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Abstract

I describe how simulations of lattice QCD using the path integral formulation provide the
two basic quantum mechanical properties of QCD, its ground state in which correlation
functions are calculated, and Fock state wavefunctions between which matrix elements
of operators are calculated. Both constructs are stochastic, so unfortunately one gets no
intuitive picture or even qualitative understanding of what they look like, nevertheless
they contain and display all the subtleties of the quantum field theory. Today, these sim-
ulations provide many quantities that are impacting phenomenology and experiments.
I illustrate the methods and the steps in the analysis using, as examples, three observ-
ables: the isovector charges of the nucleon, the contribution of the quark’s intrinsic spin
to the nucleon spin, and the pion-nucleon sigma term.

Contents

1 Lattice QCD 2

2 Correlation Functions and Observables 3

3 Renormalization of operators 5

4 Nucleon Correlation Functions 6

5 Isovector charges of the Nucleon 7

6 Contribution of the spin of the quarks to Nucleon Spin 9

7 The pion nucleon sigma term 10

8 Conclusions 11

References 12

1

https://doi.org/10.21468/SciPostPhysProc.?


SciPost Physics Submission

1 Lattice QCD

The field of lattice QCD (LQCD)—the theoretical rigorous path integral formulation of QCD
discretized on a 4D hypercubic grid by Wilson, and formulated to provide non-perturbative pre-
dictions [1]—has come of age. This formalism converts quantum field theories into statistical
mechanics systems, for example, the 3+1 dimensional QCD in Minkowski time becomes, after
a Wick rotation to Euclidean time, a classical system of gluon and quark fields on a 3+1 dimen-
sional lattice in Euclidean time (see Fig. 1). Numerical simulations of it [2] are providing first
principle results with control over all systematic uncertainties for a large number of physical
observables that elucidate the standard model and probe physics beyond it. The Flavor Lattice
Averaging Group (FLAG [3]) provides a community based evaluation of quantities that are con-
sidered robust [4, 5]1 With improvements in numerical algorithms and increasing computing
resources, the errors on these quantities are being reduced steadily, and many more quantities
are being added to the list. At the same time, the need for new ideas for a big leap forward
is also evident. In this writeup, I will present an ideosyncratic mixture of topics, starting with
explaining what simulations of LQCD give us, and then highlight successes and, at the same
time, the need for new ideas for subpercent precision predictions of the properties of nucleons.
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Figure 1: (Left) Discretization of QCD on a hypercubic lattice with quark fields
placed on sites and the gluon fields Aµ(x) on directed gauge links via SU3 matrices

Ux ,µ = eiagAa
µλ

a
where g is the gauge coupling and λa are the Gell-Mann matrices.

The lattice theory preserves the gauge invariance of the continuum theory. (Right)
Illustration of the path intergral formulation of quantum mechanics of a particle mov-
ing between points A and B. Each path i has coordinate x i at time t and is weighted
by eiAi , where Ai is the action. All possible paths connecting A and B contribute.

Let me begin with a brief recap of the path integral formulation of a particle moving in
time. Figure 1 (right) illustrates some of the paths that contribute to the quantum mechan-
ical amplitude for the particle to go from point A to point B. In fact all paths one can draw
between those two points contribute. Each path has a weight eiA, where A is the action along
that path. The paths interfere and, typically, the one with the smallest action gives the largest
contribution. In the classical limit, this path converges to that predicted by Newton’s equa-
tions. The mean value of an observable, say the position x at a prescribed time t is given by

1The chapter on Nucleon Matrix Eelements in these reports provides an introduction to the many issues relevant
to the calculation of nucleon matrix elements discussed below and contains an extensive list of references for the
interested reader. Very often I will just refer to the FLAG reports with the assumption that a list of pertinent
references are already collected there.
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the expectation value
∑

n xneiAn/
∑

i eiAn where xn are the values of the position at time t on
each path n. Using this example, I now motivate how simulations of lattice QCD give us the
analogues of the “paths”, the correlation functions corresponding to observables such as x ,
and the wavefunctions within which matrix elements of observables can be calculated.

