 3 and evolved up to the RG-time t = 3. This
upper RG-time is already relatively close to the infinite
RG-time limit, i.e. the position of the shock as well as
the rarefaction wave are effectively frozen in. During the
RG-time evolution inevitably spurious Gibbs oscillations
will form. Here we simply chose to keep them at a min-
imal level by using a considerable amount of degrees of
freedom and post-process the results with a simple min-
mod limiter, see e.g. [48], but remnants of the oscillations
can still be seen in Figure 2a. Nevertheless, it should be
noted that the result still maintains it spectral accuracy,
see e.g. [70], i.e. point wise convergence can be recov-
ered from the numerical result. This is done partially by
integrating the result within our polynomial basis, which
removes all oscillations, c.f. Figure 2b, which is obtained
from the result without a limiter. However, for future ap-
plication we will consider the use of a limiter or utilize a
shock capturing scheme, since the numerical approxima-
tion of the derivative of the potential u(t, ρ) must become
positive semidefinite in the large RG-time limit to avoid
potential problems due to an artificially divergent flux.

B. Second order phase transition

We now turn to the initial conditions usually consid-
ered in the context of the O(N)-model, i.e. a quadratic
potential in the classical action

VΛ(ρ) = λ2ρ+
λ4
2
ρ2 . (33)

This is the case usually studied in the literature, and it is
well known that the classical action (33) leads to a second
order phase transition as a function of λ2 for a given
positive λ4. As our main interest is the investigation of a
second order phase transition, we restrict ourselves here
to λ4 = 1 for the remainder of the section. Additionally,
we could always rescale the fields to have λ4 = 1 in this
case, since (33) has only two free parameters. Utilizing
the method of characteristics, for details see Appendix B,
it is easy to see that local minima are shifted during the
flow

ρmin(t) = ρmin(0)− Λ(d−2) Ad

d− 2

(
1− e(d−2)t

)
, (34)

which is independent of the initial conditions. Combin-
ing (34) with the initial potential (33), the flow of the
effective potential inherits a second order phase transi-
tion.
The RG-time evolution of the effective potential for the

case of a finite expectation value, with initial value λ2 =
−0.1, is shown in Figure 3b. To illustrate the behavior
of the individual nodes during the RG-time evolution,
we have used only a moderate number of elements, i.e.
K = 30, and a local approximation order of N = 5.
However, the elements are not equally sized, but here we
already utilize one of the strengths of the DG approach
and half of the elements are equally distributed in 0 ≤
ρ ≤ 0.15 and the other elements are equally distributed
in 0.15 ≤ ρ ≤ 1. This distribution of elements ensures
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FIG. 4: Second order phase transition for the initial con-
ditions (33). The result of the numerical simulation is
shown with green squares, the extrapolated result with
red triangles and the analytic result by a blue line. A de-

tailed description can be found in the main text.
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FIG. 5: Error of the solution with initial condition (33)
(λ2 = −0.1) at RG-time t = 4 computed in the interval
0 ≤ ρ ≤ 1 for different numberK of equally sized elements
and local approximation order N . The symbols show the
result of the numerical simulations, while the lines show
a χ2-fit with respect to (39) with the parameters given in

Table II.

that the outer boundary is at sufficiently large field values
and our boundary conditions are satisfied, as discussed
in Section II B, at very little cost. Please note that in
Figure 3b the potential is shown as a function of the
expectation value of the field ϕ =

√
2ρ. Correspondingly,

the derivative of the potential for the same calculation is
shown in Figure 3a. The maximal RG-time was chosen
to be t = 4, where all qualitative features have emerged,
and only minor quantitative changes occur towards the
asymptotic limit t → ∞. The full effective potential
has to be convex, which translate to a positive definite
derivative of the potential u ≥ 0 in the infinite time limit.
This translates to a flat potential in between the minima,
see Figure 3b. How this is realized in the current equation
under investigation has been discussed at length in the
literature, see e.g. [71–73]. Nevertheless, the numerical
stability in the flat region of the potential is a noteworthy
advantage of the DG approach.

1. Phase structure

We are now in the position to investigate the phase
structure of the theory with classical action (33), where
we set λ4 = 1, as previously discussed. For all calcula-
tions we used K = 120 elements and a local interpolation
of order N = 5. As in the previous case, the elements
are not equally distributed. We used 5 equally spaced
elements in the interval 0 ≤ ρ ≤ 0.001, 15 equally spaced
elements in the interval 0.001 ≤ ρ ≤ 0.01, 50 equally
spaced elements in the interval 0.01 ≤ ρ ≤ 0.15 and 50
equally spaced elements in the interval 0.15 ≤ ρ ≤ 1.
This ensures a good resolution for small field values, and
therefore the relevant region in field space at the second

order phase transition. The solution is computed up to
the RG-time t = 4, however, there is no restriction to
continue the numerical simulation to larger RG-times.
The result of the simulations is shown in Figure 4 with
green squares. The final RG-time was also restricted to
demonstrate the easy extrapolability of the result to its
asymptotic solution at infinite RG-time. For a dimen-
sionful coupling one expects asymptotically an exponen-
tial decay

