
Response to Report 1

Referee Comment: The paper does not mention any possible candidate materials where
this effect can be realized. Especially, the condition that there are only two-nodes with c
rage greater than one with finite tilt makes the model very restrictive.

Our Response : We thank the referee for raising this point. In this work, we have
investigated the Kerr and Faraday rotations for time-reversal symmetry (TRS) broken
type-I (i.e., tilt parameter |Cs| < 1) multi-Weyl semimetals (mWSMs) containing a pair
of Weyl nodes with opposite chiralities. In the case of a TRS broken mWSM containing
more than one pair of nodes, the conductivity can be obtained by considering linear
superposition of the results for individual pairs, which, as a result, would only modify the
Kerr and Faraday rotations quantitatively.

We would like to point out that the TRS broken type-I single WSM phase (n = 1)
has recently been experimentally realized in Co3Sn2S2 [Refs. Science 365, 1278 (2019),
Science 365, 1282 (2019)] whereas the compound HgCr2Se4 (Refs. 7 and 18 in the re-
vised manuscript) is proposed to be a TRS broken double-WSM (n = 2) candidate.
Moreover, it has also been predicted that the cubic Dirac semimetal A(MoX)3 (with
A = Rb, TI; X = Te) can accommodate triple Weyl points (n = 3) by breaking its TRS
(Ref. 21 in the revised manuscript). These materials can be the possible candidates to
verify our results on Kerr and Faraday rotations presented in the current work. However,
the TRS broken type-II mWSMs (i.e., |Cs| > 1) should also give rise to Kerr and Faraday
rotations which is not the focus of this work and we leave it for future study. We have now
added a relevant comment on the possible candidate materials with appropriate references
in the conclusion section of the revised manuscript (First paragraph, Left column, Page
11).

Referee Comment: The paper doesn’t provide any analysis of energy scales. This is
important because of many factors, especially the fact that continuum model is applicable
only in a very tiny energy and momentum window for most Weyl semi-metals. Usually,
there are many electronic bands in the vicinity of Weyl node and it’s difficult to disentan-
gle the contributions arising from trivial bands and topological band crossings. For most
materials even a two-band tightbinding model fails to capture these essential features as
even the matrix elements between topological trivial bands start to contribute to conduc-
tivity. It would be helpful if authors can provide some estimate of energy and momentum
cutoffs they have used in the continuum model on the basis of electronic band structure of
existing topological weyl semimemetals.

Our Response : We thank the referee for this comment. We agree with the referee
that the continuum model is applicable in a small energy and momentum window, as it
does not have the natural ultraviolet energy cutoff compared to the tight-binding model.
At low frequencies, the lattice model of mWSMs is approximated by their corresponding
low energy model, thus the optical conductivity obtained from the lattice and continuum
models are in good agreement (Refs. 36 and 42 in the revised manuscript). On the
other hand, as the frequency increases, optical conductivity deviates from the continuum
model. Therefore, to make the continuum model work properly, one need to introduce
the momentum cutoff as well as frequency cutoff. We have chosen the momentum cutoff
along the kz direction kc ∼ π/a with kc > Q and consequently, ωc = vkc. In particular,



we have taken ℏωc/µ = 70 throughout the work. We have now added a relevant comment
on this in the revised manuscript (First Paragraph, Right Column, Page 4).

In this work, the other parameters are chosen based on a typical Weyl semimetal. For
example, we have chosen : v = 106 m/s, Q = 5 × 108 m−1, µ = 0.1 eV and tilt velocity
= 0.4v for type-I case.

Referee Comment: I don’t understand how can one measure Faraday rotation in semi-
infinite geometry. Could authors please clarify what is meant by Faraday angle in Eq. 28.
The Kerr rotation can be measured directly from the quantities evaluated in Eq. 27 but
Faraday rotation also depends on the path light traverses inside the material. Here, it’s
not so clear how would one measure the effect on the other end of the sample in semi-
infinite geometry. Maybe, one can consider a bulk sample but given that the system here
exhibit circular dichroism and circular birfringence so the rotation would also depend on
the length of the sample. If I’m not missing something important here, this issue seems
very concerning.

Our Response : We thank the referee for raising this important point. In this work, we
theoretically investigate the polarization rotation of reflected (Kerr rotation) and trans-
mitted (Faraday rotation) light for two cases: (i) thin-film geometry and (ii) semi-infinite
geometry. In the case of semi-infinite geometry, we consider only one interface (air-mWSM
interface). Applying the proper boundary conditions for electric and magnetic fields at
the interface, we obtain the transmission coefficients (t−, t+, t∥ and t⊥) for the transmitted
light refracted from the interface and propagating through mWSM. Therefore, as pointed
out by the referee, from an experimental standpoint, one cannot measure the obtained
quantity χF

F , χ
V
F (which are calculated using t−, t+, t∥ and t⊥) and its related polarization

rotations proposed in this work in experiment due to semi-infinite geometry.
However, despite using semi-infinite geometry in the current work, one can measure

the polarization rotation for the transmitted light based on our results by considering a
bulk mWSM of thickness d (as again pointed out by the referee) as explained below.

