
RESPONSE LETTER 
 

We would like to gratefully thank the Reviewers for their thorough study and valuable 
feedback which have been very helpful for us to improve the quality of our manuscript. 
Below is an itemized reply to each point raised by the Reviewers. The comments are 
reproduced verbatim in black, and the responses are presented in blue. We hope each 
query is addressed to the Reviewers’ satisfaction. 
 

Reply to Reviewer 1 (Hao Wang): 

This manuscript proposes distributing the computation of sub-gradients of the loss 
function of VQAs to multiple QPUs to speed up the wall clock time. As a 
straightforward approach applied extensively in classical machine learning, this idea 
has not been tested in QML. 
The authors show the anticipated wall-clock time speedup with simulated gate noises 
on a straightforward classification problem using a shallow hardware-efficient ansatz. 
Also, the authors prove the convergence speed of the gradient-based optimizer in the 
distributed setting has the same upper bound as in the traditional VQAs. 
Moreover, it is empirically illustrated that when the noise distributions differ 
significantly across local QPUs, the gradient-based optimizer's convergence speed is 
hampered quite a bit, for which the authors propose a rotation rule for averaging out the 
discrepancy of the noises across different QPUs. 
 

Reply: We gratefully acknowledge the Reviewer for his comprehensive summary of 

the manuscript.  

 

1. I think the theoretical part is not very satisfactory, primarily based on Ref. [44], as 

you pointed out in the paper. It is crucial to look at the structure of the noise closely, 

i.e., the covariance of the estimated partial derivatives, i.e.,  𝐶𝑜𝑣 (
𝜕�̂�

𝜕𝜃𝑖
,

𝜕�̂�

𝜕𝜃𝑗
 )("hat" 

means it is estimated with parameter-shift rule), due to quantum noises. In the 

traditional, centralized setup, this covariance is often used to mitigate errors (at least 

measurement errors) for the gradient-based methods. In the distributed setup, I 

presume that the covariance admits a block-diagonal structure (since local QPUs 

are independent), which should play a role in your analysis. 

 

Reply: We thank the Reviewer for raising this very important question. 

 

The covariance of the estimated partial derivatives does play an important role in 

mitigating error on traditional field. In particular, this method can usually be used for 

suppressing the error caused by using only part of the data instead of all of it during the 



mini-batch learning [arXiv:2002.03979 (2020)], or enhancing the generalization ability 

of data-parallel training [PMLR 162:18347-18377 (2022), arXiv:2205.09305 (2022)]. 

However, the parameter-parallel strategy proposed in our work does not split the data 

and therefore does not encounter these problems. 

 

Moreover, the error considered in our article is quantum noise, which is caused by 

factors such as decoherence of quantum devices. We know that characterizing and 

modeling quantum noise is extremely complex, and we choose the “worst-case” noise 

channel, i.e., the depolarizing channels in our work, which not only describes circuit 

noise, but also portrays measurement error. In Theorem 1, we discuss the convergence 

of PPD-VQA under depolarizing noise. This theorem is the theoretical guarantee that 

PPD-VQA can accelerate the training of VQAs, not a tool for error mitigation. 

 

As we mentioned in the Conclusion section, the PPD-VQA could be combined naturally 

with data-parallel training and the mini-batch learning. Thus, Reviewer 1' suggestions 

can indeed be considered further in these future combinations. We have included some 

discussion in the Conclusion section of the revised version for clarifying and providing 

the reader some suggestions for the future works. If the Reviewer has further comments 

(perhaps provides clearer references), we are happy to continue to revise to further 

improve the quality of the manuscript. 

 

2.  It is unclear what you meant by "convergence test." Is it nothing more than 
selecting a QPU u.a.r. and getting the accuracy score on the classification task? 

 
Reply: A quick answer is yes. The convergence test refers to selecting a QPU and 
getting the accuracy score on the classification task. 
 
The convergence test is necessary for two reasons: 1) It provides a criterion to 
determine when PPD-VQA can be stopped. In our example, the training of PPD-VQA 
terminates when the classification accuracy on training set reaches a certain percentage. 
This criterion could be changed according to specific machine learning task. 2) The 
ultimate goal of PPD-VQA is to obtain a high-performance trained model, which is 
composed of a quantum hardware and a trained parameterized quantum circuit. By 
implementing the convergence test, we can monitor the performance of the trained 
parameterized quantum circuit on the chosen QPU (as each QPU has different noise, it 
seems best to choose a fixed QPU) to ensure that the final parameterized quantum 
circuit will perform well on the chosen QPU. 
 
To make this part clear, we have added some explanations in step 2 on page 2. 
 



3. IMHO, the gradient compression part is superfluous, which is indeed a bottleneck 
in deep learning, where we have to face millions of parameters. However, in VQAs, 
we cannot afford that, correct? due to the current limitation of the hardware 
implementation and also to the theory that says barren plateaus will kick us out of 

the game if we have 𝑂(𝑝𝑙𝑜𝑦(𝑛)) layers (𝑛 is the number of qubits). Therefore, I 

do not think gradient compression is needed. (Yes, in table I, you show some 
compression results; but I think you are saving the communication cost from a small 
overhead). 

 
Reply: We thank the Reviewer for raising this very important point which indeed merits 
further discussions. We still maintain the view that gradient compression is useful for 
PPD-VQA, for the following two reasons, especially the second one: 
 
First, we agree with the Reviewer that the current distributed VQA is indeed immune 
with the problem of communication bottlenecks. However, for the future deep 
parameterized quantum circuit and large-scale datasets, the number of parameters may 
explode, leading to the role of parameter compression coming to the fore. Thus, the 
gradient compression strategy proposed here is in response to potential future 
possibilities. 
 
Second, gradient compression may help to mitigate errors in the experimental 
implementation of the PPD-VQA, due to the following two reasons: 1) For most 
quantum computing systems, it is not easy to implement the tiny angular rotations of 
single-qubit quantum operations with high precision. Gradient compression can avoid 
updates of tiny angles and thus potentially improve experimental accuracy. 2) As the 
frequency of updating parameters (especially those with small gradient changes) is 
reduced, the number of gate operations that need to be changed by the quantum device 
is consequently reduced and the accumulation of quantum operation errors is naturally 
suppressed.  
 
We added these discussions in the last paragraph on page 7 of the revised version. 
 
4. The most interesting aspect to me is Eq. (3), which writes down the biased of the 

estimated gradient on each local node/QPU. I think the author should investigate 
the relationship between the noise level and the bias term, which can drastically 
change the gradient direction if the noise is high and the magnitude of the sub-
gradient is small. 

 
Reply: As shown in the newly added Appendix B in the revised version, the 
relationship between the noise level and the bias term is 

𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚 ≤ (2 + 9𝜆𝜋)𝑝𝑖, 
where 𝑝𝑖 is the depolarizing probability of 𝑖 − 𝑡ℎ QPU, which can be calculated 
according to Eq. (1). 



 
It can be observed that the larger the noise, the larger the upper bound on the bias term. 

 

5. Also, in light of the above question, I wonder if the distributed scheme converges 
at all. Does the bias term also scale down with the diminishing sub-gradient/partial 
derivative when approaching the critical points on the quantum loss landscape? 
Otherwise, if the partial derivatives go to zero while the bias does not, we could 
have a serious problem. Maybe I overthink this part, as perhaps the bias is so tiny 
that it can be ignored. Please comment on this. 

 
Reply:  This is an interesting point, and we are happy to discuss it with the Reviewer. 
 
