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Abstract

We study correlation functions for extremal supersymmetric black holes. It is necessary to
take into account the strongly coupled nature of the boundary supergraviton mode. We consider
the case with N = 2 supercharges which is the minimal amount of supersymmetry needed to
give a large ground state degeneracy, separated from the continuum. Using the exact solution
for this theory we derive formulas for the two point function and we also give integral expressions
for any n-point correlator. These correlators are time independent at large times and approach
constant values that depend on the masses and couplings of the bulk theory. We also explain
that in the non-supersymmetric case, the correlators develop a universal time dependence at
long times. This paper is the longer companion paper of [1].
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1 Introduction

We study the extremal limit of supersymmetric black holes with an AdS2 near horizon geometry
and develop methods to compute correlation functions of local operators. These correlators give us
statistical information about physical properties of the supersymmetric ground states of the system.
In other words, if O represents a simple operator measuring the value of some field around the black
hole, we are interested in the correlation functions of such operator once it is projected on to the
ground states

Tr
!
Ô1 · · · Ôn

"
, Ô ≡ POP, P ≡ lim

β→∞
e−βH (1)

where P is the projector on to zero energy states (zero energy above extremality). These correlators
give us some information about how the ground states look to an observer outside that measures
the values of various fields. This information is statistical, since it is interpreted as an average over
all the ground states, due to the trace in (1). Of course, the formula (1) is an interpretation of a
gravity computation that we will do on the Euclidean black hole geometry in the limit that β → ∞
with all operators at fixed angles in the Euclidean circle.
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Figure 1: Various correlators. (a) Two point function at finite boundary euclidean times, u, u′. (b) Two
point function in the zero energy limit, with u = u′ = ∞. (c) A general long time correlator.

In this extremal limit, it is necessary to take into account the quantum mechanics of a certain
gravitational mode that becomes strongly coupled at low energies [2, 3, 4, 5, 6]. Fortunately, this
dynamics can be exactly solved [7, 8, 9, 10, 11]. In our case, we are interested in a supersymmetric
version of this boundary theory [12, 9, 13] so that we have a large ground state degeneracy. The
amount of supersymmetry depends on the amount of supersymmetry that the black hole preserves.
For simplicity, we will consider the minimal case with a large degeneracy [12, 9], which is a total of
N = 2 supersymmetries. As an example, this is the case that describes the supersymmetric black
hole in AdS5 × S5 [14], in the fixed charge sector [15]. Supersymmetric extremal black holes in
asymptotically flat space have four supercharges, N = 4, and the corresponding quantum dynamics
was studied in [16].

We quantize the supersymmetric Schwarzian theory using two approaches. In the first approach,
we focus on the two sided system in a thermofield double-like state. See figure 1a. We use its gauge
invariant description in terms of a supersymmetric Liouville theory [17]. The two point function then
becomes a one point function in the super-Liouville quantum mechanics. This lets us interpolate
between a short distance conformal regime to the long distance regime where only zero energy
states contribute and the two point function becomes constant. With a suitable normalization of
the operator, this constant value depends only on the anomalous dimension of the operator.

As a second approach, we consider the propagator in the supersymmetric Schwarzian theory,
extending the discussion in [11, 10, 18]. We focus on the zero energy propagator, which is appropriate
for computing properties of the zero energy limit of the supersymmetric black holes. By zero energy,
we mean zero energy above the extremal value. These zero energy states preserve supersymmetry.
Using these propagators we can compute correlation functions of the simple operators that have
definite conformal dimensions in the higher energy theory. These are given by correlation functions
in AdS2 dressed by this zero energy boundary propagator, see figure 1c.

Of course, the zero energy states give rise to the extremal entropy, a very well studied subject
since the initial match of the area formula [19], and including the very interesting non-perturbative
contributions as in [20]. The correlators we are studying give us further statistical information about
what these states “look like” to an observer that measures fields around the black hole. We can view
these as the correlators of a “topological quantum mechanics”, which is simply a theory with no
Hamiltonian, H = 0, where the correlators do not depend on time, but could depend on the order
of the operators. It is a theory where the asymptotic symmetries of AdS2, time reparametrizations,
become actual symmetries of the correlators.

This discussion lets us construct and explore supersymmetric wormhole configurations. These
arise by taking the low energy limit of the standard wormhole that arises at finite temperature.
One interesting feature is that the length of the wormhole stays constant in the extremal limit of
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Figure 2: (a) The construction of an empty supersymmetric wormhole arising after the evolution over
a long Euclidean time. (b) By adding an operator during the Euclidean time evolution we produce
extra matter. (c) We could add several single particle operators to produce a multiparticle state in the
wormhole. The length of the green line represents the size of the wormhole.

zero energies. By inserting operators, we can add matter to this wormhole, see figure 2. The matter
need not be BPS, but nevertheless we get a supersymmetric wormhole after taking this low energy
limit. We argue that adding matter in this way increases the distance between the two sides and it
also decreases the entanglement entropy between the two sides. See figure 2.

Perhaps the most interesting aspect of this description is that the theory in the bulk contains
a time direction, while the theory in the boundary contains no time in this limit, the Hamiltonian
is zero acting on the ground states. So, this could be viewed a system with an emergent time. In
this description, this time coordinate appears to arise from the projector P in (1). This projector is
realized on the gravity side by undergoing a long period of Euclidean evolution on both sides of the
operator. The fact that there can be matter in the bulk at zero energy is related to the fact that the
bulk energy, or bulk time, is not the same as the boundary energy, or boundary time. In fact, this
observation is useful to circumvent arguments against the existence of an exact description for zero
energy AdS2 backgrounds [21, 22]. It is also interesting to note that the entanglement entropy of
the empty wormhole in figure 2 is maximal, S = S0, the extremal entropy, while the entanglement
entropy of the wormholes with additional matter can only be smaller. This is a structure which, in
the infinite S0 limit, becomes that of a type II1 algebra, as in the de Sitter discussion of [23]. In
fact, our system has some vague similarity to de Sitter, in the sense that H = 0 and that there is
an emergent bulk time.

The formalism that we develop here can also be used to study the low energy limit of the N = 2
supersymmetric SYK model introduced in [12]. In fact, our results make specific predictions about
the SYK correlators which we check by performing a numerical exact diagonalization of the model
for the case of N = 16 complex fermions. We find agreement, within a few percent, with the
formulas following from the quantization of the super-Liouville theory discussed above.

We have focused on supersymmetric black holes because in this case there is a sharp sector at
zero energy separated from the higher energies by a gap. However many qualitative questions are
rather similar in the non-supersymmetric case. In the non supersymmetric case the low energy
correlators become universal functions of the boundary time. The bulk correlators determine an
overall numerical coefficient. So, in this case too, there is a certain disconnect between the bulk
time and the boundary time.

