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Although announcing (in the abstract and introduction) a study

of clocks in relativity, this manuscript actually proposes

short analysis of the standard massive spinning particle.

Besides vague speculations in the introduction and conclusion,

the goal appears to be to study the Lagrangian and Hamiltonian

formulation of a particle carrying a fundamental

representation of the Poincaré group, i.e. fixed mass and spin.

This is standard mechanics, it is hardly original and the

presentation by the authors show a misconception of the problem.

Indeed, what they call a singular Lagrangian is more

simply symptomatic of a gauge symmetry, coming from first class

constraints, as known and expected. If one were to follow the

logic developed by the atuhors (more precisely, section 3),

one would discard the standard (geodesic) Lagrangian for the

(massive spinless) relativistic particle. In fact, it is known

-standard text book physics- how to deal with such a Lagrangian.

The Hamiltonian is a linear combination of the constraints,

the coefficients in front of those constraints are Lagrange

multipliers and can be chosen arbitrarily (with, of course,

appropriate smoothness and monotonicity assumptions).

Such a choice here of u1,u2,u3 and u4 of eqn (3)) amounts to a

gauge fixing of the constraints, this yields Lagrangian whose

equations of motion are well-defined and describe the evolution

of the gauge-fixed system prescribed by the choice of Lagrange

multipliers. Due to the weakness and non-originality of the

analysis, I can not recommend this manuscript for publication.

If the authors persevere in this line of research, I would urge

them to revise their work in light of the well-known Hamiltonian

formulation of constrained systems, and gauge symmetries,

and to solve the evolution equations explicitly to actually

discuss clock properties.

The logic presented in the paper in no way discards the standard Lagrangian
for a relativistic massive point particle. If we use the logic presented in Section
3 for a relativistic massive (spinless) point particle and remove all spurious
degrees of freedom from the Lagrangian that describes it, so that only physical
degrees of freedom will be present in the Lagrangian, it will be regular. In the
case of the KLS-Staruszkiewicz Lagrangian, after leaving only physical degrees
of freedom characteristic of a genuine rotator with 5 degrees of freedom, it will
remain singular.

The rest of the paper describes the singularity of the inverse Legendre trans-
formation (not the singularity of the Lagrangian of the KLS-Staruszkiewicz par-
ticle) and the consequent additional constraints on velocity for a system that

1



has both Hamiltonian constraints built in from the start. Hence we get a new
Lagrangian (to our best knowledge, not present in literature) that is the coun-
terpart to the Lagrangian of a structureless point particle with intrinsic motion
at the speed of light (while the counterpart of the KLS-Staruszkiewicz parti-
cle is the ordinary Lagrangian of a massive particle with subluminal intrinsic
motion).

We explain our point in more detail below. First we discuss what is known
in the context of our paper then we discuss new things.

We are aware of Dirac’s Generalized Hamiltonian Dynamics and the role of
first and second-class constraints in defining the Hamiltonian and obtaining the
resulting equations of motion. We are also aware of the method of passing from
the Hamiltonian to the Lagrangian formulation of dynamics (also described by
Dirac).

What the Referee is describing as true for the spinning particle model and
known from standard textbooks is just our starting point: first we identify four
constraints characteristic of the simplest possible spinning particle model when
described in terms of spatio-temporal position xµ and a single null direction.
This can be summarized as follows: there are 4 first-class constraints: A: k·k = 0
(k is null), B: k · π = 0 (projection invariance – independence of the scale of k,
where π is the momentum canonically conjugate with k) /this means that there
are only 2 spherical degrees of freedom used to describe the spinning degree of
freedom of a relativistic rotator/, C: p · p = m2 (the usual mass constraint with
p being four-momentum canonically conjugate with x) and D: w · w = − 1

4m
4l2

with w being the Pauli-Lubanski spin pseudo-vector (then w ·w is proportional
to Gram determinant of vectors k, p, π) /m is the parameter of mass and l is
the parameter of length (or spin s = 1

2ml)/. All of these 4 constraints are first
class, hence the total Hamiltonian, as implied by Diracs’ method is simply

H = c1
(
p · p−m2

)
+ c2

(
(π · π)(k · π)2 +

1

4
m2l2

)
+ c3k · π + c4k · k,

which is a linear combination of functionally independent 4 first-class constraints
/equivalent to A, B, C, D/ with c1, c2, c3, c4 being arbitrary functions (non-
physical gauge degrees of freedom). This Hamiltonian form for the simplest
possible spinning particle model has been arrived at in the literature (modulo
notation) in at least three independent ways [1, 2, 3]. The way of derivation
of the above Hamiltonian form, as described above, seems to be the simplest
and most direct. Counting the number of degrees of freedom (as indicated by
Dirac) gives 4 for the number of physical degrees of freedom, which is 1 less
than expected for a classical genuine rotator. And this is our starting point –
in spacetime, the particle is represented by a cylinder of radius l, that is, not
by a single wordline but by a family of arbitrary worldlines confined to this
cylinder. The physical state is uniquely defined by momenta (leading to a well-
behaved quantum system upon quantization, as described in [1]), however the
classical trajectory, as implied by Hamiltonian equations written in terms of co-
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ordinates x, y, z, θ, ϕ characteristic of a classical rotator, remains indeterminate
(as described in [4]).

We can say, that this system with 4 degrees of freedom has its physical
state uniquely determined in the ’momentum space’ – when we interpret the
physical state as one which is determined by the direction of the timelike p
and the direction of the spacelike w/m (Pauli-Lubański) vector, fixed m and
1
2ml, respectively, for the two vectors, and by their mutual orthogonality. And
this interpretation seems to be coherent with the success of deriving quantum
equations for a spinning system as presented by KLS model [1].