ρmin(t) = ρfinal

min + b e−ct for t≫ 0 . (35)

We found compatibility of our numerical results for the
position of the minima with (35), which is not very sur-
prising as the analytic solution is given in this form (34).
Nevertheless, the form of (35) is a generic feature and
valid for couplings with a non-trivial RG-time evolution
in this theory, this feature will become relevant in Sec-
tion III C. We have extrapolated the global minimum for
each coupling with eleven equally spaced points in the
RG-time interval 3 ≤ t ≤ 4 according to (35), the result
is shown in Figure 4 with blue triangles.
It is very well known that all observables show a power

law behavior in the vicinity of a second order phase tran-
sition due to the divergent correlation length at the phase
transition. This can be parametrized as

⟨ϕ⟩ =

{
α
∣∣λ2 − λcrit

2

∣∣ν λ2 ≤ λcrit
2

0 λ2 > λcrit
2

, (36)

where α is some prefactor, ν is the critical exponent and
λcrit
2 is the critical coupling. The exact coefficients can

be easily obtained analytically and are given in Table I,
as well as being depicted by a blue line in Figure 4.
Additionally, we have extracted the parameters from

our results, extrapolated to infinite RG-time, using a χ2
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FIG. 6: Properties relating to the approach towards convexity for the initial values (33) with λ2 = −0.1. The
vertical dashed lines represent the position of the global minimum of the potential at the corresponding RG-time.

The numerical simulation was performed with K = 85 elements and a local accuracy of order N = 5.

minimization. The resulting parameters, including their
1σ confidence interval, given in terms of the last two dig-
its, are also shown in Table I. Despite not aiming for
a quantitative resolution of the critical area around the
phase transition, we obtain an accurate estimate for all
parameters. In particular, the error of the critical value
of the coupling is only 1.5 · 10−7, but it should be noted
that the critical properties, i.e. the critical exponent in
this case, can also be obtained from the fixed point equa-
tions, where higher accuracy is easier achievable, see e.g.
[27].

2. Propagation of information and approach to convexity

It is instructive to have a closer look at the spread-
ing of waves, or to put it differently, the propagation of
information during the RG-time evolution. Propagating
modes correspond to eigenvalues of the Jacobian of the
system of conservation laws, which reduces in our case to

Parameter

Prefactor Critical exponent Critical coupling

α ν −λcrit
2

Exact result

√
2 1

2
(6π2)−1

1.4142 0.50000 0.01688686

χ2-fit 1.4161(16) 0.50023(25) 0.01688684(15)

TABLE I: Exact and reconstructed parameters of the
power law behaviour (36) in the vicinity of the second
order phase transition shown in Figure 4. The brackets
indicate the 1σ uncertainty of the χ2-fit and the exact
result is also given with numerical values for better com-

parability.

|∂uf(u)|. The direction is always given to smaller field
values, which naturally corresponds to the evolution di-
rection from an RG perspective. Therefore, this quantity
tells us at least qualitatively something about the local-
ity of the RG-evolution in field space. From a technical
perspective, the wave speed is an important quantity in
our choice of the numerical flux, as it is directly related
to the propagation of discontinuities. Additionally, it is
relevant for the maximally allowed time step in explicit
schemes to guarantee stability, see e.g. [48].

Turning back to our example case at the beginning of
the section, i.e. (33) with λ2 = −0.1 and λ4 = 1, where
we have used a local approximation of order N = 5 with
60 elements in the interval 0 ≤ ρ ≤ 0.15 and 25 elements
in the interval 0.15 ≤ ρ ≤ 1. The locally resolved wave
speed for different RG-times is shown in Figure 6a on a
logarithmic scale. To guide the eye, the current mini-
mum at each RG-time is indicated by a vertical dashed
line. It is apparent that with progressing RG-time the
wave speed splits into two domains, depending on the
field value. For field values larger than the minimum,
the wave speed is decreasing rapidly, i.e. it is decreasing
exponentially fast. On the other hand, for field values
smaller than the minimum, i.e. in the flat region of the
potential, the wave speed is growing exponentially. A
direct consequence is that explicit time steppers work
extremely well in the non-flat region, because the time
steps can be chosen increasingly larger as RG-time pro-
gresses, while in the flat region the time steps would be
exponentially smaller and implicit methods are preferred.
This comes with implications for Taylor series methods,
which are a popular choice in the fRG community, see
e.g. [21, 23, 25], i.e. it provides an a posteriori justifi-
cation for its use away from the flat region, due to the
exponentially increasing locality of the solution. How-
ever, this should not be used as an a priori justification
of its use. Similarly, Finite Difference based methods,
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see e.g. [9, 13, 14, 16–19, 26], will benefit from taking
these considerations, especially the direction of the wave
propagation, into account. Additionally, we would like to
note that this analysis does not replace a proper stabil-
ity analysis for these approaches, but simply provides an
intuitive understanding with non-binding consequences.