We should note that although we could simply interpret the estimated partial derivative 

[∇𝐿]𝑖,𝑗 under noise case as [∇�̅�]𝑖,𝑗 = [∇𝐿]𝑖,𝑗 + 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚, where [∇𝐿]𝑖,𝑗 is the ideal 

partial derivative without noise, the training process of VQA is to optimize the 

parameterized quantum circuit to make [∇�̅�]𝑖,𝑗  converge instead of [∇𝐿]𝑖,𝑗 . Thus, 

what we really care about is whether the whole composed of [∇𝐿]𝑖,𝑗 and 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚, 
[∇𝐿]𝑖,𝑗 + 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚 , can converge. Thus, from this perspective, independent 
consideration of the bias term may give us some information, but it does not directly 
correlate to whether the estimated partial derivative converges or not. For example, if a 
single-qubit gate in the parameterized quantum circuit rotates one degree more each 
time, this is a coherent noise, the training process of VQA could adaptively adjust to 
make the single-qubit gate rotate one degree less to compensate for this noise. Thus, in 
this case, the bias term would always be present, but the training of VQA would not be 
affected by the bias term. 
 
To conclude, we would like to point that the proved convergence of PPD-VQA in 
Theorem 1 is sufficient to address the Reviewer's query. 
 
6. Do you contemplate any error mitigation approach on each local node? 
 
Reply: We do not contemplate error mitigation approach on each local node. The 
reason is that we expect to explore the effect of noise during the training of PPD-VQA, 
and the introduction of error mitigation would complicate the problem. 
 
We know that error mitigation techniques could allow us to reduce the computational 
errors and then evaluate accurate results from noisy quantum circuits. The combination 
of error mitigation techniques and PPD-VQAs is a potential future work, which has 
been discussed in the conclusion section in the page 8. 
 
7. Please improve some usage of the language/jargon. 



* “...the estimates of the gradients of each parameter…” → the gradients/partial 
derivatives of the observable w.r.t. to each parameter. 
 
Reply: Corrected. 
 
* I don't like the notation used in the expression under “Step 1”. It is more standard in 

math to express it by 𝜽𝒊
(𝒕)

= (𝜃1+(𝑖−1)𝑛
(𝑡)

, 𝜃2+(𝑖−1)𝑛
(𝑡)

, ⋯ , 𝜃𝑖𝑛
(𝑡)

 ), 𝑛 = 𝑑/𝑀. 

 
Reply: Agreed and corrected. 
 
* Also, please define the loss function/expectation 𝐿 first (should simply take one 
sentence). 
 
Reply: We have defined the loss function 𝐿 before theorem 1 in the revised version. 
 

* ∇𝐿𝑖(𝜃(𝑡)) is confusing/non-standard to me, which immediately implies you have a 

sub-function 𝐿𝑖 of 𝐿. I assume this means the loss function is defined on a batch of 
data sets, correct? Please either provide an explicit definition thereof or use a more 
understandable notation. Provided that I understand it correctly, the gradient step 

should also be divided by the batch size, right? See equation 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 ∑ ⋯𝑖𝑗   

at the very bottom of page 3. 
 
Reply:  We thank the Referee for pointing this out.  
 

∇𝐿𝑖(𝜃(𝑡))  represents the sub-gradient which is acquired on 𝑖 − 𝑡ℎ  local node. 

Accordingly, we have used [∇𝐿(𝜃(𝑡))]
𝑖,𝑗

 to represent the 𝑗 − 𝑡ℎ component of sub-

gradient acquired on 𝑖 − 𝑡ℎ local node in the revised manuscript. 
 
* Please clarify if the random variables on the same QPU are independent, which is 
essential for the upper bound derived in the paper.  
 
Reply: We thank the Referee for pointing this out. The random variables in different 
expressions of gradient components are independent, we have clarified that in the newly 
added Appendix A. 
 
* “The similar convergence rate guarantees that PPD-VQA promises an intuitive linear 
runtime speedup concerning the increased number of local nodes” → you mean the 
speedup of the computation of the gradient, right? Please be very clear here. 
 



Reply: Yes, we refer to the speedup of the computation of gradient. We have rewritten 
this statement on Page 4. 
 
* “Even if the average noise of each quantum processor is the same, the noise 

environment of the qubits executing quantum circuits in different processors is unlikely 
to be consistent” → What do you mean by this statement? The hardware noise? But, 
then, why is this different from bullet point (1) you mentioned before this sentence? 
Also, please always provide references to such important messages. 
 
Reply: We thank the Referee for pointing this out.  
 
In general, the error rate 𝜀𝑖 of each qubit on a quantum processor is different, and we 

let the average error rate of the processor be 𝜀̅ =
1

𝑁
∑ 𝜀𝑖𝑖 , where N is number of qubits. 

Based on this definition, the point (1) refers to the case that different QPUs have 
different average error rate, while the point (2) refers to the case that different QPUs 
have the same average error rate, but the error rate per qubit in the processor may 
also be different.  
 
We have rewritten this statement at the end of the Page 2. 
 
In all, given what I have observed, I feel the paper is not mature enough for SciPost 
Physics, considering the acceptance criterion of the journal: 
-Detail a groundbreaking theoretical/experimental/computational discovery; 
-Present a breakthrough on a previously-identified and long-standing research 
stumbling block; 
-Open a new pathway in an existing or a new research direction, with clear potential for 
multipronged follow-up work; 
-Provide a novel and synergetic link between different research areas. 
 
Reply: We would like to thank the Reviewer for her/his helpful comments, which have 
helped us to further improve the quality of the manuscript. We believe that our work 
passes the bar for the acceptance criteria of SciPost for the following reasons: 
 
VQA is a promising near-term technique to explore practical quantum advantage on 
near-term devices. However, the inefficient parameter training process due to the 
incompatibility with backpropagation and the cost of a large number of measurements, 
posing a great challenge to the large-scale development of VQAs.  
 
Parallel training is a natural potential solution to this bottleneck. However, due to the 
presence of quantum noise, it remains unknown whether parallel training is 
effective, especially in the presence of differences in noise across QPUs. We not 
only prove the convergence of PPD-VQA, but also propose an efficient strategy, 
alternate strategy, to suppress the performance degradation caused by the difference in 



noise across QPUs. Our work makes parallel training of VQA in realistic noisy 
environments feasible, and thus open a new pathway in an existing research 
direction. Moreover, the efficient parallel training can lead to many applications in 
distributed scenarios, such as distributed quantum machine learning and federal 
quantum machine learning. Moreover, the PPD-VQA has good compatibility with other 
distributed strategies such as data-parallel and error mitigation techniques, to further 
improve the practicality of VQA. Thus, our work could provide potential for 
multipronged follow-up work. 
 
We hope that our point-by-point responses and concomitant changes to the manuscript 
make a convincing case now that our manuscript is suitable for publication in SciPost. 
 

Reply to Reviewer 2: 

The author brings forward an algorithm for variational quantum computing in which 
they parallelize the evaluation of gradients of the parameters over different quantum 
processing units (QPUs). The authors fairly and clearly state that the idea in itself is not 
groundbreaking, however, what makes this work interesting and useful is that they 
evaluate the performance of such parallelization in the presence of noise. It could be in 
fact possible that the idea would not work well when each QPU is noisy, and in its own 
way. 
The authors show that even in presence of noise there is a significant speed up from 
parallelization, and actually the noisy systems scale as well as the ideal one. 
For the case of QPUs with significantly different noise, the authors showed also that 
one can rotate through the QPUs used for different set of parameters, doing so 
"averaging out" the different noise scenarios for each set of parameters and thus 
performing in a more consistent way. 
They also evaluate the performance of gradient clipping, which they use to remove 
gradients which are too small and thus reducing the communication bottleneck. In this 
case they show that even reductions of 60% result in almost no change in the speed-up. 
 