This paper is organized as follows. In section 2, we describe the computation of the two point
function using the gauge invariant variables of the empty wormholes, which reduces to a super-
Liouville quantum mechanics. We compute the two point functions on the disk and the cylinder. In
section 3, we compare these results against numerical SYK computations. In section 4, we introduce
a superspace formalism, which is an extension of the one in [13] and we use it to compute the zero
energy propagators. We discuss a general integral expression for an n point function. As a check, we
reproduce the previous results for the two point functions. In section 5, we use this propagator to
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Figure 3: (a) Computation of the two point function of two operators separated by boundary time u on
one side and boundary time u′ on the other. (b) As u, u′ → ∞ we get the zero energy correlator which
is a constant. In both cases ℓ denotes a renormalized distance between the two boundary points.

study wormholes filled with matter. We discuss how the matter changes the length of the wormhole.
In section 6, we discuss aspects of the low energy limit for the non-supersymmetric JT gravity case
and point out some common features with the supersymmetric situation.

In various appendices we give extra information. We discuss the computation of the propagator
for the case with N = 1 supersymmetry, which is a case initially studied in [13].

2 Two point functions from the Liouville quantum mechanics of
the empty wormhole.

In this section, we discuss the computation of the two point function using the Liouville method,
see figure 3. The dimension ∆ of the operator refers to the behavior of the operator in the finite-
temperature conformal regime of the NAdS2 geometry; see also 5.51. This is a method that is based
on studying the quantum mechanics of the empty (super) wormhole geometry.

The two point function we obtain below can in principle be extracted from a limit of the N = 2
supersymmetric SYK model by using the chord method discussed in [24]2, where a large N and large
q̂ version of the model was considered. In other words, [24] performed a more general computation
than the one we perform below. Here we obtain directly the JT gravity result by more elementary
methods.

2.1 Basic set up and Lagrangian

We will first compute the two point function using a method which centers on using the dynamics of
the thermofield double state. In the usual non-supersymmetric case, this state is described by a two
dimensional phase space consisting of energy and a relative time shift between the two sides [25].
Alternatively we can think in terms of the distance between the two boundaries and its momentum
conjugate. In terms of the latter, for JT gravity in the Schwarzian limit, the dynamics is given in

1We sometimes refer to the finite temperature conformal regime as the “UV” since it involves energies bigger than
the gap scale. The dimension ∆ is a property of the “UV” in this sense. It is a property of the fields in the NAdS2

region. It is defined in the throat of the black hole geometry. Please do not confuse this with how the throat is
embedded in a higher dimensional geometry, which is a further “UV” limit that is irrelevant in this discussion.

2We thank Vladimir Narovlansky for performing a significant part of this limit and for communicating it to us.
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terms of a Liouville like action [17, 26]

I =
φr

2π

#
dt

$
1

2
ℓ̇2 + 2e−ℓ

%
(2)

where ℓ is related to the residual distance after we extract an infinite additive constant related to
the Schwarzian limit. In appendix A we give more details and explain how this action follows from
the Schwarzian action

I = −φr

2π

#
dt{f, t} , with {f, t} =

f ′′′

f ′ − 3

2

f ′′2

f ′2 (3)

and also explain the black hole interpretation of the parameter φr.
If we now consider the supersymmetric case, then we find that the wormhole or thermofield

double state is parametrized by further fermionic and possibly bosonic variables. For the N = 1
case, we have a pair of Majorana fermions which are the partners of the length variable under
the supersymmetry on the left side or the right side. Notice that, even though there is only one
Hamiltonian, there are two separate supersymmetries, each squaring to the same Hamiltonian [17].
As shown in [17], the resulting Lagrangian is the same as the one that we obtain by dimensionally
reducing a (1,1) supersymmetric Liouville theory in 1+1 dimensions. Of course, the same answer
is obtained by supersymmetrizing (2). When we go to the N = 2 case, we now have two super-
symmetries acting on each side, the left and the right. So we have four supersymmetries in total.
This means that we have two complex fermions. In addition, we have a scalar that is related to
the relative phase of the wormhole under the U(1)R symmetry. In the bulk, this is a Wilson line
of a U(1) gauge field across the wormhole. The Lagrangian can be obtained by supersymmetrizing
(2) or by dimensionally reducing a (2, 2) supersymmetric Liouville theory in 1+1 dimensions [17].
Either way, we get the Lagrangian

I =
φr
16π

$#
dt dκl dκ̄l dκr dκ̄rLL̄+ 8

#
dt dκ̄l dκre

−L/2 + 8

#
dt dκl dκ̄re

−L̄/2

%
(4)

where κl,r and κ̄l,r are superspace variables and D = ∂κ + κ̄∂t, D̄ = ∂κ̄ + κ∂t are the corresponding
covariant derivatives. L is a (twisted) chiral superfield obeying D̄rL = 0 = DlL, which starts as
L = ℓ + 2ia + κ-terms, where a is the phase associated to a relative U(1)R symmetry. We can
expand the Lagrangian to obtain the Lagrangian in components

I =

#
du

$
1

4
ℓ̇2 + ȧ2 + iψ̄rψ̇r + iψ̄lψ̇l + iψ̄lψre

−ℓ/2−ia + iψlψ̄re
−ℓ/2+ia + e−ℓ

%
(5)

where we have set φr = π as a choice of units of time and normalized the fermions appropriately. This
choice corresponds to setting the coupling in front of the Schwarzian (3) to a half. Or equivalently,
the time t in (3) and the time u in (5) are related by

t =
φr

π
u (6)

From now on we will work in terms of the time u. There is an R symmetry that acts on the right
side, Jr and one on the left side, Jl

Jr = −i∂a −
1

2
[ψ̄r,ψr] , Jl = i∂a −

1

2
[ψ̄l,ψl] (7)

which are defined so that ψr, ψl, have charge one, [Jr,ψr] = ψr and [Jl,ψl] = ψl. In the systems
we consider there is some quantization condition on the R charge which is part of the definition of
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the superSchwarzian theory. In principle, this can be derived from the UV model which gives rise
to the Schwarzian theory. This amounts to saying that the R charges are quantized in units of 1/q̂,
which means that the field a is periodic with period a ∼ a + 2πq̂, where q̂ is some integer. In the
case of the black hole in AdS5 × S5 we have q̂ = 1 [15]. In the SYK section 3 we will get models
with odd values of q̂ = 3, 5, ...3

We can write down the supercharges

Qr = ψr(i∂ℓ +
1

2
∂a) + e−ℓ/2+iaψl , Q̄r = ψ̄r(i∂ℓ −

1

2
∂a) + e−ℓ/2−iaψ̄l

Ql = ψl(i∂ℓ −
1

2
∂a)− e−ℓ/2−iaψr , Q̄l = ψ̄l(i∂ℓ +

1

2
∂a)− e−ℓ/2+iaψ̄r (8)

obeying the supersymmetry algebra

{Qr, Ql} = 0 = {Q̄r, Q̄l} , {Qr, Q̄r} = {Ql, Q̄l} = H (9)

with

H = −∂2
ℓ −

1

4
∂2
a + i[ψ̄lψre

−ℓ/2−ia + ψlψ̄re
−ℓ/2+ia] + e−ℓ (10)

Notice that [Qr, ℓ] = iψr, [Q̄r, ℓ] = iψ̄r and similarly for the left supercharges. So these fermions
are the superpartners of ℓ, which is geometrically interpreted as the length between the two sides.
In section 4 we will discuss the geometric interpretation of ψ (see (134) for the identification). We
also see that we have separate partners for the right and left supercharges.