As outlined previously, the separation of the solution
at infinite RG-time into two regimes is closely linked to
the flatness of the potential, i.e. its convexity. This also
implies the vanishing of higher order couplings in the flat
region. Therefore, the curvature

κ(ρ) = 2ρ V ′′(ρ) = 2ρ u′(ρ) (37)

provides a good measure for the flatness of the potential.
The full curvature mass of the radial mode in O(N)-
models is given by

m2
curv = u(ρ) + κ(ρ) , (38)

more details can be found in Section II. Therefore, a van-
ishing curvature (37) implies a vanishing curvature mass
(38) of the radial mode in the flat region. The result for
the curvature, in the same setting as the wave speed, is
shown in Figure 6b. As for the wave speed, the minima
at the shown RG-times are indicated by vertical dashed
lines to guide the eye. The approach towards zero of
the curvature in the flat region is clearly visible, simi-
larly to the jump discontinuity that necessarily forms at
the minimum. However, this discontinuity forms, just
like the non-analytic point in the derivative of the po-
tential itself, only in the asymptotic limit. Additionally,
these findings are promising for future calculations in the
O(N)-model at finite N, since the calculation of the cur-
vature does not introduce new problems and is the only
new ingredient entering at finite N . Within this setting
we also do not expect a loss of accuracy despite the in-
creasingly non-analytic behavior of the derivative. This
is a clear advantage over pseudo-spectral methods, which
are also designed to achieve high accuracy, put forward
in [27–29]. They perform extremely well, if the solution
is sufficiently smooth, however this is inherently not the
case near phase transitions in the fRG. Additionally, it
is worthwhile noting that these properties make pseudo-
spectral approximation a good choice for the approxima-
tion of the momentum dependence of correlation function
in Euclidean spacetime, see e.g. [74, 75]

3. Convergence

Due to the semi-analytic nature of the solution using
the method of characteristics, c.f. Appendix B, we can
benchmark the accuracy of our results obtained with the
DG method. As with previous studies, we use the ini-
tial conditions (33) together with λ2 = −0.1 and resolve
the derivative of the effective potential over the inter-
val 0 ≤ ρ ≤ 1. The results are then compared at the
RG-time t = 4. Hereby, we assume the result obtained

via the method of characteristics to be the exact solu-
tion. Please note that this makes such a comparison for
the situation with shocks considerably more complicated,
which is why we refrain from considering it here. As ex-
plained in Section II B, we use an implicit solver for the
time evolution. To avoid artificial enhancement of errors
due to uncertainties thereof, we set the adaptive accuracy
requirements close to machine precision. The results for
the broken L2-norm between the two solutions for differ-
ent orders of the local approximation order as a function
of the number of elements, which are all equal in size,
are shown in Figure 5. For our highest order of approxi-
mation N = 5 the results are only included for K ≤ 500
elements, because the difference between the two results
is at the level of the machine precision for more elements
and a comparison is no longer insightful. The results are
compatible with the expected power law like behavior for
the convergence when increasing the number of elements
K and an exponential convergence when increasing the
local approximation order N . To be more precise, we
observe a behavior that can be parametrized as

log10 ||uh − uexact||Ω,h =(a1 + a2N) (39)

− (b1 + b2N) log10(K) .

In (39) we have temporarily restored the index h again to
denote the approximate solution. A χ2-fit to (39) is also
shown in Figure 5 as solid lines, the parameters obtained
are given in Table II. In (39) the norm on the left-hand
side denotes the broken L2-norm, i.e. the exact solution
is projected to the same polynomial space as the numeri-
cal solution and the norm is then calculated elementwise
therein and summed up. This result demonstrates the
impressive convergence properties of the scheme.

C. First order phase transition

We now turn to the investigation of first order phase
transitions, which have been investigated within the fRG
in e.g. [9, 24, 58, 76–80]. Including a (ϕaϕ

a)3 coupling
into the classical action enables us to access a first order
phase transition, see e.g. [56], which translates to the
initial conditions

VΛ(ρ) = λ2ρ+
λ4
2
ρ2 +

λ6
3
ρ3 . (40)

Similarly, to the second order case, c.f. Section III B,
we fix all but one parameter and investigate the phase

Parameter

a1 a2 b1 b2

χ2-fit -6.0(10) 2.22(31) 1.36(40) 1.34(12)

TABLE II: Parameters obtained from a χ2-fit to (39) of
the convergence behavior shown in Figure 5.
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(a) Wider parameter range.
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(b) Vicinity around the phase transition.

FIG. 7: First order phase transition for the initial conditions (40). An extensive description can be found in the main
text. The numerical simulation was performed with K = 200 elements and a local accuracy of order N = 5.

structure with respect to that parameter. To achieve a
first order phase transition λ2 and λ6 need to be posi-
tive, while λ4 needs to be negative. The initial values
are chosen to produce similar scales in the result com-
pared to the results obtained in Section III B. Therefore,
we keep λ4 variable and set λ2 = 0.0024, λ6 = 1 to fixed
values. Throughout this section we use K = 200 ele-
ments with a local approximation order of N = 5, with
150 elements distributed equally in 0 ≤ ρ ≤ 0.15 and 50
elements distributed equally in 0.15 ≤ ρ ≤ 1. The so-
lution is obtained up to the RG-time t = 6, which was
sufficiently large for all numerical simulations, i.e. the
asymptotic result at infinite RG-time was obtainable via
extrapolation if necessary.