Reply: We gratefully acknowledge the Reviewer for his/her comprehensive summary 

of the manuscript. 

 

Some comments: 
1) When introducing the issues faced by VQA, the authors do not mention barren 
plateaus, which are then mentioned in the conclusions. Is there a particular reason for 
this choice? 
 
Reply: We thank the Referee for pointing this out.  
 
The PPD-VQA we proposed is to accelerate the training process of VQA by using 
parallel training, but not to solve issue of the barren plateaus. To remove this 



misinformation, we have removed the discussion of barren plateaus from the conclusion 
section. 
 
2) Regarding the alternate training strategy, it seems to me that the more the setup is 
parallelized the closer becomes to the first training proposed. If this is true, it could 
imply that if one parallelizes more, he/she should not need the alternate training. What 
do the authors think about this? 
 
Reply: The alternate training is to suppress the performance degradation caused by the 
difference in noise across QPUs. As shown in the Fig. 4 in the manuscript, as the 
number of nodes increases, the alternate training strategy does not show signs of failing 
to improve the PPD-VQA. 
 

 

To make this point clearer, we subtract the speedup ratio obtained by not using alternate 
training from the speedup ratio obtained by using alternate training to get the following 
results: 

 

It can be observed that the speedup ratio improvement from alternate training strategy 
does not decrease as the number of nodes increases. 
 
3) Do the authors have an idea of why the speed-up seems to be unaffected by the 
presence of noise? The curves in Fig.3(b, c) are remarkably close to each other. 
 
Reply: We are grateful to the Reviewer for reminding us that our Fig. 3(c) does have 
the potential to cause misunderstandings among readers.  
 



Actually, the speed-up is unaffected by the presence of noise. As shown in the Fig. 3(b), 
the required number of iterations is increase, as the noise increases, while does not show 
variability as the number of local node changes, which may be caused by the proximity 
of noise levels of M local nodes. 

 
Fig. 3(c) is the result for speed-up ratio, which is ratio of the training speed of M nodes 
to that of 1 node for the same noise level. Based on the analysis for Fig.3(b) and the 
definition of speed-up ratio, PPD-VQA produces an approximate M-fold acceleration 
when using M local nodes in Fig.3 (c). The reason that the speed-up ratio is almost 
independent of noise is that the training speed of 1 nodes and M nodes slows down at 
the same time as the noise grows (as shown in Fig. 3(b)). We have added explanations 
to the revised version to remove this possible misunderstanding. 
 
4) It is not clear to me how to compare the values of the noise used with those found on 
QPUs like Zuchongzhi. Can the authors say a bit more about this so that we can 
understand better when such study would be really applicable to available QPUs? 
 
Reply: We thank the Referee for pointing this out. 
 
It is known that characterizing and modeling quantum noise in the real quantum device 
is extremely complex, and we choose the “worst-case” noise channel–the depolarizing 
channels in our work. The noise value in the Fig. (3) is the depolarizing probability for 
single-qubit gate.  
 
The average single-qubit gate Pauli error of Zuchongzhi is 0.14%, which is calibrated 
using XEB. The following formula [Nature, 574(7779), 505-510 (2019)] can be used 
to convert depolarizing probability p to Pauli errors for single-qubit gate, 

𝑒𝑝 =
3

4
𝑝, 

where 𝑒𝑝 is single-qubit gate Pauli error. We have provided some discussions in the 
caption of Figure 3. 
 
5) Regarding the classification task, I think that more information could be provided to 
the broad audience who could read this article. For instance, how are the data encoded 
classically? How is it converted to be used on the quantum machine? More clarity could 



be given on the number of parameters used. There is some description in the caption, 
but I think that it could be expanded in the main text. 
 
Reply: We are very grateful to the Reviewer for pointing this out, and it does need to 
be explained in more detail for the broad audience. 
 
Each sample in IRIS dataset has 4 attributes. Assume that (𝑎, 𝑏, 𝑐, 𝑑) represents a 
sample in IRIS, we can transform a sample into 2-qubits quantum states by amplitude 
encoding, i.e., 

|𝜑⟩ =
𝑎|00⟩ + 𝑏|01⟩ + 𝑐|10⟩ + 𝑑|11⟩

√𝑎2 + 𝑏2 + 𝑐2 + 𝑑2
. 

 
Regarding the number of parameters, we use a hardware-efficient ansatz with 2 layer 
(as shown in the Fig. 2(b), each layer has 2 𝑅𝑦  parameterized gates, 𝑅𝑧 
parameterized gates), and thus there are 8 parameters in total. 

 
We have provided these descriptions on page 4 of the revised version. 
 
6) Fig.1. For 𝑀 − 𝑡ℎ QPU, I think that the portion that is optimized should be color-
coded in red, but it is in orange. 
 
Reply: Corrected. 
 
7) Fig.3(a). It is not clear to me what the various error bars, colored areas and circles 
mean. More detail and explanation could help. 
 
Reply: We thank the Reviewer for raising this point which needs more explanations. 
The middle line of the boxes, which is the median of the data, represents the average of 
the sample data. The upper and lower limits of the box, which are the upper and lower 
quartiles of the data, respectively, which means that the box contains 50% examples of 
the data. Therefore, the width of the box reflects to some extent the degree of fluctuation 
of the data. Above and below the box, there are other lines each representing the 
maximum and minimum values and the circles represent outliers.  
 
We have added this explanation in the caption of Fig. 3. 
 
8) Fig.4. It is not clear to me what the shaded area exactly represents. 



 
Reply: The shaded area represents statistical error caused by 100 independent 
experiments. We have added this explanation in the caption of Fig. 4. 
 
9) The English would need a bit of polishing, as there are a lot of minor issues, but this 
is something that can be done at a later stage. 
 
Reply: We have polished the English in our revised version. 
 
To conclude, I do not think that the paper is ready to be published in Scipost, and I think 
that the authors may have to present a more convincing case for the paper to be 
published in Scipost Physics instead of Scipost Physics Core. In fact I am not convinced 
that the paper satisfy at least one of the 4 criteria 
1. Detail a groundbreaking theoretical/experimental/computational discovery; 
2. Present a breakthrough on a previously-identified and long-standing research 
stumbling block; 
3. Open a new pathway in an existing or a new research direction, with clear potential 
for multipronged follow-up work; 
4. Provide a novel and synergetic link between different research areas. 
 
Reply: We would like to thank the Reviewer for her/his helpful comments, which have 
helped us to further improve the quality of the manuscript. We believe that our work 
passes the bar for the acceptance criteria of SciPost for the following reasons: 
 
VQA is a promising near-term technique to explore practical quantum advantage on 
near-term devices. However, the inefficient parameter training process due to the 
incompatibility with backpropagation and the cost of a large number of measurements, 
posing a great challenge to the large-scale development of VQAs. Parallel training is a 
natural potential solution to this bottleneck. However, due to the presence of quantum 
noise, it remains unknown whether parallel training is effective, especially in the 
presence of differences in noise across QPUs. We not only prove the convergence of 
PPD-VQA, but also propose an efficient strategy, alternate strategy, to suppress the 
performance degradation caused by the difference in noise across QPUs. Our work 
makes parallel training of VQA in realistic noisy environments feasible, and thus open 
a new pathway in an existing research direction. Moreover, the efficient parallel 
training can lead to many applications in distributed scenarios, such as distributed 
quantum machine learning and federal quantum machine learning. Moreover, the PPD-
VQA has good compatibility with other distributed strategies such as data-parallel and 
error mitigation techniques, to further improve the practicality of VQA. Thus, our work 
could provide potential for multipronged follow-up work. 
 
