
 
 

Report 
In this manuscript the authors analyse the stationary state of a bosonic mode with two-boson 
dissipation and gain from the perspective of noise-induced transitions. This is an interesting work with 
a broad spectrum of results and analytical insights. Moreover, while the results mainly concern the 
stationary state of the master equation, the authors also derive an equivalent stochastic formulation of 
the model that they use to physically interpret the properties of this stationary state. This thorough 
analysis is complemented by a comparison with a classical stochastic model described by a stochastic 
differential equation with an analogous mathematical structure, although it is not clear that such a 
model represents the classical counterpart of the quantum model. While we believe that this manuscript 
deserves publication, we think that before acceptance important issues should be addressed (see 
below). Also, depending on the answer, it will be clearer if this manuscript is more appropriate for 
SciPost or SciPost core. 
Particularly important for us is that it is not clear that the observed phenomena can be thought of a 
generalization of classical limit cycles in the quantum domain, and thus that such a nomenclature might 
be misleading. This is because of the presence of a strong dynamical symmetry and thus the dependence 
of the observed phenomena on the initial conditions, something that contrasts with the limit-cycle 
scenarios. 

We thank the referee for taking her/his time to review our manuscript. Our responses to the detailed 
comments can be found below. The corresponding changes in the main text are colored red (in the 
colored version of the manuscript we are attaching separately.) 

Note also that papers referred to in our replies here are either from the previous version of our 
manuscript, or appear at the end of the replies in a separate bibliography (such citations are denoted by 
[R1], [R2], and etc). 

 

Requested changes 
-1- Conservative orbits vs. limit cycles: Limit cycles are generally defined as isolated closed trajectories 
in nonlinear classical systems (see for instance Strogatz book), being dynamical attractors. Different are 
closed conservative orbits: these are actually not unique (not isolated), with amplitude, e.g., depending 
on the initial condition. The case considered by the authors corresponds to a dissipative system but with 
conservative orbits. Indeed the stationary state (2), including the analysed closed orbits, depends on the 
initial condition since photon-number parity is a conserved quantity of the dynamical system. 
Moreover, the initial weight on the even/odd photon number sectors is used as a parameter in the 
bifurcation diagram, which further emphasizes the continuous variation of the observed closed orbits 
with the initial conditions. It does not seem therefore to be the quantum generalization of classical limit 
cycle. 

We thank the referee for pointing out this important issue. Our system does have a stable limit cycle, 
but this was not apparent due to our choice of the initial states. As the referee correctly notes, the 
system exhibits non-isolated orbits only if we restrict ourselves to initial states that are localized in 
phase space. For example, if we only initialize in coherent states, there is a one-to-one correspondence 
between the initial-state and steady-state amplitudes. In fact, using  (44) and (94) from the 
Supplementary Material, we can see that 𝑛!! = 2𝐾 (1 − 𝐾)⁄ + exp(−𝑛") sinh 𝑛", where 𝑛" and 𝑛!! are 
respectively the initial and steady-state mean photon numbers. This seemingly suggests the absence of 
limit cycles. 



 
 

However, this classical intuition breaks down for quantum systems since one can initialize in states 
whose Wigner functions are delocalized in phase space, e.g. arbitrary superpositions of Fock states. We 
emphasize that this is very different from initializing a classical system in an ensemble governed by some 
phase space (probability) distribution, which can also be delocalized. In the classical case, the evolution 
of the phase space distribution can always be regarded as the collection of independent trajectories of 
the point particles that make up the distribution. However, such interpretation is wrong in quantum 
dynamics, where the evolution of the Wigner function in general cannot be separated into independent 
evolutions (i.e. we cannot interpret the Wigner function of a quantum state as a probabilistic mixture of 
coherent-state Wigner functions, or any other ‘localized’ Wigner functions).  

In fact, our closed orbits satisfy the key defining property of limit cycles, namely as attractors for a family 
of initial states [R1]. The Hilbert space of states is partitioned into two halves (even and odd parity 
sectors), with only the odd-parity part attracted to a unique closed orbit. For a fixed 𝐾, all initial states 
with the same initial photon-number parity (in Phases II and III) will tend towards the same closed orbit 
at steady state. This set of initial states consists of all coherent superpositions, or incoherent mixtures of 
states from these two sectors sharing the same photon-number parity, and in principle, spans over an 
infinite energy range and can be far from one another in the (quantum) phase space.  