A crucial difference between the initial conditions (33)
and (40) concerns the monotonicity of the derivative of
the effective potential at the initial scale, i.e. u(0, ρ).
While for the second order phase transition u(0, ρ) was
monotonically increasing as a function of ρ, in the case
considered now, i.e. (40), it is not. To be more precise,
it possesses a minimum for certain values of λ4 < 0 and
therefore a jump discontinuity will form as RG-time pro-
gresses. The underlying mechanism can easily be under-
stood from the perspective of the characteristic velocity
∂uf(t, u), more details can be found in Section IIIA and
Appendix C. However, it is not clear whether the discon-
tinuity forms in the physical relevant regime ρ ∈ [0,∞).
Additionally, the results from Section IIIA let us sus-
pect that the shock will freeze in towards asymptotic
RG-times. It turns out that this indeed happens and
is the relevant mechanism behind the phase transition.

1. Phase structure I

We investigate the phase structure for the initial con-
ditions (40), with the specific setup discussed around the
equation. The resulting phase structure is shown in Fig-

ure 7, where a wider range for the external parameter
λ4 is shown in Figure 7a and the vicinity around the
phase transition is shown in Figure 7b. All quantities in
the visualization of the phase structure are extrapolated
to t → ∞, the minima according to (35) and the final
position of a possible jump discontinuity, i.e. shocks, is
described later in detail. The outer minimum is depicted
with green squares and the disappearance/jump to zero
of it reflects the disappearance of the minimum in the ini-
tial conditions. However, the global minimum, depicted
with red triangles, of the effective potential is either at
ρ = 0 or agrees with the non-trivial, outer minimum
at ρ ≥ 0. A clear jump is visible where the potential
switches between the symmetric and broken phase and
the position is shown with a vertical orange line.

Before continuing the discussion of the phase structure
and, in particular, the discussion of Figure 7b, it is in-
structive to look at the potential and its derivative at
the two values of the coupling λ4 which are closest to the
phase transition, i.e. once in the broken phase and once
in the symmetric phase, shown in Figure 8. Hereby we
note that the results shown for the RG-time t = 6 are al-
ready sufficiently close to the infinite RG-time limit and
for all discussions that follow we can treat them effec-
tively as such. Focusing on the derivative of the effective
potential u(t, ρ), in both cases the appearance of a jump
discontinuity is clearly visible. For a better depiction
we have processed the result using a WENO limiter, fol-
lowing [81], removing the Gibbs oscillations around the
shock. This is the origin of the flat looking pieces in the
solution at the positions of shocks. However, the poten-
tial is obtained, as in Section IIIA, from the original data
of the result. The two evolutions of the derivative of the
potential, depicted in Figure 8c and Figure 8d, show a
qualitative difference. In Figure 8c the position of the
shock freezes and consequently the global minimum of
the effective potential stays at ρ = 0 for all RG-times, see
Figure 8a. This is in contradiction to the case depicted
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(a) Potential in the symmetric phase.
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(b) Potential in the broken phase.
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(c) Derivative of the potential in the symmetric phase.

t = 0.00 t = 1.00 t = 2.00

t = 4.40 t = 4.70 t = 6.00

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.1

0.2

0.3

0.4

Field value ρ

10
2
*
D
er
va
tiv
e
of
po
te
nt
ia
lu

(d) Derivative of the potential in the broken phase.

FIG. 8: The effective potential V (t, ρ) and its derivative u(t, ρ) for two different values of the coupling λ4 close to the
first order phase transition shown in Figure 7. The numerical simulation was performed with K = 200 elements and
a local accuracy of order N = 5. The results for the derivative of the potential were post-processed with a WENO

limiter.

in Figure 8d, here the position of the shock moves to
unphysical values and effectively flattens out the poten-
tial for all field values smaller than the outer minimum,
making it the global minimum, depicted in Figure 8b.

2. Mechanism for a first order phase transition

The analysis above uncovers a potential mechanism
for first order phase transitions: In the vicinity of the
phase transition a cusp forms in the effective potential,
or equivalently a shock in the derivative of the potential,
during the RG-time evolution between two minima. The
shock now propagates towards smaller field values and
if the inner minimum was the preferred one before, the
phase transition happens if the shock hits the inner min-
imum. The final position of the shock ξ(t → ∞) as a
function of some external parameter, e.g. a coupling in
the classical potential, temperature or chemical potential,
can now be used to describe the phase transition equiva-
lently. The propagation speed of the shock is dominantly

driven by the values of the derivative of the potential at
larger field values, c.f. (27). However, at roughly the
same RG-time when the shock forms, the potential also
starts to flatten, starting from the outer minimum, i.e.
the potential approaches convexity. This process is trig-
gered locally from the existence of a zero crossing in the
derivative of the potential, and therefore independent of
the global structure of the potential. Consequently, the
propagation of the shock is dominantly driven by auxil-
iary, massless modes of the flat region and becomes at
least partially insensitive to the details of the theory.
This mechanism suggests a power law like behavior of
the final position of the shock in the vicinity of the phase
transition, which we will confirm for our current setting.