We hope that our point-by-point responses and concomitant changes to the manuscript 
make a convincing case now that our manuscript is suitable for publication in SciPost. 
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Variational quantum algorithms (VQAs) have emerged as a promising near-term technique to explore practical
quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, the inefficient parameter
training process due to the incompatibility with backpropagation and the cost of a large number of measure-
ments, posing a great challenge to the large-scale development of VQAs. Here, we propose a parameter-parallel
distributed variational quantum algorithm (PPD-VQA), to accelerate the training process by parameter-parallel
training with multiple quantum processors. To maintain the high performance of PPD-VQA in the realistic
noise scenarios, a alternate training strategy is proposed to alleviate the acceleration attenuation caused by noise
differences among multiple quantum processors, which is an unavoidable common problem of distributed VQA.
Besides, the gradient compression is also employed to overcome the potential communication bottlenecks. The
achieved results suggest that the PPD-VQA could provide a practical solution for coordinating multiple quantum
processors to handle large-scale real-word applications.

I. INTRODUCTION

Quantum computing holds the promise of solving certain
problems that intractable for classical computers, such as fac-
toring large numbers [1–3], database search [4, 5], solving
linear systems of equations [6–8]. However, a universal fault-
tolerant quantum computer that can solve efficiently the above
problems would require millions of qubits with low error
rates [9, 10], which is still a long way from current tech-
niques and may take decades. Thus, we will be in the noisy
intermediate-scale quantum (NISQ) era for a long time [11–
16]. Variational quantum algorithms (VQAs) leverage a quan-
tum device to minimize a specific cost function [17, 18], by
employing a classical optimizer (e.g., Adam optimizer [19])
to train parameter quantum circuits (PQCs). Such algorithms
were shown to have natural noise resilience [20] and even ben-
efit from noise, making it particularly suitable for near-term
quantum devices, and thus be considered the most promis-
ing path to quantum advantage on practical problems in NISQ
era [18]. Previous studies have exhibited the application
of VQAs on a variety of problems, including classification
task [21–24] and generative task [25–27], combinatorial op-
timization [28–32], quantum many-body problem [33] and
quantum chemistry [34–39].

The training process of VQAs is actually not very efficient
compared to the classical neural network, due to the follow-
ing two main reasons: 1) The quantum state of the interme-
diate process of the quantum circuit cannot be stored, making
VQAs impossible to use the backpropagation to update the
parameters as efficiently as the classical neural network; 2) A

∗ These two authors contributed equally
† These two authors contributed equally; shuoshuo19851115@163.com
‡ bws@qiclab.cn
§ quanhhl@ustc.edu.cn

large number of measurements is required for the result read-
out of the quantum circuit, which is time-consuming. There-
fore, the training of VQAs will face significant challenges, as
the amount of data and trainable parameters increases.

To address the above issue, a distributed VQA based on
data-parallel has been proposed by Du et. al. to accelerate
the training of VQA [40]. In this work, a parameter-parallel
distributed variational quantum algorithm (PPD-VQA) is pro-
posed to further accelerate the training process by parameter-
parallel training with multiple quantum processors. Although
the idea of parallel training is not difficult to come up with,
including data-parallel or parameter-parallel, it is worth inves-
tigating whether the approach works in the realistic scenario
that the local quantum nodes will inevitably be affected by
quantum noise, and the noise intensity of each node is differ-
ent. We first proof the convergence of the PPD-VQA, even if
each local node has different quantum noise. Further, we de-
sign an alternate training strategy to alleviate the acceleration
attenuation caused by excessive noise differences among mul-
tiple quantum processors, and adopt the gradient compression
to cut a large amount of communication bandwidth, to en-
hance the practicality and scalability of PPD-VQA.

II. PPD-VQA

The conventional VQAs employ PQCs and update their pa-
rameters θ via a classical optimization training procedure, to
find the global minimum of the given loss functions L. Usu-
ally, in the training procedure, the gradients of each parameter
is evaluated by the parameter-shift rule [41, 42]. The PPD-
VQA leverages the fact that the partial derivatives of the ob-
servable with respect to each parameter are genuinely inde-
pendent of one another at each iteration to accelerate the train-
ing of conventional VQA, by parallelizing the gradient esti-
mation across multiple quantum processing unit (QPU) nodes.
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FIG. 1. Schematic diagram of PPD-VQA. The diagram illustrates two main steps of the PPD-VQA workflow. Firstly, the central parameter
server allocates the trainable parameters to M local nodes, consisting of a QPU and a classic computer, for parallel training. Each local node
only trains a part of the trainable parameters, and synchronizes the gradient information to the central parameter server. Secondly, a local node,
named QPU X, is selected to verify that the convergence condition is met. If it does not converge, repeat Steps 1 and 2, otherwise, output the
optimal parameters and selected local node as the trained model.

Conceptually, a classical central parameter server and M lo-
cal nodes constitute the framework of PPD-VQA, where each
local node consists of a QPU and a classical optimizer. As
shown in Fig. 1 and Algorithm 1, at each iteration, the central
parameter server divides the trainable parameters θ into M
parts, each of the M local nodes is tasked with computing the
gradient of the parameters for a given component. Then, the
complete gradient information is obtained through informa-
tion sharing between local nodes and central parameter sever,
which is used to update the trainable parameters as the ini-
tial parameters of next iteration. This process is repeated until
the optimal parameters are found. The specific process can be
divided into the following two steps:

Step 1: Parameter distribution and parallel gradient es-
timation. At the beginning of t-th iteration, the classical cen-
tral server distribute the complete parameter θ(t) of PQC to
each local node as the initial parameters, as well as instruc-
tions on which parameters the i-th local node is assigned for
training. The default instruction is to divide the trainable pa-
rameters θ(t) into M equal parts

θ(t) = [θ
(t)
1 , · · · ,θ(t)

M ], θ
(t)
i = (θ

(t)
i,1 , θ

(t)
i,2 , · · · , θ

(t)
i,n), n =

d

M
,

and the i-th local node is responsible for estimating the corre-
sponding component of gradient

[
∇L̄(θ)

]
i
. After the training

on each node, the local node synchronizes {
[
∇L̄(θ)

]
i
}Mi=1 to

the central parameter server, and the central parameter server
combines the information from each local node into a com-

pleted gradient ∇L̄(θ(t)) used to update θ(t) to θ(t+1).
Step 2: Convergence test. Choose a fixed local node from

the M local nodes, and substitute the parameters θ(t+1) into
this local node. After that, employ this model to the test
dataset to to determine whether the convergence condition has
been met. The setting of the convergence condition depends
on the machine learning task. For example, for the classifica-
tion task, the convergence condition might be set as a certain
classification accuracy threshold. The convergence test refers
to selecting a QPU and getting the accuracy score on the clas-
sification task. If the convergence condition has not been met,
return to Step 1 for the subsequent training iteration; other-
wise, output the final parameters and chosen local node as the
trained model and terminate the training procedure. By im-
plementing the convergence test, we can monitor the perfor-
mance of the trained PQC on the chosen QPU to ensure that
the final PQC will perform well on the chosen QPU.

The core idea of PPD-VQA is simple and natural. However,
distributed quantum machine learning faces different chal-
lenges than its classical counterpart, the main one being that
the quantum processors on different local nodes are not iden-
tical, due to the inevitable quantum noise. In general, the error
rate εi of each qubit on a quantum processor is different, and
we let the average error rate of the processor be ε̄ = 1

N

∑
i

εi,

where N is number of qubits. Thus, the non-uniformity men-
tioned above manifests itself in two ways: 1) The average er-
ror rates of each quantum processors are different. For exam-
ple, some processors have lower noise and some have higher
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noise; 2) Even if the average error rate of each quantum pro-
cessor is the same, the error rate of each qubit in these proces-
sors is unlikely to be consistent. In such a realistic scenario,
it remains to be verified whether the parameter-parallel train-
ing is still effective, and whether the convergence conditions
can be achieved. This important issue is directly related to
the practical utility of our scheme and will be discussed in the
next section.

