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Dear SciPost Team  

We are pleased to resubmit the attached manuscript entitled “Finite-Volume self-consistent 
approach at ultra-low temperatures: Theory and application to 1D electron gas at the Si-
SiO2 interface” by Vahid Mosallanejad, Haiou Li, Gang Cao, Kuei-Lin Chiu, Wenjie Dou, 
Guo-ping Guo for reconsideration in SciPost. 

We would like to thank the referees for their very helpful comments and suggestions. We 
modified the manuscript substantially in response to requested changes (as detailed on the 
next pages). In responses to request changes, we used the font color blue to highlight the 
referee’s comments while our respond is typed in conventional dark color font. In addition, 
we have highlighted changes in the manuscript with the red-color font. We have taken 
weaknesses seriously and we have increased the level of clarity. Particularly, we drop 
accusation of Finite-Difference and Finite Element discretization scheme for solving the 
Schrödinger-Poisson system at sub-kelvin temperatures. We also polished the manuscript so 
that the content would be more appreciable. Specifically, we have added descriptions for Eq. 
(6) and Eq. (9), and a flowchart figure. In addition, we improved presentations of sections 
2.7 and 2.8. In Fig. S2 (d), we had shown a typical course mesh of the Finite-Element only 
to show the style of mesh. In practice, we performed mesh convergence verification where 
we used a few meshing styles and range of sizes down to a min mesh size 0.5 nm. Triangles 
are not visible on such a fine mesh. So, we had decided to use the word "typical" in the old 
manuscript to justify Fig. S2 (d). With our new Supplemental Information, we have 
improved the mesh presentation in the section S4. We also have addressed few questions 
raised by referees in their “Report” section. Note that changes do not affect the theory 
presented in our work. We hope the article is now suitable for reconsideration in SciPost. 
 
Thank you very much for your consideration. 
Yours sincerely, 
 
Vahid Mosallanejad, Kuei-Lin Chiu 
  



Reviewer  2 
 
Report 2 on 2022-8-6 
 
In my opinion, the work is a good stepping stone towards the authors addressing interesting 
physics questions in quantum devices. In it's current form, however, I do not believe it fulfills 
the acceptance criteria of the journal. It could possible open a new avenue of research if the 
authors provided stronger evidence of the superiority of their method. At the same time, I 
think this work (after some polishing) could be polished in a more specialized journal 
focused on computational methods. A couple of questions for the authors to consider: Are 
all 6 valleys of Si included in the calculation? 
We thank the positive comments from the referee. We believe that we have introduced a new 
possibility that can address a wide range of real applications, ranging from the DFT 
calculations to the non-equilibrium green’s function approaches. Regarding to the questions 
raised by the referee, here we considered 𝑣! = 2. In Si-SiO2 interfaces parallel to the (001) 
plane, the six equivalent conduction band minima ∆6, splits into ∆4 (four-fold degeneracy) 
and (two-fold degeneracy) ∆2 bands. At low temperatures, only the ∆2 bands are occupied 
by electrons, since ∆2 bands are lower in energy. Therefore, we only considered 𝑣! = 2. We 
have added the following sentence to the section 3.1 to make this point clear:   
“Note that in the scaled geometry, mesh sizes vary between 4 m and 0.75 m. Moreover, we 
set 𝑣" = 2 (spin) and 𝑣! = 2  which means only the lowest two-fold degenerate band ∆2 is 
considered (the crystal orientation [001] is along the z-axis) [48].” 
 