Historically, the KLS paper [1] comes first. More than a decade later, in
a quite different context the KLS Lagrangian is independently rediscovered by
Staruszkiewicz [5] – in the context of ideal clock, and the KLS model again
draws attention (at the Lagrangian level it was not a priori obvious that the
worldline and the clocking frequency is indeterminate). Then several works
appeared.

Namely, people started to ask, whether, the system could be interpreted as
a classical genuine rotator with a unique worldline (e.g. it is known that the
uniqueness of the worldline could be regained /though not necessarily/ by in-
troducing interaction with external fields, as then – again according to Diracs’
method – this would introduce a new consistency condition of the interaction
form with the already existing constraints, that would make the coordinates
x, y, z, θ, ϕ unique as functions of the time t - this idea was partly realized in [6]–
however the standard coupling with the electromagnetic field used therein seems
questionable and not fully solving the problem [4, 7]). As already said, there are
4 physical degrees of freedom and 4 gauge degrees of freedom (in fact three, be-
cause there is arbitrariness in choosing the arbitrary parametrization along the
worldline’s path – the arbitrariness characteristic of any relativistic dynamical
system, let’s call it ’trivial’ gauge freedom). One can work in a gauge in which
c4 = 0 and c3 = 0 from the start and assume k.k = 0 and k.π = 0 as additional
auxiliary conditions preserved by the Hamiltonian. One can then assume a 3rd
gauge-fixing function f(u1, u2) = 0 such that the independent parametrization
(that is, the ’trivial’ gauge) is effectively chosen to be the proper time in the rest
frame of p (the time of the center of mass frame) or another choice, say, that
the parametrization is the coordinate time of Minkowski’s inertial coordinates
(in which the momentum p has nonzero spatial components). Let denote the
parameter by t. The functions x(t), y(t), z(t), θ(t) and ϕ(t) remain not indepen-
dent of each other, contrary to what one would expect for a genuine rotator (of
course, this result is obvious at the Hamiltonian level, because the considered
system with constrained mass and constrained spin has 4 physical degrees of
freedom, not 5 as for a genuine rotator – the indeterminacy of motion at the
level of Lagrangian can be noticed by examining the Hessian determinant in a
general family of rotators [4].

This all above is known and this is what the Referee seems to point
to and indicates as lack of novelty and, therefore, deficiency of our
present work. However, all this is not what is the main content and
result of our present work. We can rewrite our manuscript to make
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this point more clear for the reader.
Our point is the following. Is there a physically meaningful way to fix the

unwanted gauge degree of freedom that makes the worldline and clocking rate
indeterminate and then reinterpret the system with 4 physical degrees of free-
dom as a genuine rotator with determinate helical worldline and fixed intrinsic
frequency?

Our answer is yes, and this leads to a new Lagrangian form explicitly writ-
ten, which has not been considered in the context of spinning particles. We
agree with the Referee that setting c1 = c2 may look as it were a mere gauge
fixing, but we think it is something more. Note, that the only Lagrangian form
explicitly written in the literature and possibly to be written in the class of
models defined by the above Hamiltonian, is the KLS Lagrangian considered
in [1]. It was assumed as the starting point from which one can identify con-
straints and write down the corresponding general Hamiltonian. In our present
manuscript we ask the question about passing in the reverse direction: what
forms of functionally independent Lagrangians one down when one starts with
the general Hamiltonian Starting from a Lagrangian, identifying momentum
constraints and writing down the Hamiltonian can be called the direct Legen-
dre transform. Starting form a Hamiltonian, identifying velocity constraints
and writing down the Lagrangian we call the inverse Legendre transform.

Now, starting with the general Hamiltonian as written above (with four quite
arbitrary gauge functions c1, c2, c3, c4) we investigate the analytical properties
of the inverse Legendre transform (with no assumptions made about velocities).
Then one can see, that the corresponding Jacobian of the map between Lorentz
scalars in generalized momenta space (characteristic of the Hamiltonian) and
Lorentz scalars in generalized velocities space, and corresponding to this inverse
Legendre transform, has its rank dependent on the gauge functions c1, c2, c3, c4,
however only c1, c2 have a meaning for the uniqueness of the worldline as a
path in spacetime (as such, independent of the still arbitrary parametrization –
’trivial’ gauge). Depending on the rank of the map, one obtains 1) a Lagrangian
known in the Literature which is analytically suitable for considering subluminal
motions /for which the kinematical part of momentum ẋ√

ẋ·ẋ has a meaning/

and 2) a Lagrangian which is analitically suitable to considering motion with
the velocity of light for which ẋ · ẋ = 0. Note, that these Lagrangians are
analytically distinct and their role cannot be interchanged. It is also important
that the structure of cones in Minkowski spacetime must have its analytical
consequence at the Lagrangian level – in the velocity space – (velocities on
the null cone and velocities on the Lobachevsky unit hyperboloid belong to
geometrically distinct objects).

This analyticall difference resembles the one for structureless point relativis-
tic particle. In this case we have a general Hamiltonian H = c1

2 (p · p−m2) as a
starting point. We have L = p · ẋ−H = 1

2

(
ẋ · ẋ/c1 + c1m

2
)

is the corresfroming
Lagrangian. The Lagrangian equation ∂c1L = 0 gives the equivalent reduced
Lagrangian L = m

√
ẋ · ẋ only if m ̸= 0 and this Lagrangian gives analytically

well behaved momentum only if ẋ · ẋ ̸= 0. If m = 0 then the Lagrangian reads
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L = 1
2c1

ẋ · ẋ with the primary velocity constraint ẋ · ẋ = 0 that follows from
the Lagrangian equation ∂c1L = 0 and with c1 remaining an arbitrary degree of
freedom during motion (the one corresponding to the reparametrization invari-
ance).
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