Although the supercharges are not invariant under Jl, Jr, they are invariant under the Zq̂ × Zq̂

subgroup generated by gl = e2πiJl , gr = e2πiJr . In addition, we can define (−1)Fl = exp(q̂πiJl), (−1)Fr =
exp(q̂πiJr) which anti-commute with Ql, Qr respectively. The total fermion number (−1)F =
(−1)Fl(−1)Fr .

2.2 Eigenfunctions of the super-Liouville theory

We now study the wavefunctions which are energy eigenstates of (10). We can choose a fermion
vacuum given by

ψr

&&&&
1

2
,
1

2

'
= 0 = ψl

&&&&
1

2
,
1

2

'
(11)

where, according to (7), |12 ,
1
2〉 has Jl = Jr =

1
2 , which explains the notation. We also see that there

is a connection between the fermion number and the total R charge Jl + Jr. In particular, (11) has
odd fermion number. Since the thermofield double state has zero total charge, (Jl + Jr) |TFD〉 = 0,
we are interested in constructing states with opposite values of the R charge Jr = −Jl = j. Such
states automatically have zero fermion number. For states with positive energy, we find four states
in the multiplet that we get by acting with the supercharges. We could pick two of them to have
Jr = −Jl and even fermion number, but the other two will not have either of these properties. In
fact, it is simplest to start from a state with odd fermion number of the form

|F+〉 = ei(j−
1
2
)ah(ℓ)

&&&&
1

2
,
1

2

'
, Ql|F+〉 = Qr|F+〉 = 0 , Jr = j , Jl = −j + 1 (12)

where h(ℓ) is a function we will soon fix. Note that the last two conditions are automatic due to
(11) and the expressions of the supercharges (8). The Hamiltonian (10) acts in a simple way on this

3In principle, we can also have a quantization condition which is saying that j = (n + 1
2
) 1
q̂
, with integer n. This

arises in the N = 2 SYK for odd N . We will not describe explicitly this case, but our formulas below are also valid
in that case.
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state since the terms with fermions annihilate
&&1
2 ,

1
2

(
thanks to (11), leading to a simple equation

for h

− h′′ + e−ℓh =

)
E − 1

4

*
j − 1

2

+2
,
h (13)

whose solution is

h =
2
√
E√
π

K2is(2e
−ℓ/2) , E = s2 +

(j − 1
2)

2

4
(14)

We have chosen the solution that decays as ℓ → −∞. The factor of 2
-
E/π just sets a convenient

normalization. The solution is continuum normalizable if s is real. We will denote this state as
|F+

s,j〉.
Having found this state we can now act with Q̄l√

E
to produce

|Hs,j〉 = eija
!
−g1e

ia/2ψ̄r + ig2e
−ia/2ψ̄l

" &&&&
1

2
,
1

2

'
, Jr = −Jl = j (15)

g1 =
2√
π
e−ℓ/2K2is(2e

−ℓ/2) (16)

g2 =
1√
π

$
2e−ℓ/2K1−2is(2e

−ℓ/2) + (j − 1

2
+ 2is)K2is(2e

−ℓ/2)

%
(17)

This state has zero fermion number and Jr = −Jl = j. Despite appearances, both functions are

invariant under s → −s. Similarly, acting with iQ̄r√
E

on (12) we get

|Ls,j〉 = ei(j−1)a
!
−g̃1e

ia/2ψ̄r + ig̃2e
−ia/2ψ̄l

" &&&&
1

2
,
1

2

'
, Jr = −Jl = j − 1 (18)

g̃1 =
1√
π

$
2e−ℓ/2K1−2is(2e

−ℓ/2) + (
1

2
− j + 2is)K2is(2e

−ℓ/2)

%
(19)

g̃2 =
2√
π
e−ℓ/2K2is(2e

−ℓ/2) (20)

This state also has zero fermion number and Jr = −Jl = j−1. Note that it is in the same multiplet
as (15) and it has a different R charge, but its energy is still given by equation (14). Finally, there
is a fourth state in the multiplet, obtained by acting with both supercharges, 1

E Q̄rQ̄l|F+〉, which
gives

|F−
s,j〉 = ei(j−

1
2
)a 2

√
E√
π

K2is(2e
−ℓ/2)ψ̄rψ̄l

&&&&
1

2
,
1

2

'
, Jr = j − 1 , Jl = −j (21)

We have now obtained the four states in the multiplet.
We had mentioned that |F+

s,j〉 is normalizable only when s is real. However, the solution |Hs,j〉
is also normalizable when we take s to be imaginary and equal to s = ±i12(j −

1
2). (it does not

matter if the first sign if plus or minus since the wavefunction is invariant under s → −s.). These
states have zero energy E = 0. They have the form

|Zj〉 = |Hs,j〉|s= i
2
(j− 1

2
) =

2√
π
eija

!
−eia/2e−ℓ/2K 1

2
−j(2e

−ℓ/2)ψ̄r + ie−ia/2e−ℓ/2K 1
2
+j(2e

−ℓ/2)ψ̄l

" &&&&
1

2
,
1

2

'

(22)
Due to the overall factor of e−ℓ/2, these wavefunctions are normalizable as long as |j| < 1

2 . These
zero energy wavefunctions are annihilated by all four supercharges. They represent normalizable
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ground states in the Liouville potential. The purely bosonic part of the potential is positive and
goes as e−ℓ. The term involving fermions can be negative if the fermions act on the right state, and
it goes like e−ℓ/2 which can dominate over the purely bosonic one for large ℓ. These two terms can
in principle lead to bound states. This analysis shows that we get just a single zero energy bound
state for each R charge j in the range |j| < 1

2 .
We can also work with |Ls,j〉 to get the same zero energy states. We need to set s = ± i

2(j −
1
2),

which gives |Zj−1〉.
The theory (5) has a charge conjugation symmetry where a → −a − π and the barred and

unbarred fermions are exchanged. Under this symmetry we have that (Hj , Lj) → (L1−j , H1−j).
This is also consistent with figure 4.

Es=0

J1
2− 1

2

SUSY SUSY Hs=0, jHs=0, jLs=0, j−1 Ls=0, j−1

Figure 4: Lowest energy fermion even continuum states as a function of the R charge J . Note that for
J > 0 the lowest energy continuum state is Hs=0,j , with J = j. There is another state in the same
multiplet, Ls=0,j which has J = j − 1. On the other hand, for negative J , the lowest energy state is
Ls=0,j+1 with J = j < 0.

It will be useful for us to record the norm of these states. For example, in the case of the states
|Hs,j〉 the inner product is given by

〈Hs′,j′ |Hs,j〉 =
# ∞

−∞
dℓ

# 2πq̂

0

da

2πq̂
(g′1

∗
g1 + g′2

∗
g2) (23)

where we picked a measure factor that includes a factor of 1/(2πq̂). This gives

〈Ls′,j′ |Ls,j〉 = 〈Hs′,j′ |Hs,j〉 = δj,j′δ(s− s′)
Eπ

s sinh 2πs
(24)

where we assumed that the period of a is a ∼ a + 2πq̂, so that we can allow fractional charges. A
simple trick to compute these norms will be mentioned after (60). The |F+〉 states have the norm

〈F−
s′,j′ |F

−
s,j〉 = 〈F+

s′,j′ |F
+
s,j〉 = δj,j′δ(s− s′)

Eπ

s sinh 2πs
(25)

The zero energy states have norm

〈Zj′ |Zj〉 = δj,j′
1

cosπj
, |j| < 1

2
, E = 0 (26)

These are normalizable for |j| < 1
2 .