Algorithm 1 The pseudocode of PPD-VQA.
Require: θ ∈ [0, 2π)d: the parameters of ansatz; L: loss function;

M : the number of local nodes, and we donate Mi as the i-th
local node;

Ensure: optimal parameters θ∗

1: while convergence condition is not satisfied do
2: The central parameter server divides the parameter θ into M

parts and allocates θ to M local nodes
3: for Local nodes Mi, ∀i ∈ {1, · · · ,M} in parallel do
4: Calculate the estimated gradient component

[
∇L̄(θ)

]
i

5: end for
6: Synchronize ∇L̄(θ) by merging {

[
∇L̄(θ)

]
i
}Mi=1

7: Update θ with a classical optimizer, such as ADAM
8: Choose a local node from {M}Mi=1 for convergence test
9: if convergence condition is satisfied then

10: break
11: end if
12: end while

III. PERFORMANCE ANALYSIS AND ERROR
MITIGATION STRATEGY IN THE REALISTIC NOISE

SCENARIO

Gradient represents the optimization direction during the
training procedure of VQA, which plays an decisive role in
the process of finding the global minima of loss function.
Thus, by examining the gradient, we analyze how noise af-
fects convergence of PPD-VQA in the realistic scenario that
noise varies for each quantum processor. Furthermore, we
will propose a strategy to mitigate the negative consequences
that maybe caused by this realistic scenario.

A. Convergence and acceleration

We apply the “worst-case” noise channel–the depolarizing
channels [43] for the following research. According to the
Lemma 6 in Ref. [44] all noisy channels ε(·), which are sep-
arately applied to each layer of the ansatz, can be merged to-
gether and represented by a new depolarizing channel acting
on the whole ansatz, i.e.,

ε̃(ρ) = (1− p̃)ρ+ p̃
I
2n

(1)

where p̃ = 1 − (1 − p)N , p is the depolarizing probability
in ε(·), and N refers to depth of ansatz. To facilitate under-
standing, we denote p̃i as the noise level of the i-th QPU. Ob-
viously, the depolarizing noise turns the quantum state into a
maximally mixed state with a certain probability, which could

make the gradients obtained by parameter-shift-rule in the ex-
periment deviate from that of the ideal environment without
noise.

We firstly simplify some notations and introduce basic con-
cepts in optimization theory for ease of subsequent discussion.
DenoteD = {xk, yk} as the training dataset, where xk ∈ R2n

and yk ∈ [0, 1] refer to example and the corresponding label
respectively. We define L as the loss function, ∇L(θ(t)) as
the gradient of loss function L. Here we employ the mean
square error (MSE) loss function, i.e.,

L =
1

2ND

∑
k

(ŷk − yk)
2 +

λ

2
∥ θ(t) ∥2, (2)

where the predicted label ŷk(t) = Tr[U(θ(t))ρkU
†(θ(t))O]

is defined by the expected output of noiseless PQC U(θ(t))
with the observable O and input state ρk, ND is the number
of the data, and λ ≥ 0 is the regularizer coefficient.

According to parameter-shift-rule, the j-th component of
the analytical gradient evaluated on i-th QPU [∇L(θ(t))]i,j at
t-th iteration satisfies

[∇L(θ(t))]i,j

=
1

ND

[∑
k

(ŷk
(t) − yk)

ŷk
(t,+j) − ŷk

(t,−j)

2
+ λθ

(t)
i,j

]
.

Here ŷk(t,±j) = Tr[U(θ(t) ± π
2 ej)ρkU

†(θ(t) ± π
2 ej)O] de-

note the output of PQC with shifted parameter θ(t) ± π
2 ej

where ej is the unit vector with its j-th component equals to
one. Thus, for each data, the local node should implement
1+2d/M quantum circuits for the gradient estimation, where
d/M is the number of parameter in each local node.

Now we quantify the convergence of PPD-VQA with mul-
tiple local nodes that have different performance, by using the
following utility metric [44]:

R1(θ
(T )) = E[∥∇L(θ(T ))∥2] (3)

where T is the number of iterations and the expectation E [•] is
taken over the random variables associated with depolarizing
noise. This metric evaluates how far the result is away from
the stationary point. The upper bounds ofR1(θ

(T )) when im-
plementing PPD-VQA with multiple non-identical processors
are summarized in the following theorem.

Theorem 1 Suppose that M noisy local nodes of PPD-VQA
have different depolarizing noise with depolarizing probabil-
ity {p̃i}Mi=1, the metric R1(θ

(T )) has following upper bound

R1 ≤ 1 + 9π2λd

2T (1− p̃max)2

+
2G+ d

(1− p̃max)2
(2− p̃max)p̃max(1 + 10λ)2

+
2dK + d

2NDK2

1

(1− p̃max)2
.

where loss function L is S-smooth with S = (3/2 + λ)d2,
G-Lipschitz with G = d(1+3πλ), and p̃max = max{p̃i}Mi=1.
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The proof of Theorem 1 is essentially similar with conven-
tional VQA, for both of them acquire the complete gradient
information only once in an iteration. Therefore, one can ob-
tain the upper bound of R1(θ

(T )) of PPD-VQA in noise sce-
nario by following a similar proof procedure of Theorem 1 in
Ref. [44]. We briefly sketch our proof as follows.

The first step is to establish the relation between true gradi-
ent component

[
∇L(θ(t))

]
i,j

(unbiased) and that in the esti-

mated gradient
[
∇L̄(θ(t))

]
i,j

(biased) that is evaluated from
QPU i (see Appendix A for the detailed derivation),

[∇L̄(θ(t))]i,j = (1− p̃i)
2
[∇L(θ(t))]i,j + C

(t)
i,j + ς

(t)
i,j , (4)

where C(t)
i,j originates from the depolarizing noise, and ς(t)i,j is

a item related to random variables, which has zero mean.
Then one can further utilize the S-smooth and G-Lipschitz

of the L to calculate the loss difference, i.e.,

L(θ(t+1))− L(θ(t))

≤⟨∇L̄(θ(t)),θ(t+1) − θ(t)⟩+ S

2
∥θ(t+1) − θ(t)∥22

(5)

Substitute Eq.(4) and θ(t+1) = θ(t) − η∇L̄(θ(t)) (we set
the learning rate η = 1/S) into Eq.(5) and take the expectation
over the random variable ς(t)i,j , one have

E
ς
(t)
i,j
[L(θ(t+1))− L(θ(t))]

≤
∑
i,j

[
− 1

2S
(1− p̃i)

2

([
∇L(θ(t))

]
i,j

)2

+
2G/d+ 1

2S
(2− p̃i)p̃i(1 + 10λ)2

]
+

2dK + d

4SNDK2

(6)

Note that −
∑

i,j(1 − p̃i)
2
([

∇L(θ(t))
]
i,j

)2

≤ −(1 −
p̃max)

2∥∇L(θ(t))∥2, and (2− p̃i)p̃i ≤ (2− p̃max)p̃max, we
obtain

∥∇L(θ(t))∥2

≤2S
L(θ(t))− E

ς
(t)
i,j
L(θ(t+1))

(1− p̃max)2

+
2G+ d

(1− p̃max)2
(2− p̃max)p̃max(1 + 10λ)2

+
2dK + d

4SNDK2

1

(1− p̃max)2
.