In simulations of lattice QCD (LQCD), and of gauge field theories in Euclidean time in
general, the analogue of the paths are gauge configurations. Each LQCD configuration Ci is a
specification of the 12 independent entries in each SU(3) matrix, Ux ,µ, assigned to each link of
the lattice (see Fig. 1. The Ci have a weight e−Ai , where Ai is the Euclidean QCD action calcu-
lated on that configuration. It is a functional of all the Ux ,µ. Note, the quark fields are formally
integrated out as discussed below, leaving only gauge fields as dynamical variables. Config-
urations are generated using Markov Chain Monte Carlo Methods with importance sampling
and the Metropolis accept/reject step [2]. Conceptually, this algorithm for the generation of
the Ci is the same as used in the classical simulations of spin models, however, simulations
are computationally expensive because on a 1004 lattice, there are 4× 12× 108 independent
variables that specify a Ci (entries in all the SU(3) link matrices) and evaluating the action A
is expensive. The full set of the Ci (called an ensemble) and their associated Ai provides us
the fully quantum mechanical ground state of the field theory, albeit stochastically since only
a finite Ci are sampled in practice. The action A is characterized by the input parameters of
the simulations: quark masses mi with i ∈ {u, d, s, c} flavors, lattice spacing a (equivalently
the gauge coupling via dimensional transmutation) [2], and the lattice volume L3 × T .

The full set of configurations are the same independent of the action, A(mi , a) and depend
only on the number of gauge links and the values they can take, i.e. on the lattice volume.
There are∞2 of them: infinite number of variables in the limit the volume L3× T →∞, and
each variable is continuous valued between {−1, 1}. If even a significant subset of these were
needed to calculate observables, precision would not be achieved.

2 Correlation Functions and Observables

Observables O are obtained from ensemble averages of correlation functions Γα measured on
the Ci . These are again given by the expectation values

∑

i Γαe−Ai/
∑

i e−Ai . What saves us from
not having to consider the∞2 configurations is that the weight e−A is so very highly peaked
about the minimum of A that 103 − 107 (depending on the observable) importance sampled
and statistically independent configurations suffice to yield expectation values with sufficient
precision. The location of the peak of the distribution (minimum of A) changes with the input
parameters, i.e., with A(mi , a, L).

In practice, data (expectation values of correlation functions) are obtained on many en-
sembles with different {mi , a, L} so that the limits a → 0, mi to their physical values set by
the experimental values of the masses Mπ, MN , MΩ and MD, and L → ∞ can be taken to
obtain physical results. Typical of current simulations, ms and mc , being sufficiently heavy, are
already tuned to their physical values before starting production, and only mu,d are varied.
In the isospin symmetric limit, mu = md , it is typical to represent the common light quark
mass mud by the corresponding value of Mπ, again tuned before starting production runs. To-
day, we can perform simulations at Mπ = 135 MeV, but very often data are also obtained at
a number of heavier values of mud , (equivalently Mπ) and then extrapolated to Mπ = 135
MeV using ansatz motived by chiral perturbation theory. These ideas will be illustrated by the
calculations/results reviewed later.

An essential simplification, in fact one that allows simulations of QCD on classical comput-
ers in the first place, is that the fermion action,

AF = ψ̄Dψ= ψ̄(γµAµ +m f )ψ→ ψ̄(x + aµ̂)(γµUx ,µ)ψ(x) +m f ψ̄(x)ψ(x) , (1)
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is bilinear in the quark fields where D is the Dirac operator. They can be integrated out ex-
actly from the path integral but impact the A(mi , a, L), thus the position of, and fluctuations
about, the peak of the distribution specifying the ground state. The location of the peak in
the distribution e−Ai includes the contribution of the determinant of the Dirac action, DetD f ,
for each flavor f (which requires only the Ux ,µ for calculation), i.e., the Boltzmann weight be-

comes
∏

f (DetD f ) e−AG = e−AG+
∑

f LnDetD f where AG is the gauge action. Including this highly
non-local determinant in the simulations makes them expensive but does not pose a formal
obstruction.

