
List of changes to the manuscript
1. Update Fig. 4 to include data for rs = 0.5 and 0.25.

2. Report relevant benchmark values in the caption of Fig. 2 and S1.

3. Clarify the error analysis of effective mass from the original data; add data processing scripts to the
public code repository for reproduction of the final results.

4. Make slight modifications to some phrases and sentences.
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Response to Report 1
1. The authors successfully benchmark their method against the ideal gas. Equally (if not more) important

would be a benchmark against asymptotically exact analytic results for the (weakly interacting) small-rs

regime, the green dashed line in Fig. 4. While the data for the largest studied system size N = 57
appears to be perfectly consistent with the small-rs analytic curve, this might be a mere illusion given
the substantial drift of the data with N . Especially worrisome is the fact that the character of this drift
dramatically changes with rs (cf. corresponding remark by Referee 1). Based on the above-mentioned
circumstances, I suggest that the authors to produce more data:

1. For rs = 0.5 and 0.25.

2. For N substantially larger than N = 57 (if possible; if not, then explain why).

Response: Thanks for the kind suggestion. We have extended the calculations to rs = 0.5 and 0.25
for the electron numbers N = 29, 49 and 57 considered in the manuscript. The results are shown in
Figure 1 below. One can see the data extrapolate smoothly to smaller values of rs, where they also
agree well with the low-density limit shown by the green dashed line as N increases.

The largest calculations of N = 57 electrons take around 5 days on 8 Nvidia V100 GPUs. The overall
computational effort with respect to system size is o(N4). A substantially larger N is possible but will
go beyond the computational resources we have access to now.
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Figure 1: Updated version of Fig. 4 of the manuscipt, including additional data for rs = 0.5 and 0.25 in the
weak-interacting regime.
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Response to Report 2
1. The relation m∗/m = s/s0 is based on the validity of Fermi liquid theory. Whereas it is very likely that

FL applies to all parameters shown, I wonder if the machine learning data show any deviations from
FL theory (ie, to make sure that the data is internally consistent). For instance, do the energies behave
as E ∼ T 2 for low enough temperature T? Or can we see a plot S(T ) for the interacting model?

Response: Thanks for the kind suggestion. We have carried out a set of calculations for N = 29
electrons at rs = 10.0 and temperatures T/TF ranging from 0.06 to 0.21, including the point T/TF = 0.15
chosen for the extraction of effective mass. Figure 2 below shows the entropy s per particle as the
function of T/TF . One can see that for electron densities as low as rs = 10, the scaling behavior s ∼ T
still holds nicely, as expected from the predictions of Fermi liquid theory.
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Figure 2: The entropy per particle of 29 interacting electrons at rs = 10 as the function of temperature.

2. In many figures (Fig. 2, 3b, S1) the marker of the data points is big. Could the authors please write
the value of the converged answer, with error bars, in the figure caption?

Response: Below are the relevant data in Fig. 2 and S1 of the manuscript:

Fig. 2 left panel s0 : 0.4227(4); benchmark : 0.4232

right panel s0 : −0.28746(8); benchmark : −0.2863(1)

Fig. S1 left panel k : 0.04250(7); benchmark : 0.0426(1)

right panel v : −0.14360(7); benchmark : −0.14358(1)

We have also added these numbers to the manuscript in the caption of corresponding figures. Thanks
for the suggestion.

Note we have not written the value of the original training data in Fig. 3b, as they need a little
more processing to give final estimates of the effective mass. See the following response for details.
Nevertheless the training data are available publicly.
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3. The non-monotonicity of the data as a function of N seen in Fig. 4 for rs = 3 and 5 seems remarkable
to me. What is the explanation? Or is it a consequence of effects seen in Fig. S2 (which would imply
large systematic error bars)?

Response: The N -scaling behavior of effective mass is jointly determined by the entropies of both
interacting and non-interacting electron gas. The non-interacting entropy is monotonically increasing
with N , as shown by the green line of Fig. S2. (Note we have used the twist-averaged boundary
conditions in all calculations.) On the other hand, the scaling behavior of interacting entropies is more
complicated and may be rather different for various values of rs. In particular, it is hard to tell whether
the interacting entropy is monotonically varying with N for any given rs. Answering such questions
requires a rigorous finite-size scaling theory for the entropy of interacting electron gas, which to our
knowledge is still lacking. Consequently, the effective mass may converge in a more regular way for
certain values of rs due to “better” error cancellation between the interacting and non-interacting
entropies.