(7)

Finally, by summing over t = 0, 1, · · · , T , the upper bound of
R1(θ

(T )) is achieved.
From Theorem 1 above and Theorem 1 in Ref. [44], we

can observe that the convergence rate between conventional
VQA and PPD-VQA is similar, i.e., both of them scale with
O(1/

√
T ) [44], since the second term and the third term are

(a)

(b)
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( )2,2zR q ( )4,2zR q
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FIG. 2. Classification task on Iris dataset and the ansatz in nu-
merical simulation. (a) A visualization of training examples sam-
pled from Iris dataset. We choose the data of iris versicolor (label
0) and iris virginica (label 1) for binary classification. (b) Ansatz of
PPD-VQA for the classification.

constant in above inequality when {p̃}Mi=1 is fixed. The similar
convergence rate guarantees that PPD-VQA promises a intu-
itive linear runtime speedup of the computation of the gradient
with respect to the increased number of local nodes M .

Next, we perform numerical experiment to study the per-
formance of PPD-VQA in the realistic noise scenario.

In our simulations, we apply PPD-VQA to the binary clas-
sification task, by employing the Iris dataset and ansatz shown
in Fig. 2. We choose 100 examples from Iris dataset with 50
versicolors (label 0) and 50 virgunicas (label 1), where 75%
examples are randomly selected as the training set and the re-
maining 25% as the test set. We encode the classical example
xk in Iris dataset into the a two-qubit quantum state ρk by
amplitude encoding, i.e.,

| ψk⟩ =
αk1 | 00⟩+ αk2 | 01⟩+ αk3 | 10⟩+ αk4 | 11⟩√

| αk1 |2 + | αk2 |2 + | αk3 |2 + | αk4 |2
,

(8)
where (αk1, αk2, αk3, αk4) is the feature of xk. Then a
hardware-efficient PQC with 8 trainable single-qubit gates, as
shown in Fig. 2(b), is employed for the training. After the
quantum state ρk has evolved, we perform K global measure-
ments on the final quantum state. We then derive the expec-
tation of observable and map it to [0, 1] by linear mapping,
where the observable is set as (Z⊗2 + I)/2.

We implement the task using the PPD-VQA with M =1
(conventional VQA), 2, 4, 8 local nodes, respectively. For
each type of PPD-VQA, we also set different noise param-
eters separately. Specifically, for each node the PPD-VQA,
the depolarizing probability pi for single-qubit gate is set by
sampling from a Gaussian distribution i.e., pi ∼ N(µ, σ2),
where the mean µ varies from 0.01 to 0.05 with step 0.02 and
σ = µ/9. The depolarizing probability of two-qubit gate is
set as 4pi refer to the performance of SOTA quantum proces-
sor Zuchongzhi [15]. Each local node’s noise will be some-
what different as a result of such random sampling. A total of
100 independent experiments were run for each setting, and in
each experiment, the measurement shots is set to 8192, batch-
size is set to 5, and the convergence condition is that the clas-
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(a)

(b) (c)

1 local node 
(Conventional VQA) 2 local nodes 4 local nodes 8 local nodes

FIG. 3. Simulation results of PPD-VQA with M local nodes under noise scenario for Iris dataset classification. (a) Boxplots count
the iterations of PPD-VQA with M local nodes, where M = 1, 2, 4, 8 from left to right, when achieving a predefined training accuracy.
The depolarizing probability pi for single-qubit gate is set by sampling from a Gaussian distribution i.e., pi ∼ N(µ, σ2), where the mean
µ = 0 (ideal case), 0.01, 0.03, 0.05, and σ = µ/9. The depolarizing probability can be converted to Pauli errors ep for single-qubit gate by
using ep = 3

4
pi [13]. As a reference, the single-qubit gate Pauli error of the Zuchongzhi processor is 0.14% [15]. The middle line of the boxes,

which is the median of the data, represents the average of the number of iterations. The upper and lower limits of the box, which are the upper
and lower quartiles of that, respectively, which means that the box contains 50% examples. Above and below the box, there are other lines
each representing the maximum and minimum values and the circles represent outliers. (b) Scaling behavior of the mean of the iterations in
(a) for increasing noise (µ). The results of PPD-VQA with M = 1, 2, 4, 8 local nodes are shown. (c) Scaling behavior of speed-up ratio in
clock-time for increasing number of local nodes M . The results of different depolarizing probabilities are shown.

sification accuracy on the training set exceeds 96%.
As shown in Fig. 3(a, b), for both conventional VQA and

PPD-VQAs with 2, 4, and 8 local nodes, the number of itera-
tions required to achieve a preset training accuracy increases
with the mean of noise µ, and the PPD-VQA with multi-
ple local nodes has a similar convergence speed as conven-
tional VQA (see Fig. 3(b)), which is consistent with Theo-
rem 1. Meanwhile, the number of iterations is not sensitive to
changes of the number of local nodes, which may be caused
by the proximity of noise levels of M local nodes.

We further introduce a metric, i.e. RS = T1/Tm to evaluate
the speed-up ratio of the PPD-VQA with M = m > 1 local
nodes compared to the conventional VQA with just M = 1
local node, where T1 and Tm are the time consuming of con-
ventional VQA and PPD-VQA from the start of training to

meeting the convergence conditions, respectively. It should be
noted that T1 and Tm are obtained in the same noise scenario.
Assuming that the time consumption of implementing each
quantum circuit is the same (since the number of measure-
ments is the same, and only the rotation angle of the single-
qubit gate will be changed each time the circuit is executed),
the formula of the speedup ratio RS can be further rewritten
as

RS =
(1 + 2d)×ND ×N1

I

(1 + 2d
M )×ND ×NM

I

=
(1 + 2d)×N1

I

(1 + 2d
M )×NM

I

, (9)

where d is the number of parameters, N1
I and NM

I are the
total number of iterations for the conventional VQA and PPD-
VQA, respectively. In the ideal scenario of noiseless, N1

I =

NM
I , thus RS = 1+2d

1+ 2d
M

in ideal scenario.
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Figure 3(c) shows that speed-up ratio for the PPD-VQA
with 1 (conventional VQA), 2, 4, 8 local nodes under under
a variety of noise scenarios. No matter how the mean of noise
µ changes, the speed-up ratio of PPD-VQA is almost only re-
lated to the number of local nodes and is extremely close to
the ideal case. The reason that the speed-up ratio is almost
independent of noise is that the training speed of 1 nodes and
M nodes slows down at the same time as the noise grows.
This result strongly supports that PPD-VQA can achieve a
very good acceleration in realistic scenarios.

B. Alternate training strategy for mitigating the negative
effects of large noise differences between different local nodes

In the previous subsection, the difference in the noise of
the quantum processors of each node is not particularly large,
because the noise is set by sampling from a Gaussian distri-
bution N(µ, σ2), where σ = µ/9. In this subsection, we will
study the performance of PPD-VQA in cases where the noise
difference is more pronounced.

We first monitor the performance of PPD-VQA when the
noise difference of different local nodes changes from small
to large. To quantify the noise differences of local nodes, we
introduce a metric, named Differ, which is defined as

Differ = DKL(P (p) ∥ PUniform),

where DKL is Kullback-Leibler (K-L) divergence [45],
PUniform refers to the uniform distribution, P (p) is the normal-
ized distribution of depolarization probability of each local
node, where P (p)k = pk/

∑M
i=1 pi, and pk is the depolar-

ization probability of the k-th local node. With this metric, a
noise setting with a resulting distribution that corresponds to
a higher K-L divergence with respect to uniform distribution
would mean greater noise variance between local nodes. Be-
sides, we set another constraint that the mean of {pi}Mi=1 is
0.04. For each PPD-VQA with M ∈ [1, 2, 4, 8] local nodes,
Differ varies from 0 to 0.625, we generate 10 instances of
noise setting for eachDiffer, and for each instance 50 exper-
iments with different initial parameters are implemented. As
shown in Fig. 4, the speed-up ratio tends to become smaller
as the Differ increases, indicating that the advantage of
PPD-VQA in terms of speedup is diminished in extreme cases
where the noise difference between local nodes is significant.