I now illustrate how correlation functions of operators composed of quark fields are calcu-
lated even though we have integrated them out formally. Consider 2- and 3-point correlation
functions involving time-ordered product T of the pion and the axial current:

Γ 2
π = 〈 T (d̄γ5u|τ ūγ5d|0) 〉; Γ 3

π = 〈 T (d̄γ5d|τ d̄γµγ5u|t ūγ5d|0)〉 , (2)

with the assumption that all three operators have been projected to zero momentum for sim-
plicity, thus leaving only the time index. The notation 〈 · · · 〉 implies ensemble average over
the Ci . At the same time as integrating out the quarks, one can perform a Wick contraction of
the fields to get

Γ 2
π = 〈 SF (0,τ)γ5SF (τ, 0)γ5 〉; Γ 3

π = 〈 SF (0,τ)γ5SF (τ, t)γµγ5SF (t, 0)γ5〉 (3)

where SF = D−1 is the Feynman propagator given by the inverse of the Dirac matrix on that
configuration. (This inverse is calculated using iterative Krylov solvers). Now using the her-
miticity property of the Dirac action and its inverse, SF (0,τ) = γ5S†

F (τ, 0)γ5, we get

Γ 2
π = 〈SF (0,τ)S†

F (0,τ)〉; Γ 3
π = 〈SF (0,τ)S†

F (τ, t)γµγ5S†
F (0, t)〉 (4)

Thus the Wick contraction has replaced quark fields in terms of SF = D−1, which depend
only on the gauge links. In short, both in the generation of the configurations and in the calcu-
lation of correlation functions, the quark fields have been removed exactly. The expressions in
Eq. 4 for the pion are the quark line diagrams shown in Fig. 2, whose expectation value gives
the desired non-perturbative correlation functions.

Fock space wavefunction with pion quantum numbers at operator 
insertion time t. Excited states suppressed by the factor !!

"

!#
" 𝑒" #!"#$ $

𝑢𝛾!𝛾"𝑑

Figure 2: Illustration of quark-line diagrams for 2-point (left) and 3-point for the pion
(middle and right). The gluon lines are just for illustration and to remind the reader
that all orders of gluon exchanges are implicit in these diagrams. (Right) The axial
current, shown by

⊗

, is inserted at intermediate Euclidean time t and with momen-
tum ~q. The ensemble average in LQCD simulations creates the stocastic Fock state
wavefunction, indicated by the pink band at time t, and the operator causes tran-
sitions between the various “pion” states present, i.e., gives us the matrix elements.
Using Eq. (5), we extract the pion’s axial form factors from this correlation function.

The question I hope you are dying to ask is how does the quark propagator, SF , calcu-
lated on a given configuration and combined to form the quark-line diagrams shown in Fig. 2,
know anything about the non-perturbative propagation of the pion or any of the thousands of
possible states of QCD, the analogous quark-line diagrams for which are obtained by simply
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changing the interpolating operators. As already explained, the interpolating operators cre-
ate states with given quantum numbers, for example d̄γ5u or d̄γ0γ5u for the pion, that are
propagated in time by the transfer matrix. The non-perturbative properties of the state and
its dynamics arise from the coherent addition of those gauge fluctuations on each configura-
tion that correspond to a pion propagating. The miracle (actually a dictate of quantum field
theory) is that these fluctuations get picked up and add in the ensemble average. In short,
the frothing vacuum has all possible fluctuations present, and the ensemble average picks up
those that conform to the quantum numbers of the created state.

An interesting aside is that Γ 2
π = 〈|SF (0,τ)|2〉 in Eq. 4 is a positive definite quantity. So you

may ask–how can averaging over only the small “working ensemble” give a precise unbiased
result? The answer lies in the fact that configurations importance sampled according to the
Boltzmann weight e−A do an excellent job of approximating the full ensemble (path integral).
Clearly, to improve statistical precision, one needs to enlarge the “working ensemble”.