In our present case of the theory in the large N limit,
the formation of shock is guaranteed due to conservative
form equation (25), combined with the non-monotonicity
of the initial state. Therefore, the inner minimum is at
ρ = 0 and the condition for the phase transition turn into
ξ(t→ ∞) = 0.

Obviously, one should be cautious whether this mecha-
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FIG. 9: Positions of the shocks for the examples shown in Figure 8 together with the fit of the asymptotic behavior
for the case shown Figure 8c.

nism generalizes to first order phase transitions in generic
theories. We will comment on this at the end of this sec-
tion, after finishing the discussion of the phase structure
in our current setting. However, before continuing we
would like to note that the propagation of a discontinu-
ity in the vicinity of a first order phase transition has
also been seen in [58], where the method of characteris-
tics was used to resolve the phase structure of an NJL
type model.

3. Phase structure II

Having identified the relevant mechanism for the phase
transition shown in Figure 7, we can turn back to its de-
scription, including the final position of the shock, which
are displayed with purple pentagons. It is now obvious
that we get a good description of the phase structure
in terms of the final position of the shock. To obtain
the position of the discontinuity at infinite RG-time we
follow the logic presented in Section III B, i.e. at large
RG-times we expect an exponential decay

ξ(t) = ξfinal + aξe
−bξt for t≫ 0 . (41)

This expectation is also supported by the asymptotic be-
havior extracted analytically from the Riemann problem,
c.f. Section IIIA 1. To apply (41) we have extracted the
position of the shock at 11 equally spaced points between
the RG-times t = 5 and t = 6 using an appropriate con-
centration kernel, c.f. Appendix C, and then extracted
the relevant information using a χ2-fit. The trajectories
of the shocks from the evolutions shown in Figure 8 are
depicted in Figure 9, which justifies the use of (41). Ad-
ditionally, it should be noted that the trajectory with
a finite final position of the shock shown in Figure 9 is
the most extreme cases present, i.e. the exponential de-
cay started at earlier RG-times for other values of the
coupling with ξfinal > 0.
Following the discussion presented in Section III C 2,

we expect a power law like behavior for the final position

of the shock as a function of the coupling

ξfinal =

{
β
∣∣λ4 − λcrit

4

∣∣ζ λ4 ≥ λcrit
4

0 λ4 < λcrit
4

. (42)

Indeed, we find a very good agreement between the
final positions of the shock and (42), the coefficients ob-
tained from a χ2-fit are collected in Table III. As for the
second order phase transition, we obtain a very accurate
estimate for the critical coupling, also shown with an or-
ange circle in Figure 7. The critical exponent comes out
at ζ = 0.683 ± 0.013 and it will be very interesting to
investigate whether this value can be obtained from an
associated fixed point potential, which necessarily is ei-
ther a partial fixed point or discontinuous, for a full study
of the fixed points within this theory looking for contin-
uous solutions see [82, 83]. Non-analytic fixed point po-
tentials have been found very recently [84] and it will be
very interesting to explore the relation of our results to
the ones presented therein, since the results share some
qualitative features.

4. Generalization of the mechanism to other theories

It seems rather plausible that the mechanism outlined
in Section III C 2 persists in general, at least to some
extent. The first obvious generalization is to go beyond
large N and look at the flow equation (21) for finite N .

Parameter

Prefactor Critical exponent Critical coupling

β ζ −λcrit
4

χ2-fit 6.57(45) 0.683(13) 0.104438(28)

TABLE III: Parameters obtained from a χ2-fit to (42) of
the positions of the shocks depicted in Figure 7.
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Staying close to the conservative formulation employed
so far, c.f. (25), we can express the flux for finite N by
inclusion of a diffusion term

f(t, u, κ) = fConv(t, u) + fDiff(t, u, κ) , (43)

where the diffusion term depends additionally on the cur-
vature defined in (37). DG schemes for diffusion terms
are a well studied subject, see e.g. [85–87]. The first
term on the right-hand side in (43) is the flux used in the
large N limit (24) and the additional term contains the
contribution of the radial mode

fDiff(t, u, κ) = − Ad

N − 1

(Λe−t)d+2

(Λe−t)2 + u+ κ
. (44)

From a practical perspective (44) is a diffusion term,
hence it has the possibility to smear out potential shocks.
Away from any potential shocks this equation is still con-
vection dominated, since the curvature appearing in the
denominator is comparatively small. However, at field
values around the shock it might give a sizeable contri-
bution. However, in close proximity of the phase tran-
sition, i.e. when the shock, or a slightly smeared shock,
approaches zero, it becomes important that (44) only de-
pends on the curvature, which vanishes exactly at vanish-
ing field value. Due to this reason, we expect a shock to
be present in the direct vicinity of the phase transition.
This marks a special regime at a first order phase tran-
sition, like the scaling regime at a second order phase
transition. How this plays out in detail, especially in
combination with the approach to convexity, will be ex-
tremely interesting to pursue in the near future. Particu-
larly, the Péclet number, i.e. the convection over diffusion
rate, might be a good start to quantify the competition
between the different terms in (44).