In this work, we analytically show that, for Faraday geometry, after incident on the
mWSM interface, a linearly polarized light is divided into two circularly polarized eigen-
modes (left and right circular) and propagate through the mWSM with different ampli-
tudes and velocities. This fact leads to circular dichroism (CD) and circular birefringence
(CB), which results from different absorptions and different speeds of two opposite circu-
larly polarized light and are determined by the Im[n+−n−] and Re[n+−n−] respectively.
Here, n+, n− are the index of refraction for left and right circularly polarized eigenmodes,
respectively. It is well known that the polarization rotation of the transmitted light (i.e.,
Faraday rotation) and corresponding ellipcity are directly related to CB and CD, respec-
tively. Therefore, using the Eq. (25) in the revised manuscript, one can measure the
complex Faraday rotation for a bulk mWSM of thickness d as (Refs. Phys. Rev. B 96,
195210 (2017), Small Methods 6, 2200885 (2022))

ϕFar
F = ΦFar

F + iΨFar
F ; ΦFar

F =
πd

λ
Re[∆n] ΨFar

F =
πd

λ
Im[∆n] (1)

where ∆n = n+ − n−. Therefore, it is clear that the Faraday rotation (ΦFar
F ) and corre-

sponding ellipticity (ΨFar
F ) are proportional to d in bulk mWSM. Since ∆n is proportional

to the topological charge, the Faraday rotation and corresponding ellipticity is also in-
creases linearly with n. In the revised manuscript, similar analysis is also applied for



Voigt geometry case, where both linear birefringence and linear dichroism lead to a polar-
ization rotation (Voigt rotation) of the transmitted light followed by the relation [Phys.
Rev. Lett. 87, 047401 (2001), Phys. Rev. B 89, 085203 (2014)]: ϕVoi

F ≈ πd
iλ
(n∥ − n⊥).

In the revised manuscript, we have now replaced the figures 4(c)-(d) and 5(c)-(d) by the
new figures (Re[∆n] and Im[∆n]) and added a relevant comment on this with appropriate
references (Second paragraph, Left column, Page 9; Third paragraph, Left column, Page
10), as well as modified abstract and conclusions.

Referee Comment: Now, even, in the thin-film limit, the film thickness would play
some role in deciding the Faraday rotation angle. The authors haved cited Ref. 51 which
studies only Kerr and Faraday effect for monolayer graphene and hence the thickness of
the sample doesn’t come into picture. It would be very helpful if authors can make some
comments about the range of thickness and compare it to the wavelength of the light used
which in turn would depend on the energy scales of the system which are not discussed
here. Also, would Kerr rotation be modified in any way, if we also consider the reflection
at the other end of the sample.

Our Response : We thank the referee for raising this question. In the thin-film limit
(d << λ), the reflection and transmission coefficients (r/t)ss,sp,ps,pp which are used to
calculate the Kerr and Faraday rotations are obtained from the surface conductivity σd

ij

(σd
ij = d σij) as can be seen from the Eq. (20) of the main text. In the case of Kerr rotation,

it has been shown that the complex dimensionless quantity χ
p/s
K for normal incidence is

nearly independent of d and is mainly determined by the ratio σd
xy/σ

d
xx (Refs. 41 and

42 in the revised manuscript). However, in the case of Faraday rotation, the complex

dimensionless quantity χ
p/s
F for normal incidence can be written as

χ
p/s
F =

σd
xy

σd
1

∝ d σxy

(1 + d σxx

2cϵ0
)
∼ d σxy d << λ. (2)

It is clear from the above expression that the Faraday rotation is also proportional to d in
the thin film limit. The thickness dependence of Kerr and Faraday rotations is depicted
in Fig. 1.

In the thin-film limit, one has to satisfy the following criteria a ≪ d ≪ λ (where a is
the lattice constant and λ is the wavelength of the incident light). In the current work, we
consider d = 10−50 nm and the wavelength of light λ is varied till near infrared wavelength
range which satisfies the above criteria. For example, we have chosen Ω (= ℏω/µ) = 5
such that ℏω = 1 eV and λ ∼ 1200 nm, satisfying the condition a ≪ d ≪ λ. Furthermore,
the energy cutoff in this low energy model is around 7 eV which is way above the incident
photon energy.

Given the finite thickness (d) of the film, the two boundaries can act as a Fabry-Perot
cavity, where scattering from both the interfaces can lead to an interference effect, which
in turn can modify Kerr rotation. The maxima and minima conditions for this interference
effect are d = lλ/2 and d = (2l+1)λ/4, where l is an integer. However, for thin-film limit
(λ ≫ d), which we are considering in the current work, the phase difference is negligible,
resulting in minimal impact on the Kerr rotation. We have now added a relevant comment
on this in the revised manuscript (First Paragraph, Left Column, Page 7).