Fundamentally, photon-number parity has no analogue in classical dynamics (as photons do not exist 
classically). The classical condition that states near an isolated orbit must be attracted to it, or repelled 
by it, is not necessary for a quantum limit cycle which is defined as a closed-orbit attractor in the 
quantum phase space. In fact, trajectories in the phase space is an ill-defined notion in quantum 
systems. In this regard, our proposed quantum limit cycle is a generalization of the classical limit cycle to 
quantum phase space, where the intrinsically quantum feature of parity conservation can play a central 
role, as in our case.   

We have added a discussion on this point in the revised manuscript, Section III B.2 (p9).  

 
Also, in the first section the authors introduce Hopf-bifurcations, while later what they report are P-
bifurcations, a less known phenomenon, not related to the common instability scenario of the Hopf one. 
Recommendation: use of correct nomenclature, consistently with the described features. Focus the 
introduction to the relevant context for the presented results or at least clarify in the introduction what 
this work is dealing with. 

We thank the referee for raising a possible point of confusion. To clarify the terminology, P-bifurcations 
is actually a method by which stochastic bifurcations are identified—phenomenologically by qualitative 
changes in the stationary probability density—as opposed to the more mathematical approach of 
dynamical bifurcations, or D-bifurcations for short (see Refs. [R2,R3] below and also Refs. [48—51] of 
the bibliography in the paper). Our use of P-bifurcations is also inline Ref. [44] of the paper, in which 
classical noise-induced transitions are also identified through the use of P-bifurcations. It is the method 
by which the physics literature identifies bifurcations and nonlinear features in quantum systems 
although physicists are not usually aware of this terminology. References [60, 61,114,118] are some 
examples that implicitly use P-bifurcations in a quantum system but without acknowledging it. We have 
tried to explain this on page 4 under Sec. III. A from which we quote our own text: 

To demonstrate noise-induced transitions in quantum systems we follow a similar approach as the classical theory [44], whereby the 
transition is characterized by the mode of the system’s steady-state probability density. This is formally known as phenomenological 
bifurcations, or P-bifurcations for short [110, 111]. Essentially the same idea applies for an open microscopic system, but to their 



 
 

quasiprobability distributions. The idea had been noted early on in quantum optics [112, 113]. Its use is now prevalent in physics 
(often without reference to P-bifurcations), such as in defining limit cycles near a Hopf bifurcation [60, 61], relaxation oscillations 
[114], amplitude and oscillation death [115–118], and Turing instabilities [119].  

As for the bifurcation studied in this work, it is a stochastic Hopf bifurcation. In particular, our Hopf 
bifurcation is purely the result of quantum white noise—no quantum white noise, no Hopf bifurcation 
(and replacing the quantum white noise by classical white noise also fails to induce a stochastic Hopf 
bifurcation). Our references to P-bifurcations are meant to make explicit the method used to describe 
such a noise-induced Hopf bifurcation and the resulting limit cycle. 

We have now revised our manuscript to further clarify that P-bifucations is a method to describe 
nonlinear features and bifurcations, which should not be confused with the main focus of our paper, 
which is on noise-induced Hopf bifurcation/transition. The revision can be found at the end of the first 
paragraph on Section III A. 

 
-2- Classical limit: The quantum system is fully characterized by the non-linear interaction with the 
environment (the unitary dynamics is just harmonic motion). The authors consider a classical limit that 
actually does not come from any mean field description (that would lead to a deterministic equation), 
nor to a semi-classical approximation (not obvious due to the presence of multiplicative noise), nor to a 
truncated Wigner approach. The choice to substitute quantum operators with classical fields is 
understandable to define a classical model (even if there are subtleties associated to the noise term), but 
it does not mean that this model would represent a macroscopic limit of the quantum microscopic 
model. Therefore statements like "We find that multiplicative quantum noise can induce a classically 
forbidden transition" are misleading and not properly justified. 

