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Abstract

We use numerical bootstrap techniques to study correlation functions of trace-
less symmetric tensors of O(N) with two indices tij . We obtain upper bounds
on operator dimensions for all the relevant representations and several values of
N . We discover several families of kinks, which do not correspond to any known
model and we discuss possible candidates. We then specialize to the case N = 4,
which has been conjectured to describe a phase transition in the antiferromagnetic
real projective model ARP 3. Lattice simulations provide strong evidence for
the existence of a second order phase transition, while an effective field theory
approach does not predict any fixed point. We identify a set of assumptions that
constrain operator dimensions to a closed region overlapping with the lattice
prediction. The region is still present after pushing the numerics in the single
correlator case or when considering a mixed system involving t and the lowest
dimension scalar singlet.
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1 Introduction

The conformal bootstrap [1, 2] (see [3, 4] for a review) has successfully classified many
3D CFTs, providing stringent predictions of operator dimensions, which translate in
precise determinations of the corresponding critical exponents [5–11]. These techniques
have been used to study many problems including multiple scalars [12–17], fermions [18–
20], currents [21, 22], stress tensors [23] and various global symmetry representations
[24–44].

In this work we push this program further and explore the space of three dimensional
conformal field theories (CFTs) containing a scalar operator tij, which is a traceless
symmetry tensor of O(N) with rank-2. While such operators are also present in the
well studied O(N)-vector models, here we want to target fixed points of gauge theories,
where the operator tij can arise as the simplest gauge invariant scalar made from more
elementary fields, charged under the gauge symmetry.

Similar studies have been done for adjoint representations of SU(Nf ) in four dimen-
sions, with application to the conformal window of QCD-like theories. In that case,
however, bootstrap bounds have not revealed any surprise [37, 38]. On the contrary,
the present setup will show many interesting features.

In addition to the general exploration of CFTs, in the present work we also address
the existence of a fixed point observed in the antiferromagnetic real projective model
with N components ARPN−1, in the specific case N = 4. Lattice simulations present
strong evidences of a second order phase transition, driven by an order parameter
transforming in the rank-2 representation of O(4); on the contrary, an effective approach
based only on the Landau-Ginzburg-Wilson paradigm seems to disagree [45]. We will
present bootstrap evidences confirming the existence of a fixed point. We will also
discuss new prediction for certain operator dimensions and OPE coefficients that could
be tested by future lattice studies.

Before entering in the bootstrap setup and present our results, let us broadly discuss
what theories must be consistent with our bootstrap bounds. The following analysis
will also guide us through the choice of reasonable assumptions to isolate theories of
interest.

1.1 RPN−1 and ARPN−1 models

We begin with a simple lattice model, the (A)RPN−1, which is defined as a system of
spins sx taking values in the real projective space RPN−1, with the index x labelling
the lattice site.
Equivalently, we can describe the system by considering sx to take values in RN , with
the restriction sx · sx = 1 and the identification sx ∼ −sx; the latter condition can be
viewed as a Z2 gauge symmetry, since one can change sign to each spin independently,
i.e. locally. The hamiltonian can be written as

HRPN−1 = J
∑

〈x,y〉
|sx · sy|2 (1)
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where 〈x,y〉 indicates that the sum runs over pairs of nearest neighbors. For negative J
the system is ferromagnetic while for positive J it is antiferromagnetic. This model has
been studied in the antiferromagnetic regime and for N ≤ 4 using lattice simulations
[45]. It was found that for N = 2, 3 the IR admits a second order phase transition,
and the IR fixed point seems to be in the same universality class of the O(2) and O(5)
model respectively. The case N = 4 is particularly interesting, since it still presents
evidences of a second order phase transition but this time the critical exponents do not
correspond to those of the O(m)-model, for any m. Moreover the transition appears to
be driven by an order parameter transforming in the traceless symmetric representation
of O(4).