4. The data shown in Fig. 3 seems to fluctuate a lot. Can the authors indicate how they extract the final
entropies and error bars from these curves. Naively, the data fluctuate more than 15% with strong
autocorrelations extending over many epochs, perhaps even drifting, and this is hard to reconcile with
the rather tiny error bars in Fig. 4. The authors should provide a more detailed error analysis than the
few sentences that are currently written in the text.

Response: As you noticed, during training the entropies (like those shown in Fig. 3b) exhibit higher
sensitivity than other quantities like the free energy. To take into account such fluctuations in the
estimate of error bars, we have carried out an exponentially-weighted moving average over the original
entropy data. This procedure is pretty standard and implemented in many data processing libraries
like pandas.

Below we show a simple code snippet that takes the original entropy data s and outputs the exponentially-
weighted mean s ewm and variance s ewm var, which are then used to plot the error bars shown in
Fig. 1 above (including the additional data for rs = 0.5 and 0.25 as suggested by the first referee).
Note we have set the smoothing parameter α to be 0.01; see pandas doc for the definition. However,
it’s worth emphasizing that changing the smoothing parameter to reasonably different values will not
essentially affect the conclusions of this work. As an example, Figure 3 shows the processed data in the
setting of α = 0.05, which reflects essentially the same behavior of the effective mass as Fig. 1.

import pandas as pd
import numpy as np

ewm = pd.Series(s).ewm(adjust=False, alpha=0.01)
s_ewm = np.array(ewm.mean(bias=True))
s_ewm_var = np.array(ewm.var(bias=True))

We have also included a notebook in the public code repository for reproducing Fig. 1 above from the
original data, and revised the manuscript accordingly. Hopefully these will clarify your (and others’)
concerns about the error bars of our predictions.

By the way, here may also be a suitable place to give an explanation to your following concern:

I find it counterintuitive that the error bars for rs = 10 are the smallest. There are no indications in
the data leading up to Fig. 4 that indicate so, and one may hence worry that the systematic errors are
severely underestimated in this work.

For small rs, the entropy of 2D interacting electron gas is larger. This implies that there are more
states that are actively populated and contribute significantly to the entropy. These state levels may
change dramatically during optimization of the normalizing flow model, which then leads to larger
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https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html
https://github.com/fermiflow/CoulombGas/blob/master/analysis/analysis.ipynb
https://github.com/fermiflow/CoulombGas/tree/master/data
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Figure 3: The same as Fig. 1, except that the smoothing parameter α for the exponentially-weighted moving
average is set to be 0.05.

fluctuations of entropy for small rs. Enhancing the expressive power of the normalizing flow model may
help to further “stabilize” the involved energy levels and hence reduce the error bars of our predictions.

5. The energy shown in Fig. 2b for rs = 5 goes below the value of the energy reported in the literature
whereas the energy for rs = 10 in Fig. S1 seems to agree. Could the authors elaborate more? Is there a
systematic trend where the method introduced here performs better than other methods? Knowing
(ground) state energies as a function of rs would certainly also be a plot of interest.

Response: The benchmark data in Fig. 2b is from a variational Monte Carlo calculation for the
ground-state electron gas published in 1989. It is therefore not surprising that our result is significantly
lower than this rather early result. On the other hand, the benchmark data in Fig. S1 are from a
restricted path integral Monte Carlo calculation for the electron gas at finite temperature. This
result can be seen as nearly exact for such a low density as rs = 10, where the fermion sign problem is
not severe. The good agreement between our results and this benchmark, therefore, indicates great
expressive power of the models used in our approach.

6. What possibilities exist to compute other, common Fermi liquid parameters?

Response: One important example is the quasiparticle-quasiparticle interaction parameters F (k, k′),
which can be written as the second-order functional derivatives of the total energy E(K). (Note
K = {k1, k2, . . . , kN } collectively denotes the momenta occupied by each electrons.) E(K) is known
as the Landau energy functional and is directly related (up to a constant) to the logarithm of the
momentum occupation log p(K), which is represented as an autoregressive model in this work. One
therefore can obtain F (k, k′) by naively taking energy differences between the ground state and various
particle-hole excitations. Another way is to calculate other thermodynamic quantities such as the
specific heat, which also incorporate certain information about F (k, k′).

7. I see no particular reason why a short-range potential (like a Yukawa potential) cannot be studied
in the current approach. Is there a particular reason why the authors stayed away from such simpler
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problems?

Response: You are right. It is straightforward to study problems with short-range interactions using
the current approach. In fact, the implementation will be even simpler because we do not need to carry
out Ewald summation as we have done for the calculation of Coulomb potential.

We chose to study the interacting electron gas with Coulomb interaction because it is a fundamentally
more important problem with open issues, as also pointed out by you in the report.
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