Now we come to the last part of the introduction to LQCD–how does one get physics from
correlation functions such as those in Eq. 4? For this we invoke the spectral decomposition
of Γ 2

π and Γ 3
π, i.e., inserting a complete set of states at each intermediate time step, with the

evolution between steps given by the transfer matrix. The result is

Γ 2
π =

∑

i

|〈0|π̂i|π〉|2 e−Eiτ; Γ 3
π =

∑

i, j

〈0|π̂|πi〉∗ e−Ei(τ−t)〈πi|Âµ|π j〉e−Ei(t−0)〈π j|π̂|0〉 , (5)

where π̂ is the pion interpolating operator, and the sum over {i, j} is over all the states of the
Transfer matrix with the quantum numbers of the pion. Such decompositions of Γ n hold for
all states. Simply replace the symbol π by the state of interest. By fitting Γ 2

π versus τ, we can
extract the amplitudes, |〈0|π̂|π〉|2 and the energies Ei for all the "pion" states that couple to π̂.
In the limit τ→∞, only the ground (lowest) state contributes, and for π̂= d̄γ0γ5u, one gets
from Γ 2 the pion decay constant Fπ since |〈0|π̂|π〉|2 = F2

π, and its energy Eπ. Thus 2-point
functions give us the amplitudes for creating the sate and the spectrum of the theory (actually
of the Transfer Matrix in finite volume).

Next, consider Γ 3
π. It has an additional operator, Âµ, sandwiched between the pion creation

and annihilation operators, i.e., the current interacts with a propagating pion at time t and the
strength of this interaction is given by the matrix element, 〈πi|Âµ|π j〉. This matrix element of
the axial current between pion states can be isolated from the fit to Γ 3

π|τ→∞ since all the other
terms, can in principle, be determined from the fit to Γ 2

π. It is easy to check that in the limit
that only the ground state contributes (large τ), the matrix element is given by the ratio Γ3/Γ2.

If any two operators in Eq. 4 are projected to ~p = 0 (LQCD conserves momentum), then
we get the axial charge of the pion. If the axial operator inserts momentum ~p and one of the
pion interpolating operator removes it, we get the axial form factor describing the semileptonic
decay of pions.

Once such data (amplitudes → decay constants, energies Ei and matrix elements) are
generated at a number of values of {mi , a, L}, physical results for that observable are obtained
by extrapolation: taking the limits Mπ→ 135 MeV, a→ 0, and L→∞ using physics motivated
ansätz. This extrapolation is common to all LQCD calculations. I present examples below.

3 Renormalization of operators

We can write down a number of lattice operators, however, results for observables in the con-
tinuum limit should be the same. At finite a they have different discretization errors and give
different values over and above the difference in the amplitudes, such as 〈Ω|Ôi|π〉. Lattice
renormalization factors, Z i

O, relate the different Oi at a given a, and their scaling behavior as
a→ 0. Results using renormalized operators, say Z i

AAi
µ, should agree in the continuum limit.
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The experimental results presented by phenomenologists typically use a scheme such as
MS and a convenient scale such as 2 GeV above which perturbation theory is considered
reliable. To translate the lattice result to the MS scheme at, say, 2 GeV is a two step pro-
cess. First one calculates the lattice factors Z i

O in some scheme (currently two popular ones
are the regularization independent [symmetric] momentum schemes labeled RI-MOM and
RI-sMOM [6, 7]), and a second calculation that relates them to MS that is typically done in
the continuum using perturbation theory, as is the factor for running in the continuum to a
specified scale.

For the calculations described here, the renormalization factors are well-determined. For
many other operators, such as the Weinberg and quark chromo EDM operators of dimension
6 and 5, respectively, there have divergent mixing with lower dimension operators, and con-
structing the finite renormalized operators to use in simulations is very non-trivial [8]. For
these two operators, it is still an open problem.

4 Nucleon Correlation Functions

The quark line diagrams for the nucleon 2- and 3-point functions are shown in Fig. 3. Formally,
the mechanics of the lattice calculation is very similar to that for the pion, however there are
two very important differences:

• The signal to noise ratio falls exponentially as ∼ e−(EN−1.5Mπ) in all nucleon correlation
functions. Typical data show that for Γ2 a good signal extends to about 2 fm and for Γ3
to about 1.5 fm with O(106) measurements [9].

• The spectrum of the towers of multi-hadron excited states, Nπ, Nππ, . . ., labeled by
relative momentum ~p, begin at about 1200 MeV. For a number of matrix elements these
excited states give enhanced contributions that are still large at 1.5 fm. Removing these
excited-state contributions (ESC) is still a work under progress for many observables.

To determine various quantities, we use appropriate probes. Changing the operator to a
scalar, Ŝ = d̄u or tensor, T̂ = d̄σµνu, gives us nucleon’s scalar and tensor charges that are also
probed in precision measurements of neutron decay distributions [10]. One link operators give
us the momentum fraction, helicity and transversity moments [11]. And the list continues.