Let us briefly discuss the structure of the order parameter, as it will be useful
also for the discussion in the next sections. In the ferromagnetic case, the energy
is minimized by aligning the directions of the spins. Thus, at low energy the system
breaksO(N) symmetry by aligning in a preferred direction. This configuration preserves
translational invariance. In the standard LGW approach one looks for a gauge invariant
order parameter that is non-zero in the ordered phase and vanishes in the disordered
phase. This order variable is built from the site variable, P ab

x = saxs
b
x − δab/N . We

then define the order parameter as its sum over lattice sites Mab =
∑

x P
ab
x . We see

that in the ordered phase the contributions to Mab are cumulative, due to the preferred
direction, resulting in a non-zero matrix. At high temperature, in the isotropic phase,
contributions will cancel so that Mab → 0 in the infinite temperature limit. This order
parameter transforms as a traceless symmetric representation of O(N) and is invariant
under a lattice symmetry that interchanges two sublattices.1

In the antiferromagnetic case the energy is instead minimized by taking sx · sy = 0
for neighboring sites. Thus, in the ordered phase every spin is orthogonal to its
nearest neighbor. Unlike anti-correlation in the usual ferromagnetic case, here one
can divide the lattice in two sublattices, and the spins are orthogonal among the
two. Orthogonality does not fix the configuration uniquely unlike correlation or anti-
correlation. Thus, it is not immediately clear what the symmetries of the ordered
state are and what order parameter has a non-zero expectation value in the ordered
phase. In [46], for the similar case of CP 2, it was shown that the order parameter must
also break the symmetry that interchanges the sublattices. This proof can easily be
extended to the case of ARP 2. Unfortunately we don’t know of any proof for N > 2.
If we assume the same holds for general N the correct order parameter is built from
a staggered site variable Aabx = pxP

ab
x , where px = exp

[
iπ
∑3

k=1 xk
]
, i.e. the parity of

the lattice site. Summing over the staggered site variable the order parameter is given
by Mab =

∑
xA

ab
x . This order parameter also transforms as a traceless symmetric

representation of O(N) but this time is odd under the Z2 symmetry.

1Gauge invariance forbids a linear order parameter sax so the next simplest order parameter is
quadratic. The vanishing of the order parameter in the disordered phase forces the subtraction of the
trace resulting in the traceless symmetric representation.
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The lattice analysis2 for ARP 3 led to the following estimates of the critical expo-
nents:

∆s = 3− 1

ν
= 1.28± 0.13 , ∆t =

1 + η

2
= 0.54± 2 , ∆s′ > 3 (lattice results [45])

(2)

1.2 The Landau-Ginzburg-Wilson effective action

In many cases of physical interest one can understand the critical behavior of a lattice
system also starting from a UV description in terms of a field theory of a scalar field
with only a few renormalizable interactions. Thanks to the properties of the RG flow,
if the two UV theories belong to the same universality class, they will flow to the same
fixed point in the IR.

Physically this is equivalent to identifying the order parameter that describes the
fluctuations near criticality and writing an effective Hamiltonian. The order parameter
is chosen such that it vanishes in the disordered phase and is non-zero in the ordered
phase. Thus, it is expected to be small near criticality and it make sense to consider
only the leading terms.

If one is interested in describing the phase transition observed for ARPN−1, the
order parameter Φij is a traceless symmetric rank-2 tensor of O(N), odd under an
additional Z2 symmetry. The LGW Hamiltonian reads:

H = Tr(∂µΦ)2 + rTr Φ2 + u0(Tr
(
Φ2
)
)2 +

v0

4
Tr Φ4 (3)

The analysis of the β-functions for the couplings u0 and v0 in ε-expansion at one loop
reveals the existence of four fixed points. Two of them are well known: the free Gaussian
theory (u∗0 = v∗0 = 0) and the O(N ′) Wilson-Fisher fixed point (v∗0 = 0), with N ′ =
N(N + 1)/2 − 1 the total number of scalars encoded in the tensor Φ. In addition
there are two fixed points, with both coupling non-zero, that merge at N = Nc and
turn complex for N > Nc. A Borel resummation of the five-loop ε-expansion predicts
Nc ≈ 3.6 [45]. For N = 2, 3 the additional relation Tr Φ4 = (Tr Φ2)2/2 holds. So even
for N < Nc the new fixed points can be mapped respectively to the O(2) and O(5)
model. In conclusion, the LGW analysis predicts that no fixed point exist for this
model besides the WF ones. This is in tension with the lattice results discussed in the
previous section.

