
Report 
This manuscript analyses the steady state and dynamical properties of a Lindbladian for a bosonic field 
which preserves the photon-number parity. The resulting steady-state is not unique and depends on 
the probability (below denoted by P), that the even photon number eigenspace is initially occupied. The 
steady state also depends the parameter K, namely, the ratio between heating processes (incoherent 
emission of two energy quanta) and cooling processes (incoherent absorption of two energy quanta). 
The properties of the steady state are analysed as a function of the probability P and of the parameter K 
in terms of (i) existence of a limit cycle - identified according to criteria that the authors introduce-, and 
(ii) negativity of the Wigner function. The results are compared with the predictions of a classical model 
introduced ad hoc. 

We thank the referee for taking her/his time to review our manuscript. Our responses to detailed 
comments can be found below. The corresponding changes in the main text are colored blue (in the 
colored version of the manuscript we are attaching separately.) 

Note also that papers referred to in our replies here are either from the previous version of our 
manuscript, or appear at the end of the replies in a separate bibliography (such citations are denoted by 
[R1], [R2], and etc). 

 

Requested changes 
Style. 
 
The paper is generally written with care of details and with extensive discussions. The introduction of 
the paper provides a nice short review of noise-induced phenomena in quantum and classical physics. 
The paper also contains an extensive analytical analysis in the appendices. There are few typos (e.g., 
caption Fig. 1: “embbed” / after Eq. (23) in the appendices: “subtituting”). Suggestion: In Eq. (12). It 
would be useful to comment in the main text that x and y are the bosonic field’s quadratures. Remark: 
Sentence before Eq. (96): P_0 and P_1 are used in an argumentation but defined only later on. 

We thank the referee for carefully reading the manuscript. We have fixed the typos in the revised 
manuscript. 

 
Questions to the authors. 
 
1) Thermal bath. In order to relate their study to noise-induced resonances, the authors refer to their 
model, Eq. (1), as a nonlinear damped oscillator coupled to a heat bath. In general, while Eq. (1) has an 
interesting theoretical justification on its own, I do not see how one can associate a temperature with it. 
In fact, Eq. (2) is generally not a thermal state. It is peculiar, that Eq. (2) does not even asymptotically 
reach a thermal state for K->1, which, according to the authors, shall be the case of very large 
temperatures. The authors shall provide an accurate justification of the use of the concept of 
temperature in their model (see also item 6 of this list) 

We thank the referee from raising a possible point of confusion. It is important to mention that we only 
refer to “temperature” as the temperature of the atomic bath which is traced out in master equation (1) 
(see the opening paragraph of Sec. II of our paper). The atomic ensemble in the bath is thus in a thermal 



state at temperature 𝑇 [see (27) in the  Supplementary Material of Ref. [57] from our paper for a 
detailed discussion]. Therefore, the oscillator is not thermalized to temperature 𝑇, as pointed out by the 
referee. However, the parameter 𝐾 increases with the temperature (and hence thermal noise) of the 
bath, so 𝐾 ⟶ 1 for the oscillator is equivalent to 𝑇 ⟶ ∞  for the atomic bath.  

We have also revised our references to “the temperature” in the Introduction as being the temperature 
of the bath so that this point is made clear at least twice (once in Sec. I and once more in Sec. II). 
 
2) Steady state I. Equation (2) does not contain off-diagonal elements between the even photon 
number and the odd photon number eigenspaces. The authors make reference to previous literature in 
order to motivate this ansatz. They also show that for K=0 this ansatz is not valid: In fact, in this limit 
there is a perfectly decoupled subspace spanned by the photon number states |0> and |1>. Since Eq. (2) 
shall hold for K>0, is the limit K->0 different from the case K=0? And in general, how shall one 
understand the limit of small K in the phase diagrams of Fig. 2 and 3? For instance: assume an initlal 
state that is a coherent superposition of 0 and 1 with equal probability: How do the off-diagonal 
elements between the two subspaces behave at long times for small K? 

Yes, the 𝐾 = 0 case is qualitatively different from the 𝐾 = 0 case. For 𝐾 = 0 , one has an extra 
conserved quantity for the off-diagonal coherence on top of parity conservation [see (3.14) of Ref. [131] 
in our paper for details], while the 𝐾 > 0 case only has parity conservation. Hence, the phases plotted 
on the left-edge of Fig. 2 in the old manuscript is strictly speaking for the 𝐾 ⟶ 0! limit. This marks a 
thermal noise-induced transition from 𝐾 = 0  to the various phases shown in Figs. 2 and 3 of the old 
manuscript depending on the initial parity.  