Our quantum model does not have a semiclassical limit. We have tried to explain this on page 5 of the 
paper: 

Although our classical model is designed to mimick the quantum system, there are nevertheless some intrinsic differences. 
First, one often extracts the macroscopic limit of an open quantum system by performing a system- size expansion [97]. 
However, this method is only capable of extracting macroscopic systems with additive noise [61, 97]. Thus it cannot be 
employed to investigate whether multiplicative noise can induce limit cycles in a classical system. The system-size expansion 
therefore provides a sense in which our quantum oscillator lacks a classical limit.  

The usual method of system size expansion for obtaining semiclassical equations of motion fails for our 
model because multiplicative noise scales with the system size. Aside from such a mathematical 
understanding, a physical understanding can also be gained from Fig.1, which shows that multiplicative 
quantum noise arises from singly stimulated emissions (where one part of a two-photon emission is 
spontaneous, and one part stimulated)—a process that is entirely foreign to classical physics. This 
pictures shows that we cannot increase the system size (here the mean number of system photons), 
without also increasing the noise added to the system (here the number of spontaneous emissions). 

However, we should not allow the lack of a formal semiclassical limit prevent us from considering any 
comparison to a similar classical stochastic system, albeit now defined by hand. Hence, for comparison 
purposes, in (9)—(11) we construct the closest classical approximation to the quantum stochastic 
dynamics. This is not to be misconstrued as the physical classical limit of a quantum system, as we have 
mentioned in the above quote from page 4 of the paper. It should also be noted that the truncated 
Wigner approach is a hand-waving way of extracting the semiclassical limit when it exists. The rigorous 



 
 

justification for it (and in fact also the technically correct way to do it) is via the system-size expansion as 
explained in Chap.5 of Ref. [97] in the paper.  

However, we may still construct a classical stochastic model from the quantum Langevin equation by 
allowing the bosonic operators to commute and replacing them with c-numbers, which results in (9)—
(11). This is an alternative way of defining the classical limit, and highlights the non-commutative nature 
of operators to be solely responsible for the noise-induced transitions in our paper, a genuine quantum 
effect, which are otherwise “classically forbidden.” Such a designation is not uncommon when 
discussing quantum effects. An elementary example is the quantum tunnelling of a particle into 
classically forbidden regions of a potential barrier, an effect which is once again fundamentally due to 
non-commuting operators in quantum mechanics.  

We have added a few sentences to further clarify this point in the revised manuscript on p5, at the end 
of section II. 

 
-3-Novelty: Noise induced phenomena and transitions have been largely studied in the last decades, 
also in presence of quantum noise. Looking at the state of the art, the novelty of this work does not seem 
to be in "discovering" this phenomenon (in the quantum regime), nor in the considered multiplicative 
noise (common in quantum systems when departing from a quadratic Hamiltonian and/or linear losses), 
but instead in reporting, also with valuable analytical results, an insightful example with some 
interesting specific features. 
Recommendations: That quantum noise can induce novel regimes does not seem the major 
breakthrough and the title could be more focused. As another example, at pg.2, there is a vague 
statement, about the motivation, to be improved: "In this work we show that pure noise-induced 
transitions can also occur in a microscopic system where quantum effects are essential." It is actually 
natural that, being the unitary part trivial, any relevant features will come from the form of noise. The 
main suggestion is to focus the introduction on the relevant context and specify the goal of the work 
more clearly. 

The novelty of our work is a noise-induced transition which is both pure, and genuinely quantum. As we 
have explained in the literature review in Sec. I of our paper, previous work on state transitions in 
quantum systems with noise, such as quantum stochastic resonance [R4], synchronization bistability, or 
coherence resonance (respectively Refs. [63] and [65] of the paper) contains only transitions between 
states which are already present without noise. These transitions can be enabled simply by additive 
noise and a better term for them would be noise-activated processes. This leads us to the following two 
novelties of our noise-induced transition: 
 

1. The noise-induced transition is pure (see the treatise by Horsthemke and Lefever in Ref. [44] of 
our paper, especially Sec. 6.5): For this to happen, the noise affecting the system must induce a 
transition to a (stationary) state that is completely absent in the noiseless system. To achieve 
this one requires multiplicative noise. In our work, this new stationary state is the limit cycle, 
which would not exist at all if we switch off the multiplicative quantum white noise entering the 
system by setting the bath temperature to zero. To the best of our knowledge, our paper 
provides the first model of a pure noise-induced transition in a quantum system. References 
[62—86] of our paper, quantum or classical, all fall short of a pure noise-induced transition. For 
examples of classical systems that do qualify as a pure noise-induced transition see Refs. [54—
56] in our paper.  
 