2The analysis of [45] used finite-size-rescaling to study the RG invariant Rξ = ξ
L , where ξ is the

correlation length and L the lattice’s size. It is observed that lines of different L’s meet at a critical
temperature βc = 6.779(2) and the critical exponent ν = 0.59(5) was estimated. The error is due to
different methods of fitting the data, while the statistical error is much smaller. Moreover, they were
able to extract the critical exponent η = 0.08(4) by analyzing the behavior of the susceptibility around
the fixed point. Finally, a study of the Binder parameter shows sizeable corrections due to scaling
possibly indicating an un-tuned singlet with a dimension that is close to relevant. However, the data
was insufficient to give a reliable estimate on the corresponding critical exponent.
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1.3 Scalar gauge theories

Traceless symmetric tensor of O(N) can arise in a many different theories. Hence,
a general bootstrap analysis will be sensitive to all of them. As an example, in this
section we review the known results for a model based on a theory with local O(M)
gauge invariance and global O(N) (see for instance [47, 48] and reference therein).

L = −1

4
F a
µνF

aµν +
1

2

∑

i=1

(Dµφi)
α (Dµφi)

α + V (φai ) ,

(Dµφi)
α = ∂µφ

α
i − (T b)αβφ

β
i A

b
µ, V (φai ) = u0 S

2 + v0

∑

i,j

QijQij ,

S =
∑

a,k

(φαkφ
α
k ) , Qij =

∑

a

φαi φ
α
j −

1

N
δijS (4)

where µ and ν are spacetime indices, α, β, γ = 1, . . . ,M are fundamental indices of the
gauge group O(M), a, b, c = 1, . . . ,M(M−1)/2 are adjoint indices and i, j, k = 1, . . . , N
are indices of the global flavor group. The presence of a gauge symmetry imposes that,
at the fixed points, local operators must be made from gauge invariant combinations of
the fields φαi and the field strength F a

µν . In particular the smallest dimensions scalars
are the singlet S and the traceless symmetric O(N) tensor Qij defined in (4).

The above models have been extensively studied: the ε-expansion [48] predicts the
existence of a fixed point only for

N > 44(M − 2) . (5)

Moreover, the ε-expansion shows that the gauge invariant model is always stable com-
pared to the enhanced O(NM) model. Alternatively, one can study the model in 3d,
in the large-N limit at fixed M . For instance one obtains [47]:

∆S = 1 +
16

3π2N
(9M − 7) +O

(
1

N2

)
,

∆Q = 1− 16

3π2N
(3M − 5) +O

(
1

N2

)
, (6)

Clearly the above expressions cannot be trusted at small values of N . Nevertheless one
could compare these expressions with the bootstrap bounds. The main issue is that,
given N , there are in principle infinitely many underlining gauge theories with the same
global symmetry but different CFT-data, as shown already by the leading corrections
in Eq. (6).3

Let us conclude this overview by discussing a few basic differences among the theories
discussed so far. First of all, in presence of a continuous gauge symmetry, the spectrum
of the CFT will be richer, given the presence of extra states such as glue-balls (F a

µν)
2

3Note that (6) has been obtained in the limit of large N , while keeping M fixed. If instead one
consider M ∼ N then the expansion would change.
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or combination of the two fundamental fields. 4

On the contrary, if the gauge symmetry is discrete, as for instance the discrete Z2 gauge
symmetry of RPN models, we do not expect these extra states.

Interestingly, this is not the only difference. Consider for instance the smallest
operator transforming in the representation described by a squared Yang-tableau with
four boxes, . We call it the Box representation. We will see in the next section that
such representation appears in the OPE of two rank-2 tensors. In a gauge theory like
in (4), the smallest scalar in the Box representation is given by

Oij,kl ∼ QikQjl −QilQjk − traces , (7)

The non-triviality of this operator is guaranteed by the internal gauge indices. However,
if these were absent, one could not construct it: given a real scalar operator si the
smallest non trivial operator in the Box representation that one can construct requires
two derivatives

O′ij,kl ∼ JµikJµjl , Jµij = si∂
µsj − sj∂µsi , (8)

or more fields. This reasoning is valid only in a neighborhood of the UV description,
however it gives us an intuition about which operators we should expect in the CFT.
Hence, we do not expect the IR fixed point of (A)RPN models to have light scalars in
the Box representation.