To suppress acceleration decay of PPD-VQA caused by
excessive noise difference between local nodes, we propose
a simple but effective approach named as alternate training
strategy, whose core idea is decoupling the trainable parame-
ter groups and corresponding quantum processors. The pro-
cess of this alternate training strategy is as follows: Sup-
pose that at the first iteration, the i-th local node is sched-
uled to train the parameters θi. We denote this process as
{θi : QPUi}Mi=1. Then in the next iteration, The correspond-
ing relationship between trainable parameters and local nodes
becomes {θM : QPU1}∪{θi : QPUi+1}M−1

i=1 , that is, we per-
form a cyclic shift on the correspondence between the train-
able parameters and local nodes. The alternate training strat-
egy is repeated with the training process, which makes each

parameter group θi be trained in turn by all quantum proces-
sors throughout the whole training process.

The numerical simulation results of PPD-VQA with alter-
nate training strategy are shown in Fig. 4. An immediate
observation is that when the noise difference between local
nodes increases, PPD-VQA performance degrades relatively
little thanks to the alternate training strategy. Besides, the per-
formance of PPD-VQA becomes more stable as the variance
of the mean of different experiments is significantly smaller.
These two benefits suggest that this strategy can be effectively
employed for mitigating the negative effects of large noise dif-
ferences between different local nodes.

IV. GRADIENT COMPRESSION

Another challenge of distributed machine learning is the
large amount of communication bandwidth for gradient ex-
change [46]. With the development of quantum comput-
ing hardware, this problem may also arise in large-scale dis-
tributed quantum machine learning. To overcome this poten-
tial problem, we adopt the technique of gradient compres-
sion [47] widely used in the classical community to PPD-
VQA, to reduce the communication bandwidth for distributed
training. The pseudocode of PPD-VQA with gradient com-
pression for local node i in PPD-VQA is as follows.

Algorithm 2 The pseudocode of PPD-VQA with gradient
compression.
Require: θ ∈ [0, 2π)d: the parameters of ansatz; L: loss function;

M : the number of local nodes, and we donate Mi as the i-th
local node; Mask = (0, · · · , 0) has the same dimension with
θi defined in section PPD-VQA, and ⊙ is Hardamard product,
i.e., a⊙ b = (a1b1, · · · , anbn)

Ensure: optimal parameters θ∗

1: Calibrate threshold thr
2:

[
∇L̄(θ)

]
i
= 0 for i ∈ [1, 2, · · · ,M ]

3: while convergence condition is not satisfied do
4: The central parameter server divides the parameter θ into M

parts and allocates θ to M local nodes
5: for Local nodes Mi, ∀i ∈ [M ] in parallel do
6: Calculate gradient component Gi(θ)
7:

[
∇L̄(θ)

]
i
=

[
∇L̄(θ)

]
i
+Gi(θ)

8: for j = 1 + (i− 1) d
M
, · · · , 1 + i d

M
do

9: if |
[
∇L̄(θ)

]
i,j

| > thr then
10: Mask[j] = 1
11: end if
12: end for
13: gi(θ) =

[
∇L̄(θ)

]
i
⊙Mask

14:
[
∇L̄(θ)

]
i
=

[
∇L̄(θ)

]
i
⊙ ¬Mask

15: end for
16: Synchronize the compressed gradient g(θ) by merging

{gi(θ)}Mi=1;
17: Update θ with a classical optimizer, such as ADAM;
18: Choose a local node from {M}Mi=1 for convergence test.
19: if convergence condition is satisfied then
20: break
21: end if
22: end while
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（a） （b） （c）2 local nodes 4 local nodes 8 local nodes

FIG. 4. Simulation results of PPD-VQA with M local nodes in cases where the noise difference is more pronounced. (a) The av-
erage speed-up ratio as a function of Differ (a metric for quantifying the noise differences of local nodes) for the PPD-VQA with
M = 2(a), 4(b), 8(c) local nodes. 100 independent experiments are implemented for each setting. The green and red solid lines present
the results for original PPD-VQA and PPD-VQA with alternate training strategy, respectively. The shaded area represents statistical error
caused by 100 independent experiments. It is obvious that the red curves have noticeable larger values and smaller variances than the green
curves in all three cases.

FIG. 5. The speed-up ratio and compression ratio as a function
of threshold value for the PPD-VQA with M = 4 local nodes.
The depolarizing noise pi in each node is set by sampling from the
gaussian distribution N(µ, σ2) with µ = 0.016 and σ = µ/9.

The idea of gradient compression is gradient clipping,
which makes the gradient sparse by comparing its individual
components with a threshold thr. Only the components of the
gradient with larger absolute values compared with thr can
be synchronized to the central parameter server, thus ensur-
ing that the general direction of the parameter update remains
correct. The remaining components smaller than thr are still
retained in corresponding local node and counted as a part of
new gradient in next iteration. Thus we obtain the uncropped
original [∇L̄(θ)]i in local node i. This method greatly reduces
the actual communication bandwidth required in PPD-VQA.
However, due to the existence of quantum noise, it is also un-
known whether gradient compression works on PPD-VQA,
so next we will perform numerical simulations to address this
concern.

We test the gradient compression on a PPD-VQA with
M = 4 local nodes, where the noise pi in each node is set

by sampling from the Gaussian distribution N(µ, σ2) with
µ = 0.016 and σ = µ/9. In our simulation, the threshold
value thr varies from 0 to 0.7 with step 0.1, and we still im-
plement 100 independent experiments for each setting. As
shown in Fig. 5, by setting a reasonable compression thresh-
old, we can greatly reduce the communication cost. It can
be also observed that the increase of the gradient compres-
sion ratio leads to the decay of the acceleration of PPD-VQA.
When thr > 0.1, the growth of gradient compression ratio
becomes very slow, while speed-up ratio is still decreasing
rapidly. Thus, we need to find a balance between the decay of
acceleration advantage and reducing the communication vol-
ume. When the threshold value is 0.1, we can achieve a rela-
tively high gradient compression ratio (> 80%) without losing
too much acceleration advantage (RS > 2.7).

In Table I, we further show two types of typical results for
the PPD-VQA with M = 2, 4, 8 local nodes, and noise level
µ = 0.016, 0.064. For each setting, 100 independent experi-
ments are implemented. In the first typical result, we set a rea-
sonable compression ratio, so that the speed-up ratio is almost
not lost compared to the uncompressed case. However, in this
scenario, the compression ratio can still be higher than 60%,
or even up to 87%, indicating that we can solve the problem on
communication bottleneck without losing too much accelera-
tion advantage of PPD-VQA. In the second typical result, to
achieve a more aggressive compression ratio (above 96%), the
speedup of PPD-VQA is significantly reduced. Possible rea-
son is that fewer trainable parameters make the gradient not
have the sparsity compared with deep neural networks, which
leads to a significant increase in the number of iteration when
we apply the gradient compression algorithm to PPD-VQA.
Anyway, our experiments demonstrate that gradient compres-
sion is very suitable for PPD-VQA, even in the realistic noise
scenario.