 
 

We have now made this point about Refs. [62—86] in our paper explicit in order to clarify the 
novelty of our work (see the sentences at the end of p2, the last paragraph of section I on p3, 
and a paragraph above Eq. (8)).  We have also added two new figures, Figs. 1 and 2, for further 
clarification. 
 

2. The noise-induced transition is truly nonclassical: By this we mean, 
 

(i) The Wigner function representing the noise-induced limit cycle can become negative 
(phase III in Fig. 2 of the paper), which is a signature of a genuine quantum state. 
 

(ii) A classical stochastic model which best emulates the quantum stochastic model fails 
produce a limit cycle in any parameter regime. Therefore, even the limit cycles in phase 
II of Fig. 2 in our paper may be said to be nonclassical. 

 
(iii) Nonclassical steady states are formed in phases I to III. Using the Mandel Q-parameter 

as a nonclassicality witness, we have identified a subregion of nonclassicality in Fig. 2 
which consists of states from all three phases. We have added this discussion in the 
revised manuscript, section III C. 

 
Note that we have also shown in Sec. V that exp(ℒ⇑	𝑡) induces a transition from a vacuum state (which 
is a classical state) to a nonclassical state only if noise is present, by which we mean 𝐾 > 0, and where 
ℒ⇑ is given by (1) of the paper. This is interesting in that it shows that states in phase I of Fig. 2 (those 
along the ℘$ = 1 line but excluding the point 𝐾 = 0) are in fact also nonclassical. It indirectly shows 
why the limit cycles of phase II are also nonclassical in the sense of (ii) above.1 

 
The referee has pointed out that quantum systems with multiplicative noise is common (e.g. bosonic 
systems with multi-photon dissipation). However, in most of such works, the inherent multiplicative 
noise acts as a stochastic perturbation and does not lead to novel effects. One such example is the 
inhibition of perfect frequency locking in quantum synchronization [R5,R6], which is also expected in 
classical stochastic models. The novelty of our work lies in placing the focus on the quantum 
multiplicative noise which leads to ‘phase transitions’ which are not observable with the analogous 
classical multiplicative noise.    

 
-4-Multiplicative noise: the authors write "The most astonishing feature of multiplicative noise in 
nonlinear nonequilibrium systems is their ability to induce structured states, or “phases,” which 
without noise are completely absent." This is definitely not an exclusive feature of multiplicative noise. 
Additive noise does also induce regimes with no classical equivalent, as, for instance, convective 
instabilities in systems with spatial gradients. 

The statement referred to by the referee is the defining feature of pure noise-induced transitions in 
classical stochastic systems. It refers to what multiplicative noise can do in classical systems—namely 

 
1 It pays here to recall that a density operator is nonclassical if and only if the Glauber-Sudarshan P distribution is negative. This is 
the standard definition of nonclassicality in quantum optics and quantum information. The negativity of the Wigner function is 
only a sufficient condition for nonclassicality. Thus, states with a positive Wigner function may still be nonclassical because their 
Glauber-Sudarshan distribution might be negative. The single-mode squeezed state is one such example.  



 
 

induce states that are absent in a deterministic classical system (whereas additive noise cannot2). This is 
a widely accepted position within classical stochastic systems. We point to footnote 2 for a technical 
justification and simply quote a sample of the literature below.  

• Ref. [56] from our paper, second paragraph in the Introduction on page 488 (note although 
they do not refer to this as a pure noise-induced transition it is clear that it is from reading 
their paper, and their Ref.15 refers to Horsthemke and Lefever): Notably, such residual 
stochasticity often manifests as a multiplicative, or state-dependent, noise at the collective level. 
In many cases, this can give rise to ‘finite- size noise-induced’ behaviour15,16, where the 
probability of finding the system in a particular state is concentrated away from the 
deterministic (N⟶∞) fixed point(s). 