More in general, the impossibility to construct light operators in a given repre-
sentation can be a guiding principle to distinguish different theories, especially when
gauge symmetry are involved. Let us view another example: in the LGW model
the fundamental field is a traceless symmetric tensor, while in a gauge theory the
fundamental field is a vector of O(N), with an addition gauge index. Although φαi is
not gauge invariant, the existence of a more fundamental building block has important
consequences and does have an impact on the spectrum of the CFT. For instance, for
SO(M = 3) it is possible to construct barion-like state of the form Bijk ∼ εαβγφ

α
[iφ

β
j φ

γ
k],

transforming in the antisymmetric representation with three indices of O(N) and having
a small dimension.5 In the LGW theory, the lightest state in same representation would
be much heavier.

Finally, a major difference between the gauge model (4) and the LGW descrip-
tion is that the latter displays a Z2 symmetry in the UV, while the former doesn’t.
From the CFT point of view, this symmetry imposes the vanishing of three point
functions 〈ΦijΦklΦrs〉 in a putative fixed point of the LGW model, while the correlator
〈QijQklQrs〉 is allowed to be non-zero in the model based on a gauge theory.

2 Setup

In this section we explain the bootstrap setup of the 〈tttt〉 correlator and its extension
to the mixed t− s bootstrap. We first discuss the operators that can be exchanged in

4Only a subset of those operators, such as glueballs, are accessible with the bootstrap setup
considered in this paper.

5This operator is invariant under SO(3) and not the full O(3), however our bootstrap setup does
not distinguish between SO(M) and O(M) symmetries and this is an equally valid theory to consider.
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the t× t OPE. We then explain how to write the crossing equations and the resulting
sum rules for the single 〈tttt〉 correlator. Next we present the extension to the mixed
t− s bootstrap. In appendix C we also show how this bootstrap setup for the traceless
symmetric bootstrap of O(N) is related to the vector bootstrap of O(N ′) with N ′ =
N(N + 1)/2− 1.

2.1 The t× t OPE

We can write the t× t OPE as

t × t =
∑

∆,l

λS∆,lS + λT
2

∆,lT
2 + λT

4

∆,lT
4 + λA

2

∆,lA
2

+ λH∆,lH + +λB∆,lB
(9)

Here S, T 2, T 4, A2 refer respectively to the singlet, traceless symmetric, four-index
symmetric and the antisymmetric representations. H refers to the mixed symmetry
{3, 1} representation which we will call Hook representation, while B refers to the
{2, 2} representation or Box representation. In the rest of the paper we will leave out
the young tableau notation and refer to a dimension ∆ and spin l operator as R∆,l,
where R ∈ {S, T 2, T 4, A2, H,B}.

Important special cases of operators are the first antisymmetric vector, i.e. the
conserved current J = A2

2,1, the first spin-two singlet, i.e. the stress tensor T = S3,2.
The first antisymmetric vector after the current will be denoted J ′ and the first spin-2
singlet after the stress tensor T ′. Furthermore, we will refer to the first singlet scalar as s
and the external traceless symmetric scalar as t. Again higher dimensional operators will
be referred to by adding primes. For example s′ refers to the second lowest dimensional
singlet operator. t′ will denote the first traceless symmetric operator other than t-itself.
Similarly, the first scalar in the Box representation and the first vector in the Hook
representation will be denoted by b and h respectively.

Under exchange of x1 and x2 the spatial part of the three point function
〈t(x1)t(x2)O∆,`(x3)〉 goes to (−1)` times itself. Thus, for even spins the global tensor
structure must be symmetric under the exchange of the indices of the first and
second operator, and antisymmetric for odd spins. The {S, T 2, T 4, B} representations
only allow a symmetric structure while the A and H representations only allow
an antisymmetric tensor structure. Thus, the former set of representations will be
exchanged for even spin and the latter set for odd spin.

Two OPE coefficients are of special interest. Ward identities relate the OPE
coefficients of stress tensor T and the conserved current J respectively to the central
charges CJ and CT :

CJfree

CJ
= λ2

ttJ (10)

CTfree

CT
=

λ2
ttT

∆2
t

=
λ2
ssT

∆2
s

(11)

In order to construct the correct O(N) tensor structures for 3 and 4pt functions we
used an index free notation similar to the one introduced for spacetime indices in [49].
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The young tableaux describing the O(N) irreps illustrate how indices corresponding
to blocks appearing in the same row are symmetrized while blocks appearing in the
same column are anti-symmetrized. The symmetrization of any row can automatically
be enforced by contracting all indices corresponding to the same row with the same
polarization vector S. Similarly, indices corresponding to the next row are contracted
with U and so on (in this paper no irreps with more than two rows appear). One
then only needs to enforce the anti-symmetry and tracelessness by hand. We review in
details our method in appendixes A and B.