Having laid out, hopefully, an intuitive foundation, I now discuss three calculations in order
of increasing complexity.

τ

Vµ, Aµ

τ

t

Vµ, Aµ

τ

t

Figure 3: Illustration of quark-line diagrams for 2-point (left), connected 3-point
for vector and axial operators ūγµd and ūγ5γµd (middle), and the additional
disconnected contributions to matrix elements of flavor diagonal axial and vector
operators q̄γµq and q̄γ5γµq (right). The operator, axial/vector, current, is inserted
at intermediate Euclidean time t and with momentum insertion ~q. From this
correlation function we get the axial/vector form factors of the nucleon.
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5 Isovector charges of the Nucleon

The iso-vector axial, scalar, tensor charges of the nucleon, gu−d
A , gu−d

S , and gu−d
T , probed in the

N → P decay, are extracted from Γ3(~p = 0), i.e., from the forward matrix element

〈P(p = 0, s′)|ZO ūXOd|~q=0|N(p = 0, s)〉= gO ūP(0, s′)XO uN (0, s) . (6)

with XO = γµγ5, 1, σµν specifying the insertion of the axial, scalar and tensor operators
at zero momentum transfer. For iso-vector charges in the isospin symmetric limit, only the
connected quark line diagram in the middle panel in Fig 3 contributes. (Even for 〈N |O|N〉, the
disconnected contribution cancels between the insertions on the u and d quarks.)

The data in Fig. 4 for gu−d
A from a {a = 0.071fm, Mπ = 170MeV} ensemble (see Ref. [9])

illustrate what the presence of ESC does. The data (same in the two panels) display the fol-
lowing features of the ESC and our goal is to understand and reliably remove them.

• The variation of the data with t and τ is a result (demonstration) of ESC. In the limit
τ− t and τ→∞, the data should be flat and lie on top of each other, i.e., independent
of τ and t, particularly near t −τ/2, i.e., away from the source/sink.

• The data should be symmetric about t −τ/2 because Γ 3 is. The statistical quality of the
data for τ= 19 (=1.35 fm) is already borderline in this respect.

• The convergence of the data with τ for fixed t is monotonic and from below. This shows
that ESC causes gu−d

A to be underestimated.

• The ESC is removed by fitting the data for the three largest values of τ using the spectral
decomposition given in Eq. 5. The fit shown includes 3 (ground plus two excited) states.
The value for the ground state matrix element, given by the fit, is shown by the grey band.

• The data in the two panels are the same. The fits differ in the energy of the first excited
state used. In the left panel it is the output of the fit to Γ 2 while in the right, the energy
of the lowest Nπ state with relative momentum (0,0, 1), is input using a narrow prior
since it contributes at one loop in χPT.

• The ground state value given by the two fits is different but the augmented χ2/do f of
the two fits are comparable. This shows that the current data are not at sufficiently large
τ (or precise enough) to allow us to choose between the two fits.

• The two first excited-state energies, E1, selected are, physics wise, reasonable options:
the first is given by the fit to Γ 2 and lies close to the N(1440), while in the second fit
we input, N(0, 0,1)π(0, 0,−1). But so does N(0, 1,1)π(0,−1,−1) and the rest of the
tower contribute. In fact, all states with the same quantum numbers contribute! What
we do not know, a priori, are the amplitudes, and thus the size of the contribution of
each possible excited state. In short, the statistical precision of the current data allow
fits with three states, however, these fits show thatthere are large regions in E1 and E2
that give similar χ2/do f but give significantly different extrapolated values.