As per the referee’s question, if we initialize in the coherent superposition of the even and odd parity 
states, the off-diagonal coherence will decay to zero on a timescale of 𝐾"#. Hence, the parity is 
conserved in the steady state only if 𝐾 = 0. 

We have added a few sentences to clarify this point in the revised text. See the end of the first 
paragraph on p6.  

 
3) Steady state II. In connection with the previous item. Equation (109) in the appendices shall justify the 
form of Eq. (2). Is this formula also applicable to the steady state of the master equation with K=0? 

Yes, (109) from our Supplementary Material is applicable even if 𝐾 = 0, but in that case there will be an 
additional conserved quantity for the coherence as mentioned in the previous answer, so we have D = 3 
instead.   
 
4) Phase diagram I. Which physical observable shall distinguish Phase II from Phase III? 

Phases II and III can be distinguished by measuring the parity of the state Π* = (−1)$%!$% , which is related 
to the Wigner negativity using 𝑊(0) = 2Tr0Π*ρ2 π⁄ . The expectation value of parity can be obtained in 
experiments via non-demolition measurements [R1]. 

 
 
5) Phase diagram II. Some features of the phase diagram depend on K. However, one important result of 



this paper (Phase III) seems to solely depend on the initial state, and specifically on P. In view of this 
result, the claim of quantum noise-induced resonance is questionable. 

Our quantum noise-induced transitions refer to (i) the formation of various phases I to III from 𝐾 = 0 to 
𝐾 > 0 as discussed in a previous answer; and (ii) the stochastic Hopf bifurcation between phases I and II 
which occurs for a critical 𝐾. The justification for “quantum noise-induced” transitions comes from the 
comparison with the analogous classical noisy model which shows no such behaviour in all parameter 
regimes. We have added a few sentences on the second paragraph of p2 to explain this. 

As the referee has noted, once the state is in Phase III, no amount of thermal noise can remove the 
Wigner negativity. This is equivalent to the conservation of parity and is not related to the stochastic 
Hopf bifurcation.  
 

 
6) Classical limit. The authors argue that Equation (9) shall provide a classical benchmark to their model, 
Eq. (1). The justification of this statement is not provided. The authors comment in the text about the 
difficulty of taking the classical limit of Eq. (1). As an alternative, they could consider the original model 
(emitters + photon field) and derive the Fokker-Planck equation in the semiclassical limit. In this case 
they would find a classical model with which they can consistently benchmark Eq. (1) (I suspect that they 
will have to take into account photon processes that break the symmetry of Eq. (1)). and also possibly 
identify the order of magnitude of K for which Eq. (1) is no longer valid. 

As mentioned in the page 4 of the main text “Although our classical model … completely deterministic”, 
the usual method of system size expansion for obtaining semiclassical Fokker-Planck equation of motion 
fails for our model due to the presence of multiplicative noise which scales with the system size. Other 
equivalent ways of obtaining semiclassical limits like truncated Wigner approximation and mean-field 
approximation will fail for the same reason. Fundamentally, our model lacks a proper classical limit 
unlike quantum models with additive noise. [See the added sentences in red on p5 (also a response to 
referee 1), at the end of section II.] 

Hence, for comparison purposes, we construct the closest classical approximation to the noisy dynamics 
given in  (10).  The classical noise model is constructed from the quantum Langevin equation by allowing 
the bosonic operators to commute and replacing them with c-numbers. This is an alternative method to 
find the semiclassical limit. This is not to be misconstrued as the physical classical limit of a quantum 
system, as we have mentioned in page 4. Our approach amounts to allowing the bosonic operators to 
commute and replacing them with c-numbers. Therefore, the differences in behaviour between the 
quantum model (1) and the analogous classical model (10) can be attributed to the non-commuting 
nature of quantum operators, which is a genuine quantum effect. 

We remark that for additive noise, this procedure is equivalent to a semiclassical approximation but this 
is not true for multiplicative noise in general (see the second paragraph in Sec. 4 on page 5 of Ref. [R2], 
also cited as Ref. [63] in our paper). We also refer to our reply to the second point raised in the first 
referee report. 
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