2.2 4pt functions and the crossing equations

The crossing equations are obtained in the standard way by equating the s-channel
and t-channel decompositions of the 4pt-function. The 4pt-function 〈tttt〉 has six
independent tensor structures, each providing a crossing equation of the form

∑

R,OR
λ12ORλ34OR

g∆12,∆34

∆OR ,`OR
(z, z̄)

(zz̄)
∆1+∆2

2

=
∑

R′,O′
R′

λ32O′λ14O′
R′

g∆32,∆14

∆O′
R′
,`O′

R′
(1− z, 1− z̄)

((1− z)(1− z̄))
∆3+∆2

2

. (12)

Here z and z̄ are the standard crossing ratios and g is the scalar conformal block. For the
single correlator (of identical operators) both R and R′ run over {S, T 2, T 4, A2, H,B}
and ∆ij = 0∀ i, j.

The final crossing equations for 〈tttt〉 can be written as

∑

O
λ2
OVS,∆,` +

∑

O
λ2
OVT 2,∆,` +

∑

O
λ2
OVT 4,∆,`+

∑

O
λ2
OVB,∆,` +

∑

O
λ2
OVA,∆,` +

∑

O
λ2
OVH,∆,` = 01×6,

where VR,∆,` is a 6 dimensional vector describing the contribution of a primary operator
O of dimension ∆, spin `, and representation R. The vector VR,∆,` is expressed in terms
of the usual F ’s and H’s

H =u
1
2

(∆2+∆3)g∆12,∆34

∆,` (v, u) + v
1
2

(∆2+∆3)g∆12,∆34

∆,` (u, v),

F =v
1
2

(∆2+∆3)g∆12,∆34

∆,` (u, v)− u 1
2

(∆2+∆3)g∆12,∆34

∆,` (v, u)
(13)

Here g∆12,∆34 is the scalar conformal block normalized as entry 1 of Table I in [3]. In
this section the only correlation under consideration is 〈tttt〉 and this simplifies to

H =u∆tg∆,`(v, u) + v∆tg∆,`(u, v),

F =v∆tg∆,`(u, v)− u∆tg∆,`(v, u)
(14)
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The crossing equations can also be represented by a 6 by 6 matrix. Its explicit form is6

M〈tttt〉,O(N) =




F 0 0 0 1
2
F (N + 4)(N − 1) −FN

0 F 0 0 1
2
F (N − 2) −FN

2

0 0 −F 0 1
2
F (N + 4) −1

2
F (N + 2)

0 0 0 F −3F 2F

H 0 −2H(N−1)
N

−H(N+4)(N+6)(N−1)
12N

−H(N+4)(N−2)(N−1)
4N

−H(N+2)(N−3)(N−2)
6N

0 H −H(N+4)(N−2)
N(N+2)

−H(N+6)(N−2)
3N

H(N+4)(N−2)
N(N+2)

H(N+4)(N−3)
3N




(15)
Here rows correspond to the six different equations and columns correspond to the
vectors {VS, VT 2 , VA, VT 4 , VH , VB} in equation 13. The bootstrap problem consists of
finding a positive linear functional α such that

{
α(VI) = 1

α(VR) ≥ 0 ∀R ∈ {S, T 2, T 4, A2, H,B}, ∀∆R,∆,` > ∆∗R,∆,`
(16)

If such a functional exists it excludes a spectrum with ∆R,∆,` > ∆∗R,`. ∆∗R,∆,` is usually
taken to be the unitarity bound except when we try to find the maximal allowed gap for
a certain operator or when we have reason to assume a gap above the unitarity bound
for a theory that we are trying to isolate.