If not, is this due to strain in the system or something? If so, the effective masses presented 
in Table 1 should only apply to the z valleys. The heavy effective mass for the x and y valleys 
are in the x and y directions, respectively.  
When SiO2 grows parallel to the (001) plane, crystallographic symmetry breaks on the 
direction perpendicular to the interface. Even without extra strain, ∆6, splits into ∆4 (four-
fold degeneracy) and (two-fold degeneracy) ∆2 bands. In our schematic Fig1. (a), the Si’s 
(001) plane is assumed to be at the x-y surface. For ∆2 bands, the effective mass 
perpendicular to interface has a lager value, approximately 0.91m0, often refer to heavy 
longitudinal mass, i.e., ml=mz. On this situation, effective masses along the interface are 
isotropic and have a smaller value approximately 0.19m0, often refer to lighter transverse 
mass, mt=mx=my. please see Figs. 2 (a) and (b) in [Nano Lett. 2008, 8, 5, 1335–1340] or fig. 
4 (e) in [Journal of Applied Physics 108, 093716 2010] where in the categorization on the 
latter reference, our device can be regarded as an example of one-dimensional electric 
confinement/two degree of freedom (1D EC/2DOF) surface inversion MOSFET. In fact, we 
further spatially confined the motion of electrons in the y direction by taking 150 nm width 
in the y-axis. The restriction on y-axis will not further alter the band property of Si, since 
150 nm is much larger than the Bohr excitation radius of silicon (which is approximately 5 
nm).  
 
In Fig. 6, the results for FV-TF and FV-SC are quite different. For example, differs by ~ 40 
meV. Can the authors provide an explanation for this large difference? Why is Thomas Fermi 
not working well in this situation? 
The solution of Poisson’s equation with Thomas-Fermi approximation provides us the 
𝜙(𝑦, 𝑧)	[and the band bending, -𝜙 + 𝜒]. 𝜙 is affected largely by two factors: 1) boundary 
condition and 2) charge densities. In our example, the positive boundary potential, Vg>0, 
pulls the conduction bands downward (such that a negative well introduced beneath the SiO2) 



whereas the negative electron density pushes the conduction band upward locally (just 
beneath the top gate against the SiO2 barrier). Similarly, a hole density (if it was included) 
will pushes the conduction band downward. It is believed that the TF approximation for the 
electron density (nTF) overestimates the correct self-consistent Schrödinger-Poisson (SP) 
electron density (nSP) [presented in Eq. (6)]. Considering such an overestimation, the amount 
of upward shift sourced from nTF is larger than that of nSP. Hence, the bottom of well using 
TF approximation is higher (less negative) than that of self-consistent SP approach. 
Overestimation in nTF is also evident in some other works for example see the Figure 9 in 
Ref [14]. 
 
Requested changes 
 
1) If the authors wish to maintain their claim that their approach is superior to FDM and 
FEM, a much more complete comparison of the two methods needs to be undertaken. In my 
opinion, this strong claim should be dropped unless much stronger evidence can be provided 
of the inadequacy of the FEM and/or FDM methods. 
Since 2015, We have solved couple of 2D/3D Schrödinger-Poisson’s self-consistent 
problems in heterostructures using Finite-Volume and Finite-Difference discretization 
schemes. For instance, we have computed confined energies for a 3D lateral quantum dot in 
the GaAs/AlGaAs heterostructure using Finite-Element software and predictor-corrector 
method. The quantum dot formed by negatively biased stadium-shape lateral gates. Country 
to what X. Gao has reported in [Journal of Applied Physics 114(16), 164302 (2013)], on 
achieving the self-consistent convergency at 200mK, we have observed it is very challenging 
to achieve self-consistent convergence at temperatures below 4.2K (difficulties with both 
the achievement of convergence and the speed). However, we realized that smooth transition 
of material properties is helpful, to achieve the self-consistent convergency at 1K. In another 
attempt, we used Finite-Difference for a 2D problem which was a split gate over 
GaAs/AlGaAs heterostructure. We observed that the convergence fluctuates after certain 
iterations, similar to what observed in Ref [16]. In that 2D problem, using a mesh size as 
small as 0.5 nm did not help us to achieve self-consistent convergence. Greg Snider 
explained a convergence issue with respect to low temperature in the manual for his openly 
accessible 1d-Schrödinger-Poisson solver, with the following statement. “A final word on 
the bane of all numerical analysis: convergence. This program's convergence 
characteristics are very good, with the exception of simulations involving dopant 
ionization at temperatures below 50K”.  
 

