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Abstract

KM3NeT is a research infrastructure in construction under the Mediterranean Sea. It hosts
two large volume neutrino Cherenkov telescopes: ARCA at a depth of 3500 m, located off-
shore Sicily, and ORCA, 2500 m under the sea level, offshore the southern French coast. The
two detectors share the same detection principle and technology and the same data acqui-
sition design, the only difference being the geometrical arrangement of the optical sensors.
This allows to span a wide range of neutrino energy and cover a large scientific program:
the study of neutrino properties, first of all neutrino mass ordering, the identification and
study of high energy neutrino astrophysical sources, indirect dark matter searches and core
collapse supernovae detection.

1 Introduction

The KM3NeT collaboration is building a network of undersea neutrino detectors, which exploit the
faint Cherenkov light produced along the pattern of relativistic charged particles emerging from
the interactions of neutrinos with rock or water inside or in proximity of the detector to reconstruct
the properties of the parent neutrino: ARCA (Astroparticle Research with Cosmics in the Abyss)
and ORCA (Oscillation Research with Cosmics in the Abyss). The KM3NeT scientific program is
very wide and ambitious and includes astrophysical items like the search for cosmic high energy
neutrinos and the identification of their sources, indirect searches for dark matter, detection of
core collapse supernovae, and particle physics topics like the investigation of neutrino properties,
in particular the definition of neutrino mass ordering (NMO) through the measurement of matter
effects in oscillation patterns of atmospheric neutrinos. To accomplish these goals neutrino de-
tectors sensitive to neutrinos of different energy are required. In the following sections the main
features of the KM3NeT telescopes, their present status and expected performances are described
together with some preliminary results, [1].
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2 THE KM3NET NEUTRINO TELESCOPES: ARCA AND ORCA

2 The KM3NeT neutrino telescopes: ARCA and ORCA

The KM3NeT neutrino telescopes are 3-dimensional lattices of optical sensors immersed in deep
sea water. The optical sensor, called Digital Optical Module (DOM) [2], is a glass sphere hosting
31 3" photomultipliers [3]. Its design allows a better rejection of environmental background and
improves track reconstruction [4]. The light signals collected by the PMTs are digitised by custom
front-end electronic boards [5] and sent to a computing farm located on-shore. According to
the all-data-to-shore approach, all signals above a 0.3 photoelectron threshold are transmitted
and processed with dedicated trigger algorithms looking for potentially interesting events [6].
A set of 18 DOMs, distributed along a slender string and connected through a backbone cable
and two ropes, constitutes a Detection Unit (DU). Each DU is completed with a base module
containing electro-optical circuits that guarantee signal transmission between the string and the
control stations located off-shore. A group of 115 DUs is called a Building Block (BB). As of
today 19 DUs are in data taking at the ARCA site and 10 DUs at the ORCA site. Completion of
the infrastructure is foreseen in 2025 for ORCA and 2027 for ARCA. In autumn 2022 further sea
operations during which more DUs will be deployed are scheduled. Technical and construction
details can be found in several KM3NeT technical papers here: https://www.km3net.org/about-
km3net/publications/km3net-technical-publications/

Depending on the neutrino flavour and type of interaction, different signatures of events can
be registered. Track-like events are mainly due to charged current muon neutrino interactions and
are characterised by a long muon track. They represent the golden channel for the identification
of neutrino sources because the parent neutrino direction can be reconstructed with an angular
resolution of about 0.1° for neutrino energies above 100 TeV. The interaction vertex can be exter-
nal to the detector and the energy of the event is calculated with a resolution of ∼ 0.3 units in
log10(Eµ). Shower-like events are the result of neutral current interactions of all-flavour neutri-
nos and of charged current electron neutrino interactions. The direction of parent neutrino can
be evaluated with a resolution better than a few degrees, while the energy is reconstructed with a
precision better than 5 %. The most abundant signal in this kind of detectors comes from the flux
of atmospheric muons, [7]. In order to reduce this background a geometrical cut is applied and
only upward going muons are considered. Atmospheric muons are absorbed by the Earth and only
neutrinos can produce upward moving tracks. The bulk of this flux is due to atmospheric neutrinos
that represent an irreducible background in searches for cosmic neutrinos, and the main signal for
oscillation studies. Only with accurate statistical analyses a cosmic flux can be identified, either
looking for clusters of events over the atmospheric background, or searching a neutrino emission
from potential interesting sources, or looking for a very high energy neutrino diffuse flux, above
50-100 TeV, where the conventional atmospheric neutrino flux is overwhelmed by the cosmic flux.