• Ref. [49] from our paper, third paragraph in the Introduction on page 834: The shifts discussed 
here in systems which already deterministically exhibit a dynamical instability are one type of 
noise-induced transition treated by Horsthemke and Lefever,19 the other being the so-called 
“pure” noise-induced transition wherein bi- or multimodality is induced by noise in a system 
which deterministically has either no instability or a fewer number of instabilities.19,20 

The referee may have thus taken the quote out of context by comparing quantum to classical in his/her 
comment. What we have done in our work is to first investigate how multiplicative quantum white noise 
might cause a pure noise-induced transition, thereby extending the original idea of Horsthemke and 
Lefever to quantum theory. We then investigate if the pure noise-induced transition is genuinely 
quantum, which we find it is.  

As a separate reply, we tried searching for the example mentioned by the referee and found some 
results on pattern formation due to convective instabilities and additive noise. This seems to be closely 
connected to the referee’s comments. One paper that appears to be representative of this line of 
research is Ref. [R7], which we comment on. To the best of our understanding, Ref. [R7] is not a pure 
noise-induced transition/effect. Their main result is that noise can sustain an optical pattern formed by 
the spatiotemporal variation of light intensity governed by a Ginzburg—Landau equation. By going into 
an appropriate parameter regime (the convectively unstable regime), a pattern can be produced by 

 
2 It is actually not too difficult to see why entirely new states absent in the deterministic system can be generated by 
multiplicative noise but not by additive noise: In defining a classical nonlinear system by 𝑥! = 𝑓(𝑥, 𝑦) and 𝑦! = 𝑔(𝑥, 𝑦), we capture 
all its nonlinear features, such as fixed points and limit cycles by 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦).	Since additive noise is independent of 𝑥 and 𝑦 
(assumed to be white), adding them to 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) to define a new stochastic system simply perturbs the motion around 
the existing nonlinear features in a random fashion. That is, additive noise cannot create or destroy new features like changing 
the number of fixed points or creating a limit cycle when the noiseless system does not already have one. An example is a 
nonlinear system defined by a double-well potential, with two stable fixed points situated at the potential minima separated by a 
barrier. If we include additive noise in this system, and if the noise strength is sufficiently large to overcome the barrier 
separating the two wells, then the system may randomly jump between the two fixed points. This is often referred to as noise-
induced bistability in the literature despite the “bistability” (i.e. the existence of two stable fixed points) being present in the 
noiseless system already. Multiplicative noise on the other hand introduces a white-noise term that depends on a nonlinear 
function of 𝑥 and 𝑦. This then has the ability to actually alter the nonlinear features such as creating new fixed points that did not 
exist before. In the context of bistability, we point to Ref. [55] in our paper as an example of a pure noise-induced transition (or 
rather “genuine” noise-induced bistability) where the multiplicative noise not only accounts for the stochastic jumps between 
two fixed points, but actually creates the fixed points (or creates a double-well potential so to speak, see also the final paragraph 
of Sec. V of our paper). This is fundamentally different to using a deterministic system containing two fixed points and then 
introducing additive noise to make the system jump between them. This ability of multiplicative noise to create brand new states 
can be mathematically seen from the Stratonovich-to-Ito conversion for stochastic differential equations. The conversion 
introduces nontrivial correction terms to the deterministic dynamics given by 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) for multiplicative noise. For 
additive noise, such correction terms vanish.  



 
 

including additive noise. Reference [R7] considers an optical realization using a cavity containing a Kerr 
nonlinear medium and pumped by an external laser field. Physically, the regime of convectively 
instability is determined by the angle at which the pumping laser is launched into the cavity. This 
nonzero tilt of the pumping laser creates an advective (or spatial drift) term in the complex Ginzburg—
Landau equation which is necessary for the convectively unstable regime. When the system is 
convectively unstable, local perturbations drift away from their point of origin in space and the same 
applies to a pattern. The key finding of Ref. [R7] is then, that by continuously injecting noise into the 
system (across space and time), one can regenerate the pattern at each point in space and time. The 
result is what the authors of Ref. [R7] refer to as a noise-sustained pattern.  