Nevertheless, we drop the accusation of FEM and FDM in the new manuscript but only 
mentioned of the existing challenges. For example, we have modified the first sentence in 
the abstract as:  

“Achieving self-consistent convergence for conventional effective-mass approaches at 
ultralow temperatures (below 4.2 K) is a challenging task, which mostly lies in the 
discontinuities in material properties (e.g., effective-mass, electron affinity, dielectric 
constant).” 

To the best of our knowledge, there are no publication focus on comparing convergence 
properties of the existing methods at low and ultra-low temperatures. Therefore, existing 
problems are not well documented. We will hopefully cover the convergence behavior of 



the three discretization schemes comprehensively in the future. We have mentioned it in the 
conclusion remarks by saying:  
 
“The current work lacks a direct comparison between FV-SP with Finite-Difference SP (FD-
SP) and Finite-Element SP (FE-SP). In the future, we aim to compare the convergence 
performance of FV-SP with FD-SP and FE-SP for realistic structures.” 
 
Furthermore, we inspect our Finite-Element Thomas-Fermi (FE-TF) model once again and 
practice multiple mesh configurations from 1.4 nm to an extreme 0.5 nm mesh sizes. Using 
a uniform triangular mesh with the minimum mesh size 0.5 nm, we were able to achieve 
convergence at 65 K. The convergence problem of FE-TF model did not resolve entirely 
using smaller mesh sizes (e.g., with a minimum mesh size as small as 0.25 nm). Nevertheless, 
we kept over observations on the convergence problem of FE-TF on the Supplementary 
Information S4 to keep the consistency while we have improved the presentation of S4.  
 
2) Directly after Eq. (9), the authors say, "It is important to note that analytical integration 
has been employed to derive the line-integral terms in the second line of the above relation, 
and that will improve the achievable accuracy of Finite-Volume method as compared to 
FDM." It is not true that 2nd line only comes from direct analytical integration. In fact, a 
finite difference approximation is being made. Consider for example just the first term in the 
integrand in Eq. (9). It should read  

 
You have to assume that the integrand doesn't change along z for the integral to be exact 
instead of approximate. It's fine to use this approximation of course, but it should be noted 
that it is an approximation. 
Your statement is correct. We have improved the presentation of Eq. (9) and added a proper 
explanation to justify this approximation as the followings:  
“In the above approximation, the analytical integration has been used to derive the line- 
integral terms. In the next step, we have assumed that new integrands (flux) do not change 
along integration paths. Equivalently, the average flux is assumed to be identical to the value 
of the flux computed at the center of the face [20]. It is important to note that, partial use of 
analytical integrations will improve the achievable accuracy of Finite-Volume method.” 

Note that we said “partial” in the last sentence of above explanation. 

3) In Fig. 9, the authors compare what they call population factors (ℱ#$/&(
'#()!
*"+

)) at different 
temperatures. This makes little since since the occupation of subband 𝑖 is proportional to.  
(𝑘,𝑇)$/&ℱ#$/&(

'#()!
*"+

) . Including the (𝑘,𝑇)$/&	 factors makes the comparison between 
temperatures more sensible.  
We thank the referee for this suggestion. We have incorporated the factor (𝑘,𝑇)$/& in the 
new manuscript in two figures. Firstly, newly named Fig. 10 (a) and (b) [previously was 
named Fig. 9 (a) and (b)]. Secondly, newly named Fig. 13 (b) [previously was named Fig 12 
(b)]. We kept the plots of the factor 𝑙𝑜𝑔(ℱ#$/&(𝑒-)) intact to offer readers the values of this 
factor in newly named Figs. 10 (c) and (d). In addition, we have modified the descriptions 
related to the Fig 10 in the manuscript as:  