In practice the crossing equations are truncated by taking derivatives around the
crossing symmetric point z = z̄ = 1/2 and the maximal number of derivatives is
denoted by Λ. These truncated crossing equations are used as input in the arbitrary
precision semi-definite programming solver SDPB (version 2) [50, 51]. The truncations
and parameters used in the numerical implementation can be found in tables 2 and
1.The computations were managed using Simpleboot [52].

In addition to finding the feasible set of ∆R,∆,` we can also find lower and upper
bounds on squared OPE coefficients λ2

ttO by picking the corresponding vector Vλ to
define the normalization of α, i.e. α(Vλ) = ±1 and maximizing the objective α(VI).

7

2.3 Setup of mixed t− s bootstrap

In this section we write the bootstrap equations for the system of correlators involving
the traceless symmetric operator t and the leading singlet s. We will restrict ourselves
to the case in which t is odd under a Z2 symmetry, since our goal is to study the ARP 3

model discussed in section 1.1. In that case the full system of crossing equations is
given by the crossing equations of the correlators 〈ttss〉 and 〈stts〉, 〈tsts〉, and 〈ssss〉.
Crossing equations involving three t-operators vanish because t×s can only exchange Z2

odd operators while t× t can only exchange Z2 even operators. All new correlators are
constrained to exchange only a single irrep: s× s can only exchange neutral operators
while t× s can only exchange operators in the T 2 irrep. The t× s OPE does not have

6The exact form depends on the normalization of the OPE coefficients. We are free to rescale
columns by any positive factor and absorb this into the OPE coefficients. We are of course also free
to rescale rows, i.e. equations, by any factor.

7Normalizing α(Vλ) = 1 will give us an upper bound on the OPE coefficient, while α(Vλ) = −1 will
give a lower bound.
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the permutation symmetry that the t × t OPE had and thus allows the exchange of
both odd and even spin traceless symmetric operators.

Note that when we do not impose a gap forbidding the exchange of the external
operator t in t× t results using this setup also hold for Z2-even t.8

Restricting to the crossing equations for Z2-odd t there are four additional crossing
equations, two between 〈sstt〉 and 〈tsst〉, one from 〈tsts〉 and one from 〈ssss〉. The
crossing equations can now be written as

∑

O
(λttO λssO)VS,∆,`

(
λttO
λssO

)
+
∑

OE
λ2
ttOEVT 2,E,∆,` +

∑

OO
λ2
tsOOVT 2,O,∆,` +

∑

O
λ2
OVT 4,∆,` +

∑

O
λ2
ttOVB,∆,` +

∑

O
λ2
ttOVA,∆,` +

∑

O
λ2
ttOVH,∆,` + (λtts λsss)Vext.

(
λtts
λsss

)
= 01×10,

Here we have chosen to separate out the contributions proportional to the OPE
coefficients of the external vector into a separate vector Vext.. Since the A, T 4, H and B
representations cannot be exchanged in the new correlators the vectors VA, VT 4 , VH , VB
remain unaffected (apart from padding them with an appropriate number of zeros at the
end). The entries of VS become matrices since there are now contributions proportional
to λ2

ttS, λttSλssS and λ2
ssS. Furthermore, we split the traceless symmetric contribution

into a Z2 even part coming from the t × t OPE and a Z2 odd part coming from t × s
OPE. The Z2 even part remains identical to the vector VT 2 in equation 15. The t × s
OPE exchanges traceless symmetric operators of both odd and even spin. The new
vectors VS, VT 2,O and Vext. are given by

VS =




1
2

((
N +N2

)
− 2
)
F11

∆tt∆tt

000
000
000

1
2

((
N +N2

)
− 2
)
H11

∆tt∆tt

000
000

− 1
2H12

∆ss∆ss

1
2F12

∆ss∆ss

F22
∆ss∆ss




, VT 2,O =




0
0
0
0
0
0

F∆ts∆ts

(−1)LH∆ts∆ts

(−1)LF∆ts∆ts

0




, Vext. =




1
2

((
n+ n2

)
− 2
)
F11

∆tt∆tt

000
000
000

1
2

((
n+ n2

)
− 2
)
H11

∆tt∆tt

000
F11

∆ts∆ts

H11
∆ts∆ts − 1

2H12
∆ss∆ss

F11
∆ts∆ts + 1

2F12
∆ss∆ss

F22
∆ss∆ss




(17)

where we defined the matrices

(F∆1,∆2

ij )mn =

{
F∆1,∆2 (i = n ∧ j = m) ∨ (i = m ∧ j = n)

0 else

(F∆1,∆2

ij )mn =

{
H∆1,∆2 (i = n ∧ j = m) ∨ (i = m ∧ j = n)

0 else.