10



2.3 The two point function for BPS operators

2.3.1 Matrix elements of the charged operator

We will be interested in computing the matrix elements of the charged operator

e−∆(ℓ+2ia) (27)

which has R charge Rr = −Rl = −2∆. This operator is BPS, in the sense that it commutes with
some some of the supercharges, [Q̄r, C] = [Ql, C] = 0. We can compute its matrix elements with all
the members of the multiplet, see appendix E for details.

We will denote E = s2 + 1
4(

1
2 − j)2 and E′ = s′2 + 1

4(
1
2 − j′)2. Charge conservation gives j′ in

terms of j, but note that the R charge of the |Ls,j〉 wavefunctions is j − 1, not j, (18).

〈Hs′,j′ |e−∆(ℓ+2ia)|Hs,j〉 =
E

π

Γ(∆± is± is′)

Γ(2∆)
j′ = j − 2∆ (28)

〈Ls′,j′ |e−∆(ℓ+2ia)|Ls,j〉 =
E′

π

Γ(∆± is± is′)

Γ(2∆)
j′ = j − 2∆ (29)

〈Ls′,j′ |e−∆(ℓ+2ia)|Hs,j〉 =
1

π

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
j′ = j + 1− 2∆ (30)

〈Hs′,j′ |e−∆(ℓ+2ia)|Ls,j〉 = 0 j′ = j − 1− 2∆ (31)

〈Hs′,j′ |e−∆(ℓ+2ia)|Zj〉 = 0 j′ = j − 2∆ (32)

〈Zj′ |e−∆(ℓ+2ia)|Hs,j〉 =
1

π

Γ(∆+ 1
2 ± 2j′+1

4 ± is)

Γ(2∆)
j′ = j − 2∆ (33)

〈Zj′ |e−∆(ℓ+2ia)|Ls,j〉 = 0 j′ = j − 1− 2∆ (34)

〈Ls′,j′ |e−∆(ℓ+2ia)|Zj〉 =
1

π

Γ(∆+ 1
2 ± 2j−1

4 ± is′)

Γ(2∆)
j′ = j + 1− 2∆ (35)

〈Zj′ |e−∆(ℓ+2ia)|Zj〉 =
1

π
Γ(

1

2
+ j)Γ(2∆+

1

2
− j) j′ = j − 2∆ (36)

2.3.2 Assembling the two point function for BPS operators

In order to compute the two point function we first need to calculate the proper expression for the
wormhole or thermofield double state. This is a combination of the various states discussed above.
More specifically, we need to consider the zero fermion number states

|TFD〉β =
.

j

$
Az,j |Zj〉+

# ∞

0
dsAs,je

−Es,jβ/2 (|Hs,j〉+ |Ls,j〉)
%

(37)

where we anticipated that the two states in the multiplet will appear with the same coefficient in
the thermofield double state. We determine the coefficient of each of these states by comparing to
the computation of the partition function in [9, 17, 16] which is

Z(β) = eS0

/

01
.

|j|< 1
2

cosπj + 2
.

j

# ∞

0
ds

s sinh 2πs

πEs,j
e−βEs,j

2

34 , Es,j = s2 +
1

4

*
j − 1

2

+2

(38)
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where q̂j is an integer. The factor of two in front of the integral accounts for the two states, |Hs,j〉
and |Ls,j〉, in the multiplet. We then conclude that

As,j = e
S0
2
s sinh 2πs

πEs,j
, Az,j = e

S0
2 cosπj (39)

In principle, we could worry about a possible phase in the relative contribution of |Hs,j〉 and |Ls,j〉
in (37). The TFD obeys the condition

(Qr − iQl)|TFD〉 = 0 (40)

Up to signs, this equation follows from the supersymmetry of the propagator e−βH ; see Appendix I.
We have not properly derived the minus sign, but we have checked that if we were to impose it with
the opposite sign then the correlators we obtain would not have the expected positivity properties4.

The full two point function contains contributions where the continuum states are propagating
and also where the zero energy states are propagating. We then have

〈2 pt〉 = Tr
!
e−u′HO†e−uHO

"
= u′〈TFD|e−∆(ℓ+2ia)|TFD〉u = 〈2 pt〉c′c+〈2 pt〉z′c+〈2 pt〉c′z+〈2 pt〉z′z

(41)
Each of these contributions can be computed using the explicit expression of the thermofield double
state (37) (39) and the expressions of the matrix elements in (28)-(29). It has the explicit form

〈2 pt〉c′c =
eS0

π

.

j,j′

#
ds

#
ds′e−uEs,j−u′Es′,j′

s sinh(2πs)

πEs,j

s′ sinh(2πs′)

πEs′,j′

5
Es,j + Es′,j′

6 Γ(∆± is± is′)

Γ(2∆)
δj′, j−2∆

+
eS0

π

.

r

#
ds

#
ds′e−uEs,j−u′Es′,j′

s sinh(2πs)

πEs,j

s′ sinh(2πs′)

πEs′,j′

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
δj′, j−2∆+1

(42)

〈2 pt〉z′c =
eS0

π

.

|j′|< 1
2

cos
5
πj′

6 #
ds e−uEs,j

s sinh(2πs)

πEs,j

Γ(∆+ 1
2 ± 2j′+1

4 ± is)

Γ(2∆)
δj′, j−2∆

(43)

〈2 pt〉c′z =
eS0

π

.

|j|< 1
2

cos(πj)

#
ds′e−u′Es′,j′

s′ sinh(2πs′)

πEs′,j′

Γ(∆+ 1
2 ± 2j−1

4 ± is′)

Γ(2∆)
δj′, j−2∆+1 (44)

〈2 pt〉z′z =
eS0

π

.

|j|,|j′|< 1
2

cos(πj)cos
5
πj′

6
Γ(

1

2
+ j)Γ(2∆+

1

2
− j) δj′, j−2∆ (45)

where the integrals over s, s′ are from zero to infinity. Here Γ(∆± a± b) = Γ(∆+ a+ b)Γ(∆+ a−
b)Γ(∆− a+ b)Γ(∆− a− b) indicates the product of the four possible terms.

4By opposite sign, we mean the equation (Qr + iQl)|TFD〉 = 0. In this case, the sign of the second line in the c′c
contribution (42) would flip and the two point function would not have the right behavior at small u through changes
in the discussion leading to (63). The i comes from the switch between the propagator interpretation and the TFD
interpretation, a rotation by π for a fermionic field.
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2.4 The two point function for neutral operators

Here we repeat the above computation but now for the two point function of a non-BPS operator
with zero R symmetry charge. This involves computing the expectation value of e−∆ℓ. The steps
are the same as above. We first compute the matrix elements and we then assemble the two point
function. We now describe them in detail.