Similarly, the presence of Fermions amounts to an ad-
ditional source term in (43) in LPA. This potentially
spoils the outlined mechanism in a trivial manner within
this truncation. In this situation the phase transition is
not fluctuation induced, but simply present due to the
mean-field fermionic determinant, and an investigation
should involve at least a field dependent Yukawa cou-
pling to have the field dependent masses of fermions and
bosons on the same footing. The field dependence of the
Yukawa coupling in such theories was partially investi-
gated in [88–92].

Additionally, whether this mechanism can be used to
extract properties of a first order phase transitions such
as the nucleation rate in a convenient manner will be
interesting to pursue.

IV. CONCLUSION AND OUTLOOK

In this work, we have presented the applicability and
advantages of applying Discontinuous Galerkin meth-
ods to the flow equations arising within the Functional
Renormalization Group. As application, we considered

the O(N)-model in the large N limit in the Local Po-
tential Approximation, where the flow equation of the
effective potential can be cast into a conservative form,
Section II B, which allows for a straightforward applica-
tion of DG schemes. We considered the associated Rie-
mann problem, as well as initial conditions that lead to
a first or second order phase transition. The Riemann
problem is considered in Section IIIA. It mainly led to
the conclusion that shocks propagate only a finite range
in field space. Therefore, they are still present in the
solution at asymptotically large RG-times.
The case of a second order phase transition is presented

in Section III B. We reproduced well known results from
the literature and demonstrated in addition the expected
convergence behavior of the scheme. The underlying sta-
bility and convergence properties also hold in the flat
region of the potential, which contrasts with methods
that rely on the smoothness of the solution, c.f. Sec-
tion III B 2.
Initial conditions that lead to a first order phase tran-

sition are studied in Section III C. We discovered the for-
mation of a shock in the derivative of the potential, lead-
ing to the mechanism behind first order phase transitions,
explained in Section III C 2. This leads to an additional
description of the phase structure in terms of the shock.
In the vicinity of the phase transition, the position of the
shock shows a power law behavior, like the order param-
eter in a second order phase transition.
These very promising results are the starting point for

exciting follow-up projects. One part consists of inves-
tigating the mechanism for first order phase transitions
further and establishing it in general. This also includes
making a connection to the usual observables considered
at such a phase transition. On the other hand, apply-
ing DG schemes to the PDE part of fRG equations is a
promising route for reliable, precision calculations. Our
results represent a very important step towards under-
standing the phase structure of strongly correlated sys-
tems such as QCD or the Hubbard model.
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Appendix A: Local approximation

In Section IB we have introduced a dual expansion
basis: ψn(x) for the modes and lki (x) for the nodes, c.f.
(5). The simplest, practical choice for the mode basis
ψn(x) is the set of orthogonal Legendre polynomials Pn,
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which are part of the large family of Jacobi polynomials
P (α,β).
The Jacobi polynomials P

(α,β)
n (x) are the solution to

the singular Sturm-Liouville problem

d

dx

[
(1− x2)ω(x)

d

dx
P (α,β)
n (x)

]
= −λnω(x)P (α,β)

n (x) ,

(A1)

defined on the interval [−1, 1]. In (A1) ω(x) = (1 −
x)α(1 + x)β is the weight function and λn = n(n + α +
β+1) are the eigenvalues. The Jacobi polynomials satisfy
the weighted orthonormality relation∫ 1

−1

dx ω(x)P (α,β)
n (x)P (α,β)

m = δnm . (A2)

To construct the polynomials, it is convenient to use their
recurrence relation, see e.g. [48], which relates the higher
order Pn to the lower ones,

xP (α,β)
n (x) = anP

(α,β)
n−1 (x) + bnP

(α,β)
n (x) + an+1P

(α,β)
n−1 (x) ,

(A3)

where the coefficients are defined as

an =
2

2n+ α+ β

√
n(n+ α+ β)(n+ α)(n+ β)

(2n+ α+ β − 1)(2n+ α+ β + 1)

bn = − α2 − β2

(2n+ α+ β)(2n+ α+ β + 2)
. (A4)

The recurrence relation can be used once the initial poly-
nomials are defined,

P
(α,β)
0 (x) =

√
2−α−β−1

Γ(α+ β + 2)

Γ(α+ 1)(β + 1)

P
(α,β)
1 (x) =

1

2
P

(α,β)
0 (x)

√
α+ β + 3

(α+ 1)(β + 1)

[(α+ β + 2)x+ (α− β)] . (A5)

Derivatives can be computed from the lower order poly-
nomials using the important relation

d

dx
P (α,β)
n (x) =

√
n(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x). (A6)

The Legendre polynomials are the special case α = β =

0, i.e. Pn(x) = P
(0,0)
n and their properties and relations

are easily obtained from the ones for the Jacobi polyno-
mial.