(18)

Finally, let us comment that the mixed t− s setup does not break the map between

8The inclusion of 〈ttts〉 would add a new crossing symmetric O(N) tensor structure where only the
product of OPE coefficients λttOλtsO enter.
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Figure 1: Bound on the dimension of the first singlet scalar. The blue, orange, green,
red and purple lines correspond respectively to N = 4, 5, 10, 20, 100. These bounds have
been obtained at Λ = 27. The dotted lines indicate the same bound at Λ = 19 and are
included to illustrate the convergence. All bounds show a clear kink corresponding to
the O(N ′) model. An additional more dull kink is visible in the region 0.52 < ∆t < 0.58.
This kink gets less sharp and less precisely localized at larger N . For N = 4 an
additional kink is visible around ∆t = 1.1. The bounds get strictly weaker for larger
N .

the O(N ′) vector bootstrap and the O(N) traceless symmetric bootstrap and the same
relations between positive functionals described in appendix C still hold.

3 A systematic study of general N

Here we present a systematic study of bounds on the dimension of the first operator
in all representations for general N . Specifically we examine N = 4, 5, 10, 20, 100 and
occasionally N = 1000 to study the asymptotic of certain kinks at large N . The bounds
on the leading operators in the singlet representation are identical to the corresponding
bounds found in the O(N ′)-vector bootstrap9, where N ′ = N(N + 1)/2− 1. For other
representations there is not such relation.

3.1 Bounds on operator dimensions

Singlets

The bound on the dimension of the first singlet scalar ∆S shows a clear kink
corresponding to the O(N ′) model under the identification φa → tij. In addition there
is a second set of (dull) kinks in the region 0.52 < ∆t < 0.58 whose exact location
becomes less and less clear as N increase. An additional kink is visible around ∆t ≈ 1.1

9This is proven in appendix C.
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for N = 4. These bounds are shown in figure 1. In the scalar singlet sector we do not
find any new interesting feature.

0.5 0.6 0.7 0.8 0.9
Δt5
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9
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11

ΔT '

Figure 2: Bound on the dimension of the first spin-2 singlet after the stress tensor. The
blue, orange, green, red and purple lines correspond respectively to N = 4, 5, 10, 20, 100.
These bounds have been obtained at Λ = 27. The dotted lines indicate the same bound
at Λ = 19 and are included to illustrate the convergence. For small N a peak is visible.
For larger N the peak fades and the most discernible feature becomes a kink around
∆t ≈ 0.7. The bounds get strictly weaker for larger N .

Next, we explored bounds on ∆T ′ , the dimension of the first spin-2 singlet after the
stress tensor. For small N this bound shows a clear peak in the region 0.52 < ∆t < 0.58.
For larger N the peak fades and the most discernible feature becomes a kink around
∆t ≈ 0.7. However it seems that especially for larger N the bounds are far from
converged even at Λ = 27. These bounds are shown in figure 2.
It is a bit surprising that the bounds on the second spin-2 singlet are not very
constraining. In fact, in most of CFTs based on a LGW description the next operator
after the stress tensor has dimension 4 . ∆T ′ . 5 [53, 54]. Similarly, in a gauge theory
one expects to find an almost conserved spin-2 operator, coming from a combination
the two stress tensors of the UV theory.10 We believe these bounds are far from optimal:
we will see an explicit example for the case N = 4 in the next section.

Antisymmetric representation

More interesting features are visible in the bound on the first spin-1 antisymmetric
vector after the conserved current, shown in figure 3. This is the first instance where
the bounds are neither strictly weaker nor stronger when increasing N . At large ∆t

we see the usual behavior found for singlet operators, i.e. the bounds get weaker for

10In the limit of vanishing gauge coupling the theory contains two stress tensors, schematically Tµν1 ∼
φαi ∂

µ∂νφαi and Tµν2 ∼ FµρF νρ : in the IR one combination remains conserved while the orthogonal
combination acquires an anomalous dimension.
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larger N . Near the unitarity bound the trend is instead reversed. The bounds start
quite above the value expected in a GFT, which however doesn’t contain a conserved
current. For N = 4, 5 we observe a sudden drop of the bound (a reversed kink) followed
by a smooth bound. For larger values the kink fades way, and a second bump appears
for N ∼ 10 close to the unitarity bound.
All the bounds diverge as ∆t → 1 and for large values of N an additional kink emerges.