2.4.1 Matrix elements for the neutral operator

The matrix elements are given below, for details see appendix E,

〈Hs′,j′ |e−∆ℓ|Hs,j〉 =
1

2π

*
E + E′ +∆(∆+ j − 1

2
)

+
Γ(∆± is± is′)

Γ(2∆)
j′ = j (46)

〈Ls′,j′ |e−∆ℓ|Ls,j〉 =
1

2π

*
E + E′ +∆(∆− j +

1

2
)

+
Γ(∆± is± is′)

Γ(2∆)
j′ = j (47)

〈Ls′,j′ |e−∆ℓ|Hs,j〉 =
1

2π

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
j′ = j + 1 (48)

〈Hs′,j′ |e−∆ℓ|Ls,j〉 =
1

2π

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
j′ = j − 1 (49)

〈Hs′,j′ |e−∆ℓ|Zj〉 =
1

2π

*
E′ +∆(∆+ j − 1

2
)

+
Γ(∆± 2j−1

4 ± is′)

Γ(2∆)
j′ = j (50)

〈Zj′ |e−∆ℓ|Hs,j〉 =
1

2π

*
E +∆(∆+ j − 1

2
)

+
Γ(∆± 2j−1

4 ± is)

Γ(2∆)
j′ = j (51)

〈Zj′ |e−∆ℓ|Ls,j〉 =
1

2π

Γ(∆+ 1
2 ± is± 2j′−1

4 )

Γ(2∆)
j′ = j − 1 (52)

〈Ls′,j′ |e−∆ℓ|Zj〉 =
1

2π

Γ(∆+ 1
2 ± is′ ± 2j−1

4 )

Γ(2∆)
j′ = j + 1 (53)

〈Zj′ |e−∆ℓ|Zj〉 =
1

2π
∆
Γ(∆)2Γ(∆+ 1

2 ± j)

Γ(2∆)
j′ = j (54)
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2.4.2 Assembling the two point function for neutral operators

Writing the two point function as in (41) we get

〈2 pt〉cc′ =
eS0

π

/

1
.

j

#
ds

#
ds′e−Es,ju−Es′,j′u

′ s sinh(2πs)

πEs,j

s′ sinh(2πs′)

πEs′,j′
(55)

×
7
5
Es,j + Es′,j′ +∆2

6 Γ(∆± is± is′)

Γ(2∆)
δj′, j +

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
δj′, j+1

8,
(56)

〈2 pt〉zc′ =
eS0

π

.

|j|< 1
2

cosπj

#
dse−Es,ju

s sinh(2πs)

πEs,j

Γ(∆+ 1
2 ± 2j+1

4 ± is)

Γ(2∆)
(57)

〈2 pt〉cz′ =
eS0

π

.

|j|< 1
2

cosπj

#
dse−Es,ju

′ s sinh(2πs)

πEs,j

Γ(∆+ 1
2 ± 2j+1

4 ± is)

Γ(2∆)
(58)

〈2 pt〉zz′ =
eS0

2π

.

|j|< 1
2

(cosπj)2∆
Γ(∆)2Γ(∆+ 1

2 ± j)

Γ(2∆)
(59)

where the integrals over s, s′ are from zero to infinity.

2.5 Some limits and consistency checks

As a simple consistency check, we can see that if we set ∆ = 0, we recover the result for the
partition function (38), with β = u+ u′. This is expected since in that case we are simply inserting
the identity operator. In order to check this, it is useful to note the identity

lim
∆→0

Γ(∆± is± is′)

Γ(2∆)
=

π2

s sinh 2πs
δ(s− s′) (60)

This identity is also useful for computing the norms of the continuum states in (24) (25) from the
matrix elements.

We can now consider the short distance limit of the correlator. In this limit we keep u′ fixed
and take u → 0. This means that we will get contributions from large values of s. So we will need
the large s limits of the matrix elements, which can be easily obtained using Stirling’s formula for
the gamma function. For large s we find

Γ(∆± is± is′) ∼ (2π)2s4∆−2e−2πs , s ≫ 1 (61)

where s′ is kept fixed and can be real or imaginary. When we combine all factors we see that the s
dependence is of the form

#
ds

s
s4∆e−s2u ∝ 1

u2∆
, for u ≪ 1 (62)

Note that only the continuum contribution in the u channel gives rise to this large result in the
small u limit. However, we should sum over both the continuum and zero energy contributions in
the u′ channel. Assembling all constants we find that the two point function in this limit behaves
as

〈2 pt〉 = Z(u′)
1

u2∆
, u ≪ 1 (63)
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where Z(u′) is the partition function at temperature β = u′, (38). Indeed, this is the expected
normalization from the correlator if we start from (3) and set f ∝ u, see (183). Indeed, (63)
is true both for the BPS and the charge neutral operator. These results are saying that we are
normalizing the two point function of the operator to the standard 1/u2∆ behavior. However,
we should remember that here we are defining u in units of the Schwarzian coupling (6) so that,
restoring the Schwarzian coupling, the result (63) becomes

〈2 pt〉
Z

=

*
φr

πt

+2∆

=

*
2C

t

+2∆

, C =
φr

2π
(64)

where C is the coefficient of the Schwarzian term in the action, I = −C
9
dt{f, t}.

With this normalization, the long time, very low temperature limit of the correlator is simply
given by the last line in (45) (59). We can calculate the correlator for each value of the R charge j
on which the operator Ô is acting

〈Ô†Ô〉j =
eS0

π
cosπ(j − 2∆) cosπj Γ

*
1

2
+ j

+
Γ

*
1

2
+ 2∆− j

+
, charged, BPS (65)

〈ÔÔ〉j =
eS0

π

1

2
(cosπj)2

∆Γ(∆)2Γ(∆+ 1
2 ± j)

Γ(2∆)
neutral (66)

In the special case that q̂ = 1, then there is only one BPS state in the Schwarzian description.
Namely, only j = 0 is allowed. In that case a BPS operator, which has non-zero charge, vanishes
after projecting onto the zero energy states. The uncharged neutral operators at low energies behave
as

〈ÔÔ〉 = eS02−4∆Γ(1 + 2∆) , for : neutral , q̂ = 1 (67)

In the limit u′ → ∞, the partition function Z(u′) only has contribution from the zero energy
states

lim
u′→∞

Z(u′) = eS0
.

|j|< 1
2

cos(πj) (68)

Note that with our definitions, the number of zero energy states is not exactly eS0 unless only j = 0
contributes. When q̂ = 1 the R charges are integer and only j = 0 contributes.

We now present a plot of the two point function in figure 5. We consider the uncharged case,
setting j = j′ = 0 and dividing by the j = 0 contribution to the zero energy partition function. We
take the u′ → ∞ and plot the answer as a function of u.

We can also consider the setting where u = u′ = β/2. This is the thermal left right correlator
(the two points at opposite points on the euclidean circle). The behavior is similar to the previous
case. We show the uncharged case in figure 6 for j = 0. The small u behavior can be obtained

from the thermal partition function
!
β
π sin ũπ

β

"−2∆
which becomes

:
π
β

;2∆
for ũ = β/2. The charged

operator exhibits similar behavior.
As another comment, notice that from the expressions of the matrix elements we can compute

the expectation value of the length ℓ in the various ground states. We obtain this by taking (minus)
the ∆-derivative of the uncharged operator matrix elements (54) and then divide by the matrix
elements. In other words, we compute

〈ℓ〉j = − ∂∆ log
!
〈Zj |e−∆ℓ|Zj〉

"&&&
∆=0

= −ψ

*
1

2
+ j

+
− ψ

*
1

2
− j

+
(69)

where ψ(x) = Γ′(x)/Γ(x). This diverges as |j| → 1
2 which is when the state becomes non-

normalizable.
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Figure 5: Neutral two point function for finite u and u′ → ∞ in the charge j = 0 sector. We chose
∆ = 1/8. Note that the correlator behaves as u−2∆ for u ≪ 1 and it becomes constant for large u.