Bottom line: Until the data are good enough to distinguish between fits with different num-
ber or combinations of plausible excited states, and lacking a theoretical reason for a particular
choice, the difference between the extrapolated values with different possible excited states
can be regarded as an estimate of the systematic uncertainty due to ESC. In the data shown
in Fig. 4, a factor of 10X increase in statistics will allow similarly precise data for τ = 23, at
which point we will be able to, I believe, resolve between the two fits.
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Our data suggest that the uncertainty due to including the N(0,0, 1)π(0,0,−1) state or
not could be a ∼ 5% effect in gu−d

A , but is much smaller in gu−d
S or gu−d

T [9]. At this point in
time, controlling ESC is the key outstanding systematic for achieving subpercent precision in
the prediction of the isovector properties of nucleons.

t − τ/2

τ : ∞ 19 17 15 13
1.2

1.3

1.4

1.5

1.6

-10 -5 0 5 10

ΔM1 = 0.18(5)
χ2/31 = 1.26, p = 0.15
gA = 1.414(34)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
1.2

1.3

1.4

1.5

1.6

-10 -5 0 5 10

ΔM1 = 0.12(1)
χ2/31 = 1.32, p = 0.11
gA = 1.479(38)

071m170

{4Nπ,3∗}

Figure 4: Data for the ratio Γ 3
A /Γ

2 with the insertion of the axial current at ~p = 0
shown as a function of the displaced operator insertion time t − τ/2. Data for
different values of the source-sink separation τ are shown with different colors.
Result for the ground state (τ → ∞ limit) given by a 3-state fit to the spectral
decomposition of Γ 3

A is shown by the grey band, and for different values of τ by lines
of the same color as the data.

The illustration of the next step in the analysis using the gu−d
A data is the chiral-continuum-

finite-volume extrapolation using a simultaneous fit in {Mπ, a, MπL} shown in Fig. 5. The
methodology is the same as described in [9], except we now have data on 13 ensembles with
different {Mπ, a, MπL} with mud specified in units of Mπ. For the three iso-vector charges, the
lowest order corrections in each of these variables is given by [9]

g(a, Mπ, MπL) = c1 + c2a+ c3M2
π + c4

M2
πe−MπL

p

MπL
. (7)

The ansätz depends, in general, on the lattice action and the observable. Each panel in Fig. 5
shows the result of this fit versus a single variable with the other two set to their physical values.
For example, the panel plotted versus a takes the simultaneous fit to Eq. 7 to determine the ci ,
and then sets Mπ = 135 MeV and MπL→∞. This gives the pink band. The data plotted are,
however, not shifted in the other two variables, which is why the fit does not fall on the data.

Features worth remarking are

• For the 2+1-flavor clover-Wilson action we have used, the value of gu−d
A decreases as

a→ 0, i.e., the slope with respect to a is positive.

• The value of gu−d
A increases as Mπ→ 0.

• The dependence on a and Mπ is largly independent of each other, with opposite slopes.

• There are no significant finite volume corrections observed for MπL > 4. This welcome
feature has been observed in all calculations involving single nucleons.

Such simultaneous fits are now routine for getting physical values for all observables.
Phenomenologically, the most interesting of the isovector charges is the axial charge, gu−d

A ,
which has been extracted from experiments with high precision, gu−d

A /gV = 1.2754(13) [12].
The precision and robustness of lattice results have increased over the last decade, but my
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conclusion, in light of possible unresolved ESC of multihadron states such as the Nπ that
can cumulatively be as large as ≈ 5%, is we need to better quantify and remove the ESC
contributions before we can claim sub-percent precision.
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Figure 5: The result of the simultaneous chiral-continuum-finite-volume extrapola-
tion of the gu−d

A data shown by the pink band and plotted versus the lattice spacing a
(left), pion mass Mπ (middle), and lattice size MπL in units of Mπ (right). The grey
band in the middle panel shows a simple chiral fit, i.e., with c2 = c4 = 0 in Eq. 7.

6 Contribution of the spin of the quarks to Nucleon Spin

Using Ji’s gauge invariant decomposition 1/2 =
∑

q=u,d,s,c

�

∆q/2+ Lq

�

+ Jg [13], where Lq is
the quark orbital and Jg the gluon total angular momentum, the contribution of the intrinsic
spin of a quark with flavor q,∆q/2, to the proton spin is given by a relation very similar to Eq. 6:

〈P(p, s′)|ZA q̄γµγ5q|P(p, s)〉= gq
A ūP(p, s′)γµγ5 uP(p, s) . (8)

with ∆q = gq
A and u and ū are the quark spinors. Because the operator is diagonal in flavor,

there is now an additional Wick contraction in which the operator forms a closed loop as illus-
trated in the right panel in Fig. 3. This is called a “disconnected diagram”. The full contribution
to gq

A is the sum of the connected (middle) and disconnected (right) quark line diagrams.
The calculation of disconnected diagrams introduces a new layer of computational cost.