In addition to reducing communication bandwidth, gradient
compression may help to mitigate errors in the experimental
implementation of the PPD-VQA, due to the following two
reasons:1) For most quantum computing systems, it is not
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M noise setting without gradient compression with gradient compression result

iterations communication volume iterations communication volume compression ratio speed-up ratio

2 µ = 0.016 2324 2324×8 2259 7016 62.3% 1.87 → 1.92
µ = 0.064 2680 2680×8 2780 8565 60.1% 2.04 → 1.97

4 µ = 0.016 2324 2324×8 2444 3630 80.0% 3.36 → 3.20
µ = 0.064 2712 2712×8 3295 2862 86.9% 3.64 → 2.99

8 µ = 0.016 2282 2282×8 2463 3634 80.0% 5.71 → 5.29
µ = 0.064 2702 2702×8 3200 2818 87% 6.09 → 5.14

2 µ = 0.016 2324 2324×8 5659 701 96.3% 1.87 → 0.77
µ = 0.064 2680 2680×8 6463 787 96.3% 2.04 → 0.84

4 µ = 0.016 2324 2324×8 6338 623 96.7% 3.36 → 1.23
µ = 0.064 2712 2712×8 6410 791 96.4% 3.64 → 1.54

8 µ = 0.016 2282 2282×8 6043 607 96.7% 5.71 → 2.15
µ = 0.064 2702 2702×8 6322 781 96.4% 6.09 → 2.60

TABLE I. The comparison of the performance between PPD-VQA without gradient compression and with gradient compression. The
results of PPD-VQA under different number of local nodes (M = 2, M = 4 and M = 8) and noise settings (µ = 0.016 and µ = 0.064)
are presented. In the table we count total number of iterations for all 100 instances in each setting. Communication volume CV is defined
as the total number of gradient components after clipping transmitting between the central parameter server and multiple local nodes, and
compression ratio is 1 − CVwith/CVwithout, where CVwith (CVwithout) is the communication volume for PPD-VQA with (without) gradient
compression. The symbol → indicates the change of speed-up ratio from left (PPD-VQA without gradient compression) to right (PPD-VQA
with gradient compression). Two typical results help us explore the relationship between acceleration of PPD-VQA and compression ratio:
(top) The acceleration of PPD-VQA with gradient compression has only a slight decay when the gradient compression ratio is over 60%.
(bottom) The acceleration of PPD-VQA with gradient compression decreases significantly when the gradient compression ratio is too high
(over 96%).

easy to implement the tiny angular rotations of single-qubit
quantum operations with high precision. Gradient compres-
sion can avoid updates of tiny angles and thus potentially im-
prove experimental accuracy. 2) As the frequency of updat-
ing parameters (especially those with small gradient changes)
is reduced, the number of gate operations that need to be
changed by the quantum device is consequently reduced and
the accumulation of quantum operation errors is naturally sup-
pressed.

V. CONCLUSION

Our results show that PPD-VQA is highly promising as it
achieves approximately linear acceleration over the training
process of conventional VQA, both in theory and simulation
results. The PPD-VQA exhibits good resilience to the exces-
sive noise differences among local nodes, by employing the
alternate training strategy. Furthermore, by adopting the gra-
dient compression strategy, potential communication bottle-
necks can also be addressed to support the future scalability
of PPD-VQA.

The PPD-VQA is naturally compatible with the data-
parallel distributed VQA proposed in [40], so the combination
of the two approaches could enable a stronger acceleration for
the training of VQA. When doing such a combination, some
methods [48–50] can be employed to enhance the generaliza-
tion ability of data-parallel training [49, 50]. Besides, error
mitigation techniques [51, 52] have the potential to further
improve the capability of PPD-VQA on near-term quantum
devices. Some more complex application scenarios, such as
privacy-preserving distributed VQA, requires more in-depth
discussions in the future works.
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VI. APPENDIX

A. The derivation of estimated gradient

As it is shown in III.A, the j-th component of the analytical
gradient evaluate from QPU i at t-th iteration

[
∇L(θ(t))

]
i,j

is

[
∇L(θ(t))

]
i,j

=
1

ND

[∑
k

(ŷk
(t) − yk)

ŷk
(t,+j) − ŷk

(t,−j)

2
+ λθ

(t)
i,j

]
.

However, in the realistic scenario, the j-th component of es-
timated gradient calculated on i-th QPU [∇L̄(θ(t))]i,j is ob-
tained by the estimated values of ¯yk,i

(t) and ¯yk,i
(t,±j), i.e.,

[
∇L̄(θ(t))

]
i,j

=
1

ND

∑
k

[
( ¯yk,i

(t) − yk)
¯yk,i

(t,+j) − ¯yk,i
(t,−j)

2
+ λθ

(t)
i,j

]
.

According to the definition and notation of the depolarizing

noise model in III.A, the estimated label ¯yk,i
(t) has the mean

value v(t)k,i and variance (σ
(t)
k,i)

2 after K measurements:

v
(t)
k,i = (1− p̃i)ŷ

(t)
k + p̃i

Tr[O]

2n
,

(σ
(t)
k,i)

2 =
1

K
(1− p̃i)p̃i(ŷ

(t)
k − Tr[O]

2n
)2.

We further introduce the random variable ξ(t)k,i with zero mean

and variance (σ
(t)
k,i)

2 to describe the output of PQC on QPU i,
i.e.,

¯yk,i
(t) = v

(t)
k,i + ξ

(t)
k,i.

Similarly, we can define v
(t,±j)
k,i and the random variable

ξ
(t,±j)
k,i to describe the output of QPU i with shifted-parameter

in the same way.

Therefore, a formulaic description of the relation between
the estimated partial derivative [∇L̄(θ(t))]i,j and the analytic
gradients

[
∇L(θ(t))

]
i,j

is as follows,
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=
1

ND
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2
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where

C
(t)
i,j =
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ND

∑
k

[
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ς
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1

ND

∑
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[
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2
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]
.

Obviously, ς(t)i,j has the mean zero, where the random variables ξ(t)k,i, ξ
(t,±j)
k,i in above formula are independent, because these

random variables arise when we separately calculate the expectation of the observable with different shifted parameters.

B. Bias term analysis

In this subsection, we give an error analysis on estimated
gradient. By leveraging the explicit form of estimated gradient

in Appendix A, estimated gradient has following average bias
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term compared to the ideal gradient,

bias term = |E
ξ
(t)
k,i,ξ

(t,±j)
k,i

(
[
∇L̄(θ(t))

]
i,j

−
[
∇L(θ(t))

]
i,j
)|

= |(p̃2i − 2p̃i)
[
∇L(θ(t))

]
i,j

+ C
(t)
i,j |

⩽ |(p̃2i − 2p̃i)
[
∇L(θ(t))

]
i,j

|+ |C(t)
i,j |

⩽ 2p̃i(
1

2
+ 3λπ) + (1 + 6λπ)p̃i

= (2 + 9λπ)p̃i

where the inequality uses the upper bound of
[
∇L(θ(t))

]
i,j

,

i.e.,
[
∇L(θ(t))

]
i,j

⩽ 1 × 1
2 + 3λπ when θ ∈ [π, 3π] and

ŷ
(t)
k , ŷ

(t,±j)
k ∈ [0, 1], and the upper bound of C(t)

i,j , i.e., C(t)
i,j ⩽

p̃i + 2p̃i · λ · 3π.

Therefore, the larger the noise, the larger the upper bound
of the bias term, which visually demonstrates the effect of
noise on the gradient calculation. However, in actual train-
ing process, we pay more attention to the estimated gradi-
ent [∇L̄(θ(t))]i,j containing the bias term, because VQAs are
typical adaptive noise approaches.