〈O
LO

R
〉
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0.0

0.5
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1.5
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zz contribution

(π /β)2Δ
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Figure 6: The neutral two-sided correlator evaluated in the zero-charge thermofield double state
〈TFD|OLOR|TFD〉j=0 = Trj=0[Oe−βH/2Oe−βH/2]/Zj=0(β) with ∆ = 1

8 . We also show the long
time and short time approximations in orange and green.

2.6 The Lorentzian case

It is a straightforward matter to do the analytic continuation to Lorentzian time for the two point
functions discussed above. To get the real time thermal two point function we set u = it, u′ = β−it.
This Lorentzian correlator also goes to a constant for very large Lorentzian times t. This is simply
because all the finite energy contributions are oscillatory and average out while the zero energy
contribution remains. One might wonder whether this means that if we perturb a black hole, then
the perturbation will remain forever. This is a case where we should remember the famous adage
“correlation is not causation”. In fact, this constant value of the two point function is real and
is the same as the Euclidean answer. On the other hand, the response to a perturbation involves
a commutator, given by the imaginary part of the correlator. In other words, imagine that we
modify the unitary evolution of the system by adding a small perturbation of the form ei

!
ε(t)O(t),

with small ε. Then the change in expectation value of the operator O(t′) at a later time involves
〈O(t′)〉ε = i

9
dt[O(t′), O(t)]ε(t). This commutator can be computed as the difference between two

possible analytic continuations u = ±i(t − t′), u′ = β ∓ i(t − t′), and this in turn picks out the
imaginary part of the two point function. Since the imaginary part goes to zero, it means that
physical perturbations are indeed forgotten by the black hole at long times. They are simply acting
as a unitary operation on the ground states. Since we are summing over these states, we do not

16



〈O
(t)
O
(0
)〉 β

=∞
-〈
zz

〉

50 100 150 200

-0.02

-0.01

0.00

0.01

0.02

Re

Im

t

Figure 7: The Lorentzian two point function for a neutral correlator in the β = ∞ limit in the sector
with j = 0. (We have divided by eS0). We have suppressed the constant zz contribution, which is real

and equals Γ(5/4)√
2

∼ 0.64. The period of oscillation τ is related to the energy gap: τ = 2π/Eg ∼ 100,

with Eg = 1/16 in this case.

notice the action of the unitary by looking only at a one sided correlator. Of course, this discussion
is fairly standard, and we are simply applying it in the context of the ground states.

2.7 Two point function on the cylinder

u u′ 

(a) (b)

Figure 8: Contributions to the cylinder diagram. (a) Contribution due to a single particle path joining
the two operator insertions. (b) Contributions with an additional disconnected path that wraps the
cylinder. u and u′ are the total euclidean times along the boundary of the left and right boundaries of
the cylinder.

By a similar method it is possible to compute one contribution to the cylinder two point function.
This is the contribution where we sum over paths that connect the two operator insertions, as in
[27], see figure 8a. This neglects other possible contributions which include any number of additional
particles that wrap the cylinder, see figure 8b. These additional contributions can be neglected in
situations where the minimal cross section of the cylinder has a relatively large length. We expect
this to be the case when ∆ ≫ 1, or for large Lorentzian times, as in [28]. In section (5.4) we
will discuss another application of these wormholes which seems reliable for similar reasons. These
neglected contributions could lead to divergences and will be discussed in more detail in [29].
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For the contribution of the diagram in figure 8a, we simply trace over all states of the Liouville
theory so that we have an expression of the form

〈2 pt〉cyl = TrLiou[e
−∆ℓe−(u+u′)E ] = Tr[Oe−uH ] Tr[Oe−u′H ] (70)

where the trace in the first expression is over the states of the Liouville theory that we explicitly
described above. The last expression in (70) is giving the interpretation of this computation in a
hypothetical quantum mechanical dual where the trace is over microstates and the overline denotes
an average over couplings. In this case we get contributions also from the wavefunctions with odd
fermion number, namely |F±

s,j〉. We only get a non-zero contribution when we consider a neutral
operator. For a charged operator the conservation of the U(1)R charge implies that the cylinder
two point function is zero.

2.7.1 Matrix elements

Since we are computing a trace over the Liouville Hilbert space, we only need diagonal matrix
elements of the operator. In the continuum case, there are four of them, for the four states of each
energy multiplet. The first two are 〈Hs′,j′ |e−∆ℓ|Hs,j〉 and 〈Ls′,j′ |e−∆ℓ|Ls,j〉. We now list the other
two, derived in appendix E,

〈F+
s′,j′ |e

−∆ℓ|F+
s,j〉 = 〈F−

s′,j′ |e
−∆ℓ|F−

s,j〉 =
√
E E′

π

Γ(∆± is± is′)

Γ(2∆)
(71)

We will also use 〈Zj′ |e−∆ℓ|Zj〉, which was computed above in (54).

2.7.2 Assembling the two point function

The two-point function for the cylinder is a sum of the continuous contributions and the discrete
term. For each of these terms we should compute the diagonal matrix elements from (46), (47), (71)
and (54). Since the states are not unit normalized, we should remember to divide by their norms
(24-26). For the zero energy contribution we get

〈2 pt〉cyl,z =
1

2π

.

|j|< 1
2

cosπj
∆Γ(∆)2Γ(∆+ 1

2 ± j)

Γ(2∆)
(72)

where the factor of cosπj comes from the inverse of the norm in (26) and the rest from the matrix
element in (54). We can similarly get the continuum contribution which involves the sum over the
four states in the multiplet. We then write the answer as the sum of the two terms

〈2 pt〉cyl = 〈2 pt〉cyl,c + 〈2 pt〉cyl,z (73)

=
.

j

# ∞

0
ds

s sinh 2πs

π2Es,j
e−Es,j(u+u′)(4E +∆2)

Γ(∆)2Γ(∆± 2is)

Γ(2∆)
(74)

+
.

|j|< 1
2

cosπj

2π

∆Γ(∆)2Γ(∆+ 1
2 ± j)

Γ(2∆)
. (75)

As we have already stressed, we expect this answer to be reliable only when ∆ ≫ 1.
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3 Correlation functions in N = 2 supersymmetric SYK

In this section we consider the N = 2 supersymmetric SYK model introduced in [12] whose con-
ventions we use. The model involves N complex fermions and a supercharge

Q = i
.