The straightforward solution to calculate the momentum projected quark loops with operator
insertion on all time slices is to calculate the all-to-all propagator. This is impractical as it
constitutes a (12 · 108)× (12 · 108) complex matrix for a 1004 lattice. The solution has been
to construct a stochastic estimate. This approach works well, is bias-free but introduces addi-
tional statistical uncertainty due to the stochastic estimation of the disconnected quark loop
whereas the calculation of the connected quark-line diagrams is exact upto matrix inversion
precision for SF . This uncertainty in the measurement of the loop on each configuration gets
convoluted with that due to gauge fluctuations in the ensemble average. Methods such as
deflation and bias-corrected truncated solver methods have allowed the reduction in errors in
the disconnected contributions to be of the same size as in the connected, however, since their
central value is smaller they contribute a larger fraction to the overall error.

The steps in the analysis of these data to get physical results are the same as for the isovector
case described in Sec. 5. Post this analysis, I show our PNDME results (2018 and 2022 (prelim-
inary) for gu

A, gd
A , gs

A along with those from different collaborations in the FLAG format [4,5].
In the FLAG review process, results that pass the criteria for control over discretization errors,
finite lattice volume, renormalization and ESC, and obtained sufficiently close to physical pion
mass (or extrapolated to Mπ = 135 MeV), are then averaged with appropriate consideration
given to possible correlations between results and the overall error assigned. These results are
presented as FLAG averages [4,5].

Our results, (PNDME 2018 and 2022 (preliminary)), give
∑

q∆q/2 =
∑

q gq
A/2 = 0.14(3)

that is in good agreement with the COMPASS result 0.13<∆Σ/2< 0.18 [14].
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Figure 6: Comparison of results for flavor diagonal axial charges of the nucleon in
the FLAG format [4, 5] obtained by different collaborations ( PNDME ’22 [15] ETM
’19 [16], PNDME ’18 [17] Mainz ’18 [18], χQCD 18 [19], JLQCD ’18 [20], ETM
’17 [21], χQCD 15A [22], Engelhardt ’12 [23]). The points with filled squares meet
the FLAG criteria for inclusion in the FLAG average. The contribution to the nucleon
spin from quarks with flavor q is ∆q/2= gq

A/2.

7 The pion nucleon sigma term

The pion–nucleon σ-term, in the isospin symmetric limit mud = (mu +md)/2, is defined as

σπN ≡ mud gu+d
S ≡ mud 〈N(k, s)|ūu+ d̄d|N(k, s)〉 . (9)

The calculation of mud is done separately. It is a fundamental parameter of QCD that quantifies
the amount of the nucleon mass generated by having u- and d-quarks with non-zero mass. In
this direct method, we calculate the scalar charge gq

S , which is determined from the forward
matrix element of the scalar density q̄q between the nucleon state:

ūN (0, s)gq
SuN (0, s) = 〈N(k= 0, s)|ZS q̄q|N(k= 0, s)〉, (10)

where ZS is the renormalization constant and the nucleon spinor has unit normalization. The
scalar charge, gq

S , determines the coupling of the nucleon to any scalar mediator with quark
content of the coupling given by q̄q. It enters in the search for physics beyond the Standard
Model (SM), including in direct-detection searches for dark matter scattering off nuclei via a
scalar mediator, lepton flavor violation in µ → e conversion in nuclei and in electric dipole
moments. The calculation of gq

S (and of gq
T ) is simular to that discussed above for gq

A, and
note that gq

A give the spin dependent couplings.
Figure 7 shows the data for gu

S + gd
S from a physical pion-mass ensemble [24]. Again the

two fits have very similar χ2/do f but the one with E1 from Nπ as the excited state gives
almost 50% larger value. Our χPT analysis given in Ref. [24] shows that there are two sig-
nificant ESC, one from Nπ and the other from Nππ. These two states are almost degenerate
in our lattice calculation, so they effectively contribute as one, i.e., their amplitudes in the
spectral decomposition would add as the exponential factors are very similar. The right panel
in Fig. 7 shows pictorially why the Nπ state makes a large disconnected contribution because
the scalar current has a large coupling to the quark loop, and the quark-line diagram favors a
Nπ configuration.