In our implementation of the DG discretization
method, we used the following convention for ψn(x),

ψn(x) =

√
2n− 1

2
Pn−1(x) . (A7)

The nodal basis functions are chosen as the standard
Lagrange interpolating polynomials,

li(x) =
∏

j=1 j ̸=i

x− xj
xj − xi

, (A8)

which are well define and unique if the nodes xi are all
distinct. It is advantageous to select the nodes such that
the transformation matrix between the modal representa-
tion ûn and the nodal representation u(xi) is well condi-
tioned. It can be shown, see e.g. [48], that the Legendre-
Gauss-Lobatto (LGL) points, defined as the N zeros of
the equation

(1− x2)P ′
N (x) = 0 , (A9)

amount to an optimal choice.

Appendix B: Method of characteristics

In this appendix, we present the analytic solution of
Equation (25). The PDE is a scalar quasilinear partial
differential equation in conservative form, therefore an
implicit solution can be obtained using the method of
characteristics [93]. The equation in conservative form is

∂tu(t, ρ) + ∂ρ

(
Ad

(Λe−t)d+2

(Λe−t)2 + u(t, ρ)

)
= 0 , (B1)

and can be express in a quasilinear form performing the
derivative on the flux,

∂tu(t, ρ)−Ad
(Λe−t)d+2

[(Λe−t)2 + u(t, ρ)]
2 ∂ρu(t, ρ) = 0 , (B2)

combined with the initial condition

u(0, ρ) = u0(ρ) . (B3)

The solution can be found by introducing the character-
istic curves that are the solution of

dt(s)

ds
= 1

dρ(s)

ds
= −Ad

(Λe−t(s))d+2[
(Λe−t(s))2 + u(s)

]2 (B4)

du(s)

ds
= 0 ,

combined with the initial conditions

t(0) = 0

ρ(0) = ρ0 (B5)

u(0) = u0(ρ0) .

This system of ordinary differential equation is equiva-
lent to the original partial differential equation (B2) if
we define

u(s) = u(t(s), ρ(s)) . (B6)
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The system (B4) can easily be integrated, noting that
u(s) is constant along the characteristic and t(s) is the
curve parameter. The result can be written as

u(s) = u0(ρ0) and t(s) = s = t (B7)

and

ρ(t) = ρ0 −Ad

∫ t

0

(Λe−s)d+2

[(Λe−s)2 + u0(ρ0)]
2 ds . (B8)

The integral can be carried out, leading to

ρ(t) = ρ0 −
AdΛ

d

2

[
e−dt

u0(ρ0) + (Λe−t)2
− 1

u0(ρ0) + Λ2

− d(Λe−t)d−2

(d− 2)Λd
F2 1

(
1,

2− d

2
,
4− d

2
,− u0(ρ0)

(Λe−t)2

)

+
dΛ−2

d− 2
F2 1

(
1,

2− d

2
,
4− d

2
,−u0(ρ0)

Λ2

)]
, (B9)

where F2 1 is the Gaussian or ordinary hypergeometric
function, see e.g. [94]. The equation (B9) is a transcen-
dental equation between ρ0, the position at the initial
RG-time where u has the value u0(ρ0) and ρ, which is
the position at RG-time t where u has the same value.
Formally this can now be inverted, obtaining

ρ0 = ρ0(t, ρ) , (B10)

giving the initial position of the value uΛ(ρΛ) as a func-
tion of the final one ρ(t). The solution can be constructed
using this inverse function as

u(t, ρ) = u0(ρ0(t, ρ)) . (B11)

Practically, except for very simple cases, the solution of
the transcendental equation (B9) cannot be achieved an-
alytically. Therefore, the inversion is performed numeri-
cally.

The equation (B9) can be used to find a simple ex-
pression for the RG-time evolution of the minima of the
potential, indeed if one use that u0(ρ0) = 0 and hence
F2 1 = 1, we obtain

ρmin(t) = ρmin(0)−
AdΛ

d−2

d− 2

[
1− e−(d−2)t

]
. (B12)

Appendix C: Shock propagation and detection

1. Position of the shock

Consider an interval [ρL, ρR] that contains the position
of the discontinuity at a given RG-time t, namely ρL ≤
ξ(t) ≤ ρR. Additionally, the interval must be chosen
small enough that it only contains a single discontinuity.
If this is not the case, it can always be split into multiple

intervals. The integral in ρ − space of our equation of
interest (25) on this interval is

d

dt

∫ ρR

ρL

dρ u(ρ, t)−
∫ ρR

ρL

dρ ∂ρf(t, u(ρ)) = 0 . (C1)

Splitting the integral around the discontinuity results in

d

dt

∫ ξ(t)