The noise-sustained pattern is not a pure noise-induced effect because the deterministic system already 
exhibits a pattern in its absolutely unstable regime. The noise does not induce a completely new state 
that is absent in the noiseless system (which here is the optical pattern), instead, noise only sustains it. 
In particular, the advective/spatial-drift term in the Ginzburg—Landau equation that is important to 
achieve convective instability relies on an entirely deterministic process, given by the launching angle of 
the external laser. In fact, no other parameter in the noise-added Ginzburg—Landau equation depend 
on the noise (other than the noise intensity itself). This is in contrast to our manuscript, which reports an 
effect that is purely the result of noise: If 𝜅⇑ = 0 in our model, then no limit cycle can be formed at all. 
This is because the temporal-drift term in our model (given by 𝜅⇑	𝑎	;𝑑𝑡), which is necessary for the 
formation of a limit cycle, would vanish when 𝜅⇑ = 0. As explained in footnote 2 above, this is why pure 
noise-induced effects require multiplicative noise. 

Reference [R7] is reminiscent of excitable systems and noise-sustained oscillations in purely temporal 
systems. In a deterministic excitable system such as the Fitzhugh—Nagumo model, there are two 
parameter regimes [R8]: One in which the system has only one stable fixed point, and another in which 
there is an attracting limit cycle. Noise-sustained oscillations may occur in this system if we tune the 
parameter such that the noiseless system enters its excitable regime for which the system has a fixed 
point, but is near the limit-cycle regime. In this case, the phase-space flow sufficiently far away from the 
fixed point is a big loop (due to the fact that it is approaching the limit-cycle regime). Then by including 
additive noise of sufficient strength, one can excite the system from its fixed point to such regions of 
phase space where it performs a loop before coming back to the fixed point again. For as long as the 
noise is present, the system may be continuously excited to perform such excursions/loops. Coherence 
resonance is then simply tuning the noise intensity so that these excursions in phase space occur at 
regular intervals. The result is referred to as oscillations (or sometimes a limit cycle) sustained by noise.  

The two examples in Refs. [R7] and [R8] illustrate how additive-noise effects requires the deterministic 
system to contain nontrivial nonlinear effects prior to the addition of noise (a pattern for Ref. [R7] and a 
limit cycle for Ref. [R8]). In each case we first understand how the nonlinear phenomenon of interest is 
formed in the deterministic system and the various parameter regimes, then we tune the system away 
from the nonlinear phenomenon, but not too far away. Finally, including an appropriate amount of 
additive noise “restores” the nonlinear phenomenon. That such a procedure is possible relies on the 
noise being independent of the system, but this also means that added noise cannot introduce any extra 
terms (processes) into the system dynamics, which is why the deterministic system must exhibit a 
nontrivial nonlinear effect first. This is why Horsthemke and Lefever defines a pure noise-induced 
transition to be one taking place in a system where the nonlinear effect has to be completely absent in 
the corresponding noiseless system.   
 



 
 

 
References 
 
[R1] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, (Springer, 1996). 
 
[R2] L. Arnold, N. Sri Namachchivaya, and K. R. Schenk-Hoppé, Toward an understanding of stochastic Hopf 
bifurcation: A case study, Int. J. Bifurc. Chaos Appl. Sci. Eng. 6, 1947 (1996). 
 
[R3] K. R. Schenk-Hoppé, Stochastic Hopf bifurcation: An example, Int. J. Non-Linear Mech. 31, 685 (1996). 
 
[R4] T. Wagner, P. Talkner, J. C. Bayer, E. P. Rugeramigabo, P. Hänggi, and R. J. Haug, Quantum stochastic 
resonance in an a.c.-driven single-electron quantum dot, Nat. Phys. 15, 330 (2019). 

[R5] T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum van der Pol oscillators with trapped 
ions, Phys. Rev. Lett. 111, 234101 (2013).  

[R6] S. Walter, A. Nunnekamp, and C. Bruder, Quantum synchronization of a driven self-sustained oscillator, Phys. 
Rev. Lett. 112, 094102 (2014).  

[R7] M. Santagiustina, P. Colet, M. S. Miguel, and D. Walgraef, Noise-sustained convective structures in nonlinear 
optics, Phys. Rev. Lett. 79, 3633 (1997). 
 
[R8] A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett. 78, 775 
(1997). 
 
 


