
Response to referee 1

Zhengyan Darius Shi, Dominic Else, Hart Goldman, T. Senthil

Jan 3 2022

1.

As the authors stated, there is a discrepancy between N > 1 and N = 1. Is this a sharp
discontinuity? The condition for Eq.(1.5), the main result of this paper, is ω1/3N � 1 (take
z = 3 for example). So it seems that even when N is order 1 the incoherent part is still there.

We thank the referee for pointing out this subtlety in the interpretation of our results. We have
added some clarification in the introduction, which we summarize below.

The anomaly arguments apply only in the case N = 1. The special feature in that case is
that in each patch the boson couples to the total intra-patch density. For any N > 1, this is
no longer the case. One presumes that non-trivial incoherent conductivity should be generic in
the absence of a mechanism suppressing it, so it seems likely that there will be scale-invariant
incoherent conductivity for any N > 1. However, the form of this incoherent conductivity at small
N is not accessible using our methods. Strictly speaking, the specific frequency scaling in Eq. (1.5)
is only valid for N � 1 and (ω/∆)1/3N � 1, where ∆ is some fixed energy scale related to various
coupling constants.

In any case, the key point is that the random flavor model at large N is not smoothly connected
to the model at N = 1. In principle, there could exist some intermediate critical Nc such that the
incoherent conductivity takes the form in Eq.(1.5) for N > Nc and becomes trivial for N < Nc.
We cannot rule out this possibility with our current methods.

2.

In Sec.3.2 the authors claim that the source of low energy anomaly is due to the necessity of
taking bosons into account for calculating the current vertex, where the form factor plays an
important role. Eq.(3.3) is obtained by extending k to k + A and expanding to linear order in
A. But in cases when the form factor g(k) does not contain linear in k term, does this anomaly
argument fail?

Indeed, the form factor g(k) is only a linear function of k in the case of a U(1) gauge field. However,
so long as ∇g(k) is not identically zero for all k, one can still perform the expansion

g(k + A) ≈ g(k) +∇g(k) ·A +O(A2) (1)
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and obtain Eq.(3.3). After integrating by parts and approximating ∇kψ
†(k + q/2)ψ(k − q/2) as

∇kρ(k), one then recovers Eq.(3.4).

3.

From Eq.(3.3) and (3.4), the current operator from the fermions are approximated by vF (θ)ñθ.
Will the conclusions be altered if keeping momentum dependence in vF in addition to the patch
index? Because such complete k dependence in vF (k) is important in using Ward identity
analysis.

Deep in the UV, we agree with the referee that an exact calculation of the conductivity requires
the complete k-dependence of vF (k). However, upon coarse-graining to the IR fixed point theory,
the UV current operator generally decomposes into a sum of scaling fields with increasing scaling
dimensions

JUV = J0 + J1 + . . . . (2)

Fixed-point contributions to the conductivity can be obtained by keeping only the scaling field J0
with the lowest scaling dimension. In the context of Section 3.2, we can think about Eq.(3.4) as
J0. The other scaling fields Ji>0 then correspond to additional terms in the expansion of Eq.(3.3)
in powers of k− kF (θ) in every patch θ. These additional terms give corrections to the incoherent
conductivity in Eq.(1.5) that are subleading in ω in the small ω limit.

4.

Is it possible to perform some numerical calculations for the patch model at N = 1 to justify
the claim by the authors?

In the N = 1 case, our claim is that the boson self energy Π(q = 0, ω) = D−1(q = 0, ω) saturates
to a constant value as ω → 0. This is indeed consistent with the findings of determinantal quantum
Monte Carlo (DQMC) studies in [Y. Schattner, et. al., ”Ising Nematic Quantum Critical Point in
a Metal: A Monte Carlo Study” PRX 6, 031028 (2016)]. The residual frequency dependence in
Π(q = 0, ω) at small ω found in the DQMC study likely comes from irrelevant operators included
in the lattice model that are outside the scope of our analysis.

As for the conductivity σ(q = 0, ω), the DQMC study [Lederer, et. al., ”Superconductivity
and non-Fermi liquid behavior near a nematic quantum critical point”, PNAS 114, 4905 (2017)]
finds a finite-width Drude peak at low frequency, which appears to be in tension with the sharp
δ-function Drude peak we found at finite T . We believe that the broadening of the Drude peak is
due to irrelevant operators in the lattice model that degrade momentum (e.g. Umklapp scatterings
are always present in the lattice model). A precise characterization of these irrelevant operators
would be needed to match the DQMC results in detail. Unfortunately our anomaly arguments do
not provide strong enough constraints on these effects.
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