1≤i<j<k≤N

Cijkψ
iψjψk , {ψi, ψ̄j} = δij (76)

and a supercharge Q̄ = Q†. These anticommutation relations imply Q2 = Q̄2 = 0. The complex
numbers Cijk are gaussian with a second moment given by

〈CijkC̄
ijk〉 = 2J

N
, (no sum) (77)

and the Hamiltonian is defined to be H = {Q, Q̄}. The model also has a generalization where the
supercharge is given in terms of q̂ fermion terms. In (76) we have q̂ = 3. The model has an R
charge with q̂ = 3, meaning that the supercharge has charge one, but the elementary fields have
charge 1/3. At large N and for low, but not too low, energies the model develops a nearly conformal
regime. In that regime the fermion correlation function has a behavior

〈ψ̄i(0)ψi(t)〉 = bq̂
1

(Jt)2∆
, bq̂ =

)
tan π

2q̂

2π

, 1
q̂

, ∆ =
1

2q̂
(78)

As we get to even lower energies, it is necessary to take into account the quantum mechanics of a
super-Schwarzian mode with action

S = −C

#
dt{f, t}+ susy partners , C =

αSN

J
(79)

In the case of q̂ = 3, it was numerically found that [30]5

αS = 0.00842... (80)

One of the non-trivial features that we obtain from this analysis is the presence of an energy
gap of the form [9]

8CEgap =

*
j − 1

2

+2

(81)

with C as in (79). Here we have multiplied (14) by a factor of 1
2C to restore the units. In [1] we

have checked this prediction numerically for N = 16 using the large N prediction for C given by
(79) (80).

We can use these numbers together with the results of section 2 to derive the expected form for
the two point functions. It is convenient to separate the ground states according to their R charges.
In this case, these have R charges j = 0, ±1/3, for N even. We will only treat the N even case6.
The total number of BPS states is

Tr[P ] = NBPS = eS0L̂ , L̂ ≡
.

|j|≤ 1
2

cosπj , P =
.

j

Pj (82)

5Curiously this is somewhat close to the large q̂ answer αS = J
4q̂2J extrapolated to q̂ = 3, after using J = 3J/2,

which gives αs = 0.0092...
6When N is odd the R charges are all shifted by a 1/(2q̂) additive constant.
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Operator R-charge Schwarzian prediction Numerical answer (N=16)

ψi
0 0.111 0.110± 0.005

+1/3 0.111 0.110± 0.005

ψiψj +1/3 0.0247 0.024± 0.003

ψ̄iψj

−1/3 0.0282 0.027± 0.001

0 0.0874 0.079± 0.001

+1/3 0.0282 0.027± 0.001

Table 1: Comparison of exact diagonalization results for the 2-pt function with the Schwarzian pre-
dictions. Here we use the large N value for the Schwarzian, C = 0.00842N = 0.135. The R-charge
corresponds to the R-charge of the state, see equations (83)-(85). The error bar we display is the
statistical error, computed by changing the value of i. This is related to the error we should get if we
vary the coupling constants.

where Pj is the projector to zero energy states of R charge j. We will not need the value of S0

for the comparisons we will do here. These degeneracies were already discussed in [12]. Note that
the operator ψ anticommutes with Q, [Q,ψ] = 0. This implies that it is a BPS operator in the
conformal regime. Then we are interested in computing the correlators

〈ψiψ̄i〉j
NBPS

=
Tr

!
Pjψ

iPj− 1
3
ψ̄iPj

"

Tr[P ]
=

)
tan π

2q̂

2π

, 1
q̂ 1

(2αSN)2∆
cosπj cosπ(j − 2∆)

πL̂
Γ(

1

2
+ j)Γ(2∆+

1

2
− j)

(83)
where q̂ = 3, ∆ = 1/6. The second expression is an explicit expression for the operator in the SYK
model that uses the projectors Pj onto the ground states of specific R charge. In this formula, we
have taken the zero energy matrix element in (45) and we have multiplied by two factors to take
into account the proper normalization of the operators, the first from (78) and the second from (64)
using (79). In a similar way we can write the expressions for an operator with twice the charge,
obtained by taking ψiψk.

〈(ψiψk)(ψ̄kψ̄i)〉j
NBPS

=
Tr[Pj(ψ

iψk)Pj− 2
3
(ψ̄kψ̄i)Pj ]

Tr[P ]

=

)
tan π

2q̂

2π

, 2
q̂ 1

(2αSN)2∆
cos(πj) cos(π(j − 2∆))

πL̂
Γ(

1

2
+ j)Γ(2∆+

1

2
− j) , ∆ = 2/6 (84)

Finally, we can consider an uncharged operator ψiψ̄k to obtain

〈(ψkψ̄i)(ψiψ̄k)〉j =
)
tan π

2q̂

2π

, 2
q̂ 1

(2αSN)2∆
cos2(πj)

πL̂

1

2

∆Γ(∆)2

Γ(2∆)
Γ(∆+

1

2
± j) , ∆ = 2/6 (85)

Inserting the value of αS in (80) and setting N = 16 we obtain the numbers in the “Schwarzian
prediction” column in table 1. In that table, this is compared to the numerical answers for N = 16.

As an aside, let us mention one point that can cause confusions in interpreting some of the
numerical computations. This is the fact that some operators have extra zero modes which are not
expected for larger values of N , see appendix G.
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There are also some curious features we initially found numerically but which can be explained
in terms of the symmetries. The first observation is that

Pψie−uHψjP (86)

is independent of u. Here P is the projector onto zero energy states. The reason is that the u deriva-
tive brings down the Hamiltonian H. Writing the Hamiltonian as H = {Q, Q̄} and anticommuting
Q either with the left ψ or the right ψ we get a Q acting as QP = 0 or PQ = 0.

This implies that the long time TOC and OTOC are equal (up to a sign). This is because the
property (86) implies that we can bring ψi and ψj close to each other as long as other times are
infinite, exchange their order, and then bring them far from each other, all without changing the
value of the correlator. See Figure 9.

u∞

∞

∞
∞

∞

∞

(a) (b) (c)

u∞

∞

∞

Figure 9: Here we see the operation where we move the insertion of the two chiral operators on the
right until they cross each other. Since their anticommutator vanishes in the UV this relates the values
of (a) and (c) up to a sign, both of which are u independent thanks to the u independence of (86).

This means that the infrared operators ψ̂i and ψ̂j anticommute. This is nontrivial. Of course
the UV operators anticommute {ψi,ψj} = 0, but if we start projecting them onto lower energy
states, constructing ψi

τ = e−τHψie−τH , then they do not anticommute for intermediate τ , but they
anticommute again as τ → ∞. We have computed this anticommutator numerically and the results
are in Figure 10.

This also has another interesting implication. We can consider a state produced by euclidean
evolution by inserting two ψ̄ operators, and then evolving by an infinite amount of Euclidean time.
This produces some kind of wormhole with two particles. One question we can ask is whether
these two particles are on top of each other or whether they are separated from each other. We
can address this question by computing the overlap created by that state and a state with a single
conformal operator insertion which is a two particle operator of the schematic form ∂nψiψj where
the derivatives are distributed between the two factors so as to make a conformal primary. We can
produce these operators by taking them to finite u as in Figure 9 and then taking derivatives. This
shows that all the overlaps are zero. This means that the two particles are on top of each other.
We will also give an independent argument in Section 5.2.