ρL

dρ u(ρ, t) +
d

dt

∫ ρR

ξ(t)

dρ u(ρ, t)

=f(t, u(t, ρR))− f(t, u(t, ρL)) . (C2)

The RG-time derivative can be done explicitly and leads
to

dξ(t)

dt
(u(ρR, t)− u(ρL, t))− f(t, u(t, ρR)) + f(t, u(t, ρL))

=−
∫ ρR

ξ(t)

dρ ∂tu(ρ, t)−
∫ ξ(t)

ρL

dρ ∂tu(ρ, t) . (C3)

In the limit ρL → ξ−(t) and ρR → ξ+(t) the right-hand
side vanishes, and we obtain the equation

dξ(t)

dt
(uR(t)− uL(t))− fR(t) + fL(t) = 0 , (C4)

where we have used the definitions

uR(t) = lim
ρ→ξ+(t)

u(ρ, t)

fR(t) = lim
ρ→ξ+(t)

f(t, u(ρ, t)) (C5)

uL(t) = lim
ρ→ξ−(t)

u(ρ, t)

fL(t) = lim
ρ→ξ−(t)

f(t, u(ρ, t)) .

The equation for the position of the discontinuity is de-
scribed by

dξ(t)

dt
=
fR(t)− fL(t)

uR(t)− uL(t)
=

[[f ]]

[[u]]
, (C6)

which can be integrated to obtain the RG-time evolution
of the shock.

2. Shock detection

To determine the position of the jump discontinuities
in our numerical approximation uh(t, ρ) we follow the
procedure outlined in [95, 96], i.e. the method of concen-
tration.
We briefly summarize here how this procedure is prac-

tically applied. While shock capturing schemes are very
interesting by itself and are a promising future direction,
we restrict ourselves here to the extraction of the posi-
tion of discontinuities during post-processing. Disconti-
nuities, i.e. their position and height can be extracted
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by folding the function f(x), which is assumed to be
piecewise continuous, with a suitable concentration ker-
nel, which acts as

Kε ∗ f(x) = [[f ]](x) +O(ε) . (C7)

To define the concentration kernel from a numerical point
of view, we have to understand how a discontinuous func-
tion is expanded in our basis. Consider the expansion of
a piecewise smooth function f(x) in terms of Jacobi poly-
nomials,

f(x) ≃
N∑

k=0

f̂kPk(x)

with f̂k =

∫ 1

−1

dxω(x)f(x)Pk(x) . (C8)

Utilizing the Sturm-Liouville equation (A1), assuming
that the function f has a jump [[f ]](c) for x = c, it is possi-
ble to obtain an estimation for the decay of the spectrum

f̂k with k,

f̂k =
−1

λk

∫ 1

−1

dx
[
(1− x2)ω(x)P ′

k(x)
]′
f(x)

= [[f ]](c)
1

λk
(1− c2)ω(c)P ′

k(x) +O
(

1

λk

)
. (C9)

This equation expresses the fact that next to a jump the
coefficients of the mode expansion decays like 1

λk
, which

is substantially slower than far away from a jump. In
(C9) λk refers to the eigenvalue of the associated Sturm-
Liouville equation, c.f. (A1). Motivated by this charac-
teristic property of the spectrum of a particular polyno-
mial expansion, it is possible to define a quantity that
detects the discontinuity from the mode expansion of the
function. The concentration kernel for Legendre polyno-
mial was obtained in [95] and is defined as

Kσ
N ∗ f =

√
2
π

N

√
1− x2

N∑
k=1

σ

(
|k|
N

)
f̂kψ

′
k(x) , (C10)

where σ(ξ) is an adequate concentration factor. There
are different possibility for this function and an extensive
discussion can be found in [95]; for our implementation
we have made the simple choice of σ(ξ) = 1. In the
vicinity of the discontinuity, and away from it, this kernel
behaves as

Kσ
N ∗ f =

{
O( 1

N ) x ̸= c

[[f ]](c) + const. logN
N x = c

. (C11)

Consequently, it is possible to pinpoint the discontinu-
ity, when examining the scaling of this operator with the
number of nodes. However, is more convenient to en-
hance the separation of scale between the smooth part
and the discontinuity, namely

N
p
2 (Kσ

N ∗ f)p =

{
O(N− p

2 ) x ̸= c

[[f ]](c)N
p
2 x = c

, (C12)

where p is the enhancement exponent. Using this oper-
ator, it is possible to construct an operator that is non-
vanishing only in the presence of the jump,

Kp
N,J ∗ f =

{
KN ∗ f if |N

p
2 (Kσ

N ∗ f)p| > J

0 otherwise
, (C13)

where J is an appropriately chosen threshold. This ad-
ditional definition becomes very important for smaller
values of N if we want to achieve a good separation of
scales between shocks and smooth parts of the solution.
In our implementation, we have chosen the heuristic val-
ues p = 2 and J = 5.0 × 10−8. With this set of pa-
rameters, we were able to detect the discontinuities in
Section III C efficiently.
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