Referee Comment: I would like to reemphasize that authors should also provide some
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Figure 1: (a) Kerr angle and (b) Faraday angle as a function of thickness d for thin film
limit of mWSMs. The rest of the parameters are the same as in Fig. 3 of the main
manuscript.

estimate about the tilt as it decides the frequency range over which some of the quantities
show a significantly important behavior. There is a minor typo in the paragraph below Eq.
9. The frequency range for the region in which the vertical transitions are Pauli unblocked
should be ω > ω2.

Our Response : We thank the referee for this comment. In mWSM, the range of the two
photon energy bounds are dictated by the tilt parameter (C) of the Weyl node: ℏω1,2 =
2µ/(1 ± |C|). Since in the current work, we have restricted ourselves to a TRS broken
tilted type-I mWSM, the range of C can be varied 0 < |C| < 1 (tilt velocity vt = c v). In
the limit C → 0 (small tilted type-I Weyl nodes), we have ℏω1 → ℏω2 → 2µ. Therefore,
the range of Pauli blocked region broadens and the region II disappears (ω1 < ω < ω2).
In this case, the real part of diagonal conductivity Re[σii(ω)] becomes finite for ℏω > 2µ
only. The imaginary part of the transverse conductivity vanishes whereas its real part
have the intrinsic contribution (leading order is tilt independent) leading to Kerr rotation
in thin film mWSM only in the region ℏω > 2µ. On the other hand, when C → 1 (highly
tilted type-I Weyl nodes), we have ℏω1 → µ and ℏω2 → ∞ leading to the fact that the
region II (ω1 < ω < ω2) will extend to very high energy. We have added a comment on
this in the revised manuscript (First paragraph, Left column, Page 4). In addition, we
have corrected the typo in the revised manuscript.

Referee Comment: It would help if authors can provide the derivation for equation 16
and 17. It’s not so clear how they divide the real part of the off-diagonal conductivity into
DC and AC part. It seems that equation 16 is non-zero even in the DC limit. Another
worrisome aspect of these equations (16-19) is that they diverge for zero tilt (C = 0).
Could authors please provide an interpretation for C = 0 limit of these equations.

Our Response: We thank the referee for this important question. We have now elab-
orated this part in the revised manuscript (Right Column, Page 5). The Eq. (16) in
the main text, which is the real part of the off-diagonal conductivity σxy(ω), is derived
from the imaginary part of σxy(ω) [Eq. (15) in the main text] using the Kramers-Kronig



relation. The real part of σxy can be written as

Re[σxy(ω)] =
2

π
P

∫ ωc

0

ω′Im[σxy(ω
′)]dω′

(ω′2 − ω2)

=
6 sgn(C)

π

∫ ω2

ω1

ω′ σn
ω′ κ0 dω

′
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= sgn(C)

e2n

2π2ℏv

∫ ω2

ω1

ω′2 κ0 dω
′
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,
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µ
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1

|C|
− 1

2|C|2
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∣∣∣∣(ω2
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1 − ω2)

∣∣∣∣+(
µ

2ℏω|C|2
+

ℏω
8µ|C|2
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8µ

)
ln

∣∣∣∣(ω2 − ω)(ω1 + ω)

(ω2 + ω)(ω1 − ω)

∣∣∣∣] . (3)

It is important to note that σdc
xy(ω = 0) (since the dc part is always real) has two contri-

butions: i) intrinsic or ‘universal’ contribution σ
(in)
xy and ii) free carrier contribution σ

(free)
xy .

The σ
(free)
xy can be extracted by taking the ω → 0 limit of the above equation. On the

other hand, the intrinsic part, arising from the separation between the Weyl nodes, can
be written as e2nQ

πh
(PRL 113, 187202 (2014)). Therefore, the total dc contribution of σxy

is given by

σdc
xy(ω = 0) =

e2µn

h2v

[
2

C
+

1

C2
ln

(
1− C

1 + C

)]
+

e2nQ

πh

= σ(free)
xy + σ(in)

xy . (4)

However, one can obtain total dc contribution of σxy by substituting ω = 0 in Eq. (3) of
the main text, which can be written as

Re[σDC
xy (ω = 0)]

=
1

(2π)3

∑
s=±1

s

∫
dk3 f eq

k

2ℏωk

(
Re[(P−+)x]Im[(P−+)y]− Im[(P−+)x]Re[(P

−+)y]
) 2

ωk

= σ(free)
xy + σ(in)

xy . (5)

In the case of an untilted mWSM (i.e., C = 0), the imaginary part of σxy vanishes,
as the integrand involved in the calculation of σxy [Eq. (14) of the main text], reduced
to an odd function. Consequently, the real part of σxy(ω), which was derived using the
Kramers-Kronig relation in Eq. (16) (of the main text), vanishes for an untitled mWSM.
However, the universal part of the off-diagoanl conductivity σin

xy, arising from the node
separation Q, remains in the untilted mWSMs.