The two analyses with different values of E1 led to an interesting conundrum. The stan-
dard analysis (with E1 ∼ 1450 MeV) gave σπN ≈ 40 MeV consistent with previous lattice
analyses [4, 5], whereas the analysis with E1 = ENπ ≈ 1230 MeV gave σπN ≈ 60 MeV, which
is consistent with the dispersive analysis starting with the Nπ scattering data [24]. Our pre-
ferred solution is the latter based on the χPT analysis. In that case the tension between LQCD
and phenomenological estimates is resolved.
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Clearly, the 50% difference between the two analyses with similar χ2/do f calls out for ad-
ditional LQCD calculations to be done to confirm this exciting result. The key point for future
calculations of σπN , using either the direct method of calculating the charge gS via the ma-
trix element from Γ 3 or using the Feynman-Hellmann relation (derivative of the nucleon mass
with respect to the quark mass), is that they have to be done close to Mπ = 135 as only there
the Nπ state becomes much lighter than N(1440) and the ESC is very different and manifest.
Data with Mπ > 200 MeV do not give significantly different results between the two kinds of
fits. Thus, extrapolation from heavier Mπ ensembles will miss this physics.

∞ 16 14 12 10 8
4

6

8

10

12

14

-10 -5 0 5 10

a09m130 {4,3∗}

∞ 16 14 12 10 8
4

6

8

10

12

14

16

18

20

-10 -5 0 5 10

a09m130 {4Nπ,3∗}

N N
𝜋

N

Figure 7: (Left) Fit to get the ground state value for the scalar charge gu
S + gd

S using
the first excited state energy from Γ 2; (middle) the noninteracting energy of theNπ
state; and (right) the disconnected diagram that is enhanced.

8 Conclusions

Simulations of LQCD provide ensembles of importance sampled configurations whose dis-
tribution according to the Boltzmann factor DetDe−AG = e−AG+LndetD constitutes the non-
perturbative ground state of QCD. This construction is exact (bias-free) but stochastic. These
ensembles are characterized by the input parameters {mi , a, MπL}. Correlation functions of
any time-ordered string of operators are given by quark-line diagrams obtained using Wick
contraction. Properties of QCD (spectrum, matrix elements, EoS, etc) are extracted from the
expectation values, i.e., ensemble averages, of these correlation functions. The full excursion
(possible “paths”) of the quark propagators (and values of link parameters for non-local and
gluon operators) in the quark line diagrams over 3-space but at a fixed intermediate time pro-
vides a full Fock space wavefunction, i.e., it includes all states with the same quantum numbers
as the interpolating operator. The propagation of each of these states in Euclidean time τ is
damped as e−Enτ, allowing the ground state with energy E0 to be isolated in the limit τ→∞.
Once again, this stochastic description of the wavefunction provides no intuition or visualiza-
tion but allows the calculation of fully quantum mechanical matrix elements of any operator
within this state.

The reason LQCD is called a “black box” is because we cannot visualize or represent the
vacuum fluctuations or the wavefuctions that get created at intermediate times in the correla-
tion functions Γn. Nevertheless, the results obtained are rigorous, display all the subtleties of
QCD and confirm quantum field theory as describing quantum phenomenon in nature.

Three kinds of observables have been used to illustrate how LQCD calculations are done
and data analyzed. Looking ahead, precision calculations of nucleon correlation functions
need to overcome two challenges: the exponential degradation of the signal and how to re-
move all/most excited state contamination in the wavefunctions to get matrix elements within
the nucleon ground state from correlations functions calculated with finite source-sink sepa-
ration τ. The ESC in current data can be large as illustrated by the pion-nucleon sigma term.

The future is exciting – there is clear demonstration that LQCD has matured and results are
having an impact on phenomenology and experiments [4,5]. Methodology and algorithms for
many calculations are robust, however, brute force approach to nucleon correlation functions
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for sub-percent precision by increasing the statistics is unlikely to succeed in the next 5 years.
It is, therefore, time for innovation–new methods and algorithms to reduce systematics and
increase statistics efficiently.
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