 
“As a part of the n(x, y)’s characterization, we plotted the (𝑘,𝑇)$/&(ℱ#$/&(𝑒-)) in Figs. 10 
(a) and (b) to convey the contribution of each quantum state in the total electron density at 
three different temperatures. We plotted this factor for the first thirty states at T = 80 K and 
T = 4.2 K in Fig. 10(a), while the same factor is plotted at T = 4.2 K and T = 50 mK in Fig. 
10(b). We also plot the corresponding 𝑙𝑜𝑔(ℱ#$/&(𝑒-))  in Fig. 10(c) and Fig. 10(d), 
respectively. As shown by filled circles in Fig. 10(c), it is not quite distinguishable which 
states are filled and which states are empty at 80 K. This is why the predictor-corrector 
method needs more states (nQ > 40) to converge as compared to the case at lower 
temperatures. Based on Fig. 10(d), it is tempting to use only nQ = 8 at T = 50 mK, since the 
ℱ#$/&(𝑒.) is extremely small. While a setup with nQ = 8 did not converge, the same setup 
with nQ = 10 is converged regardless of the value of µe. This shows the importance of the 
factor (𝑘,𝑇)$/&. The FV-SP method with nQ = 10 also delivered a same set of subband 
energy and the same profile of electron density as the FV-SP method with nQ = 40 did. Thus, 
the numerical sensitivity to the choice of nQ is reduced at lower temperatures. In general, 
choosing appropriate nQ depends on the geometrical and material properties as well as the 
top gate voltage. Proper selection of nQ may require a trial test. An initial convergence test 
can be performed with an overstimulated guess for nQ. After the convergence has been 
achieved, the values of (𝑘,𝑇)$/&(ℱ#$/&(𝑒-)) can be inspected to estimate which states are 
significantly contribute to the electron density and which are unnecessary.” 
 

We have also modified the description related to Fig.13(b) as: 

Furthermore, evolution of the factor (𝑘,𝑇)$/&(ℱ#$/&(𝑒-)) due to the increase of the top 
gate voltage are plotted in Fig. 13(b).  

4) When making figures where comparisons are being done, it's a good idea to use the same 
scale on the color bars. For example, Fig. 6 (a) and (b) are results for the same problem using 
the FV-TF and FV-SC methods. Comparing these results is difficult since different color 
scales are used. Same with Fig. 8 (a) and (b). 
We thank the referee for this suggestion, and we have corrected the color range as requested.  
 
5) Minor comment: the typical word is bound states not bounding states.  
Thanks for commenting on this problem. Accordingly, all “bounding” replaced by 
“bound”. 
 
6) At several places, the authors mention the smallness of quantities in SI units. The solution 
to this is to use units more natural to the problem. For example, using nm instead 
of meters. 
With the Scaling section, we wanted to emphasis that it is a good idea to map nm scale into 
the meter scale. To increase the clarity, we have modified the explanations for the self-
consistent electron density on Eq. (6) in terms of units “length-1” and “length-2” and not 
necessary by unit “m-1” and “m-2”. We have also changed m-1 to “length-1” on the explanation 
of one-dimensional electron density, 𝑛$/, in Eq. (33). In the results section, the real geometry 
is shown in nm scale while we have presented the self-consistent and Thomas-fermi electron 
densities in the unit m-3, the 𝑛$/ in the unit m-1 and wavefunctions in the unit m-1 to emphasis 
that we indeed have employed the scaling length 𝐿"0 = 10#.. We did not express electron 



densities as conventional (e.g., cm-3), since the current work is a theoretical study and it does 
not focused on experimental data. To emphasis on this point even more, we have added to 
following sentences to sections 3.1 and 3.2:  
“Note that in the scaled geometry, mesh sizes vary between 4 m and 0.75 m.” 

“Note that, the n(x, y) is expressed with the unit m−3 since we factored out the nanometer 
scale on the scaling processes (see subsection 2.4).” 