2.1 ARCA

ARCA is being deployed at 3500 m below the sea level offshore Sicily. It will be made by two
Building Blocks of Detection Units, 230 DUs in total, and will instrument about 1 km3 of sea
water thanks to a sparse array of DOMs, spaced by 36 m in vertical and about 90 m in horizontal.
Its design is optimized to look for high energy neutrinos in the energy range between 100 GeV and
100 PeV. At present KM3NeT has secured funding for the construction of the first Building Block of
ARCA and part of the second BB. The main goals of ARCA are identification of Galactic and extra-
Galactic sources of neutrinos, where also extremely energetic cosmic rays might be produced and
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Figure 1: Left: View of a KM3NeT DOM. Right: Artistic view of the KM3NeT telescope.
Detection Units equipped with DOMs and anchored at the sea bed are shown. Buoys at
the top of each string keep the structure taut. At the level of each DOM a breakout of
the backbone cable is visible. The Base Modules of DUs are connected to a Junction Box
via cables deployed on the seafloor. The picture is not in scale.

accelerated, and measurement of a diffuse flux of neutrinos like the one detected by IceCube [8].
As shown in Fig. 2 (left), this latter result can be reached in about one year with a single BB and
less than six months with two BBs. Fig. 2 (right) shows ARCA sensitivity to neutrinos from point
sources, assuming an E−2 flux. Thanks to its size, to its location in the Northern hemisphere and
to the optical properties of water, ARCA has a better sensitivity than present telescopes by more
than one order of magnitude in the region of negative declination.

The scientific field of interest to ARCA also includes indirect searches for dark matter and the
detection of core collapse supernovae. KM3NeT/ARCA is involved in an intense multimessenger
program to search for neutrinos emitted in space-time coincidence with other astrophysical signals,
like gravitational waves, high energy cosmic rays and photons over a wide energy range.

2.2 ORCA

ORCA is a neutrino telescope in construction in front of the southern French coast, at 2500 m
below the sea level. The detection principle and the general design of the detector is identical to
ARCA’s, but the denser distribution of the optical sensors, spaced by about 20 meters in horizontal
and 9 meters in vertical, along the Detection Units, is optimized for the detection of neutrinos in
the energy range 1-100 GeV. This feature will allow to compare atmospheric neutrino oscillation
patterns, in order to study the NMO and investigate in detail neutrino oscillation parameters, [9].
Sensitivity of ORCA to the identification of the NMO after 3 years of data taking is shown in
Fig. 3. In Fig. 4 (left panel), the oscillation pattern measured with six ORCA DUs in almost
one year of data taking is shown, compared to the no-oscillation hypothesis and to the NuFit5.0
evaluation [10] assuming normal mass ordering of neutrinos. In the right panel measurements
of several other experiments are compared to the ORCA6 results. The purple line indicates the
expectation with 1 BB of ORCA.

Both ARCA and ORCA are sensitive to the electron antineutrino flux emitted during a core
collapse supernovae (CCSN), thanks to the innovative design of the DOM. A large amount of
energy is released during a core-collapse supernova event through the emission of neutrino bursts
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3 CONCLUSION

Figure 2: Left: Significance for the detection of a diffuse flux of neutrinos as claimed by
IceCube with 1 BB (black line) or 2 BBs (blue line) of ARCA. Right: Sensitivity of ARCA
(2 BB) to an E−2 flux of neutrinos from point sources as a function of source declination
compared to ANTARES and IceCube.

with an average energy around 10-20 MeV, on a timescale of about ten seconds. These neutrinos
cannot individually produce a clear event signature in KM3NeT. Nonetheless a global increase
of coincidence counting rate on each single DOM is expected, as shown in Fig. 5(right). The
multiplicity indicated in the figure is the number of PMTs in a DOM hit within a time interval
of 10 ns. The sensitivity to CCSN events has been investigated for different progenitor masses
and distances and an online system for CCSN detection has been implemented, [11]. Results are
shown in Fig. 5(left).

3 Conclusion

After the successful experience of the ANTARES detector (https://antares.in2p3.fr/), which showed
the reliability of the Cherenkov technique for neutrino detection, a new generation of undersea
neutrino telescopes is being installed at the bottom of the Mediterranean sea. The KM3NeT in-
frastructure will host a network of telescopes covering a wide range of neutrino energy, ARCA and
ORCA. Thanks to the innovative design of the optical sensor, the Digital Optical Module, the loca-
tion in the Northern Hemisphere and the excellent optical properties of sea water, KM3NeT/ARCA
will be able to explore the Galactic Plane and Centre complementing the field of view of the Ice-
Cube detector. The sensitivity of KM3NeT/ORCA will allow to determine the mass ordering of
neutrinos in less than six years even in the more pessimistic scenario.
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Figure 5: Left: number of expected events in a time window of 500 ms for a single
BB as a function of the multiplicity (number of PMTs of the same DOM hit within 10
ns). Right: Sensitivity of KM3NeT to the CCSN for three progenitor masses, 11 (green),
27(grey) and 40 (purple) solar masses, as a function of the distance. Error bars include
systematic uncertainties coming from models and detector.
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