The comparison of the bounds at Λ = 19 and Λ = 27 indicates a slow numerical
convergence of the bounds for ∆t ∼ 1, which get worse as N increases.

0.51 0.52 0.53 0.54 0.55 0.56

Δt
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5.0

ΔJ '

(a)

0.6 0.7 0.8 0.9
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6

7

8

9

10

ΔJ '

(b)

Figure 3: Both figures: Bound on the dimension of the first spin-1 antisymmetric vector
after the conserved current. The blue, orange, green, red and purple lines correspond
respectively to N = 4, 5, 10, 20, 100. The bounds have been obtained at Λ = 27. On
the left: A zoom of the region 0.5 < ∆t < 0.58. On the right: Overview of the same
bound on 0.5 < ∆t < 1. A second kink appears for N = 10, 20, 100 around ∆t = 0.8.
The bounds diverge near ∆t = 1.

Box representation

Next we examine the bound on the dimension of the first scalar Box operator, see
figure 4. For small N there are clear kinks in the region 0.54 . ∆t . 0.6 . Additionally
there is a family of very sharp kinks for all N moving to the right towards ∆t = 1 as
N increases. In this case the location of the kinks is quite stable when passing from
Λ = 19 to Λ = 27 and the bounds seem to be converged.

It would be tempting to identify the family of kinks at large N with fixed points
of gauge theories or (A)RP n models. Gauge theories discussed in section 1.3, however,
are expected to contain operators with smaller dimension. On the other hand,
(A)RP n are expected to have a large gap in this sector. In this case, one would
expect ∆t ∼ 1 +O(1/N), while ∆b ∼ 4 + O(1/N). Unfortunately, the location of
the kinks doesn’t scale linearly with 1/N , and it is unclear if they converge at all to
(∆t,∆b) = (1, 4) in the Λ→∞, N →∞ limit (see figure 18a in the appendix).

One possibility proposed in [55] is that bootstrap bounds for crossing equations
based on a symmetry GN are in fact shaped by solutions with smaller symmetry
HM ⊂ GN . This mechanism could explain the milder dependence on N : if for instance
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the expansion parameter of HM is 1/M ∼ 1/N s, with s < 1, then one would have a
different scaling.

A different mechanism to produce kinks was proposed in [56]. In this case one could
consider the difference between the 4pt function of a field tij ∼ φiφj + . . . made from
two generalized free fields φi and the 4pt function of a generalized free field Tij. Since
the former contains all the operators of the latter, it’s possible to subtract the two 4pt
functions and still have a decomposition in conformal blocks with positive coefficients.
By subtracting the two, one can create large gaps and jumps in the bounds. This
mechanism however would only explain kinks at ∆t ≥ 1, as unitarity requires ∆φ ≥ 1/2.

0.5 0.6 0.7 0.8 0.9
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Figure 4: Bounds on the dimension of the first Box scalar. The blue, orange, green,
red, purple and brown lines correspond respectively to N = 4, 5, 10, 20, 100, 1000. For
N = 4, 5 there are kinks at ∆t = 0.54 and ∆t = 0.60 respectively. For larger N this
kink disappears. A family of sharp kinks is visible for all N .

Hook representation

A similar family of kinks can be seen in the bound on the dimension of the first spin-1
Hook vector as is shown in figure 5. However, the location of the kink in ∆t does not
precisely match the location of the kinks in the bound on the first scalar Box operator.

Again it would be tempting to identify these kinks with CFTs admitting a large-N
expansion but, as in the previous subsection, the dependence of the kink on 1/N
doesn’t seem to be linear or to converge to (1, 4), at least at this value of Λ. In this
case the situation is less clear, since the bounds seem farther from convergence in Λ,
the features are less sharp, and they don’t seem to strongly depend onN forN ≥ 1000.11

11Neither the Hook nor the Box bound moves substantially when changing N = 1000 to N = 1016

(this bound is not included in the figures).
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