There is another relation that should hold for the TOC. This is based on the point that the time
ordered operator depends only on u1, u2 + u4, u3, see figure 11. This holds at any time, not just
long times. This then implies an equality between the TOC four point function and a three point
function that involves a two particle operator Õ = OO′. See figure 11. Setting u2 = 0 and taking
all the other times to infinity we get an identity that should hold among zero energy correlators.
Numerically we find that this identity holds within a factor of 4%.
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Figure 10: Anti-commutator of the chiral operators e−τHψe−τH . At short times, the anti-commutator
is just given by the UV commutator {ψi,ψj} = 0. At intermediate times, the commutator is something
complicated, but at long times the commutator again vanishes since we are projecting to BPS states.
Here the results are for N = 10 complex fermions.

!′ !′ 
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u2u4
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u1

u3
u 4

+ u 2

Figure 11: We consider the four point correlator in a time ordered configuration. It turns out that the
answer depends only on u4 + u2 and not on u2 and u4 separately. This means that the answer is equal
to the three point correlator in (b) where the two operators are coincident.

The UV operators ψi are very simple and have simple eigenvalues. Actually, to talk about
eigenvalues it is more convenient to consider an operator of the form A = ψ̄iψj + ψ̄jψi which is
hermitian. We go to the IR and we define the projected operator

Â = PAP , with A = ψ̄iψj + ψ̄jψi (87)

We can think of ψiP as a rectangular random matrix with the short side of the rectangle determined
by the IR dimension of the Hilbert space, eS0 , and the long side equal to the UV dimension. Then
we expect that the eigenvalues of Â will be those of a random matrix. We have computed this
explicitly for the N = 16 case and we find indeed a dense spectrum for the operator, but the overall
distribution is not quite a semi-circle law as we expected. The reason is that because N is small the
dimensions of the Hilbert spaces involved in the computation are actually such that the relevant
UV dimensions are actually smaller than the relevant IR dimensions, due to the fact that N = 16 is
relatively small and that the operator ψ changes the R charge, see appendix G. So for comparison,
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Figure 12: Left: Eigenvalue distribution of the operator 1
2P (ψ1ψ̄2+ψ2ψ̄1)P , where P = e−∞H projects

onto the ground states. We removed the zero eigenvalues from this distribution. Results were obtained
using N = 16 SYK. Right: a histogram of eigenvalues obtained by a toy model where ψ1,ψ2 are
3432 × 4374 complex Gaussian matrices. In the limit where we take n ×m matrices with m ≫ n we
would expect a rounder distribution.

in figure 12, we have made the approximation that the ψ’s are random matrices between the spaces
with the dimensions discussed in appendix G.

It is also possible to consider the states that result from adding an operator PjAPj , see figure
13, and numerically compute the entropy. We find a reduction of the entropy, relative to the case
with no operator of the form, Sj − SÂ = log(4374) − 7.64... = 0.74. (The value quoted is for
j = 0 and A ∝ ψ1ψ̄2 + ψ2ψ̄1). This value is close to the theoretical prediction for an operator with
small dimension ∆ ≈ 0, which is S − S0 = 0.7296... as we will discuss around (169). However,
this agreement should not be taken too seriously since we also found a substantial number of zero
modes which contributes significantly to the entropy reduction. Such zero modes are not present at
N ≥ 20, see appendix G. (There are 942 additional zero modes, which would account for a reduction
in entropy of about 0.24.)

4 Calculation of the propagator

The goal of this section is to calculate the propagator for the boundary particle, described by the
N = 2 super-Schwarzian theory. We want to find it to be able to write integral expressions for
general correlators. We will focus on finding the propagator for the zero energy states. We expect
that the same method should work for the propagator at arbitrary energies.

4.1 Review of the group theory approach for N = 0

In this section, we will review the derivation of the propagator in the N = 0 Schwarzian theory.
We will do so using a parameterization that will be convenient for generalizing to the N = 2 case.
In the Appendix C, we also give some formulas for the N = 1 case.

AdS2 can be viewed as the coset SL(2,R)/U(1). We can think of this space as the set of SL(2)
two by two matrices with the further identification g ∼ gh, where h is an element of the U(1)
subgroup. If we had a non-relativistic quantum particle moving on the SL(2) group manifold,
we would have generic functions of g. These functions can be acted upon by a set of two SL(2)
symmetries g → sLgsR. The quotient by U(1) breaks the right SL(2) subgroup. If we require that
the functions are invariant under this U(1) group, we get the space of functions on AdS2. For our
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problem we need two modifications. First we will require that the functions have a definite charge q̃
under the U(1). If we choose this U(1) to generate a rotation, then we would get functions on AdS2
that carry an “electric” charge q̃. The second modification is that we need to take the Schwarzian
limit which involves taking the q̃ → ∞ limit and a similar limit of the interior coordinates, see
[10, 11]. It is possible to perform both of these steps at once by picking the quotient subgroup to
be generated by a null generator L+ with eigenvalue q, which is now finite. In this case, we do not
need to take any limits and we land on the Schwarzian theory directly [31].

In the rest of this subsection we review these steps more explicitly as a prelude to the super-
symmetric case.

The algebra of SL(2) is
[Lm,Ln] = (m− n)Lm+n. (88)

We can realize this algebra in the following way. We start by considering a parameterization of the
group SL(2)

g = e−xL−eρL0eγL+ (89)

in terms of abstract7 generators L±, L0 which we define to obey the “opposite” SL(2) algebra8:

[Lm, Ln] = −(m− n)Lm+n (90)

Note that there is a minus sign on the RHS of (88), in contrast to the more usual definition of the
algebra.

We can define now the left acting symmetry by multiplying (89) on the left by the generators
La and then rewriting the answer in terms of an infinitesimal change of the coordinates x, ρ , γ. In
this way we find concrete expressions for the generators:

L− = −∂x,

L0 = −x∂x + ∂ρ

L+ = −x2∂x + 2x∂ρ + e−ρ∂γ

(91)

which also obey the algebra (88) when acting on functions of x, ρ, γ. The reason for the switch
in sign between (90) and (88) is that we defined things so that Lag = Lag. This then means that
LbLag = Lb(Lag) = LaLbg = La(Lbg) where in the third equality we used that the La and Lb

commute with each other. So the difference between the abstract and concrete generators is that
they act in the opposite order. Therefore, a commutator [La, Lb] becomes minus a commutator of
[La,Lb]. We will only consider the generators La from now on.

In addition we can define another set of generators that come from acting on (89) with La on
the right.

LR
− = γ2∂γ − 2γ∂ρ − e−ρ∂x

LR
0 = ∂ρ − γ∂γ ,

LR
+ = ∂γ ,

[LR
m,LR

n ] = −(m− n)LR
m+n

(92)

The minus sign in the algebra, relative to (88) is due to the fact that we are defining the generators
as acting on the right. These right generators commute with the left ones (91).

7It is also possible to choose a two dimensional representation for the generators in terms of Pauli matrices and
write g as an explicit two by two matrix. We do not need to do that in what follows.

8We thank G. Penington for pointing out an error in the previous version of the draft.
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The Casimir, which commutes with both left and right generators, is

C = L2
0 −

1

2
(L+L− + L−L+) = ∂2

ρ + ∂ρ + e−ρ∂x∂γ (93)

and the Hamiltonian of our system is H = −C− 1
4 , where the 1/4 is introduced just for convenience

as an overall energy shift. When we perform the quotient, we select the generator LR
+ and we

demand that the states obey the condition that LR
+ = −q. The minus sign is just a convention.

This is equivalent to demanding that the only dependence of the wavefunctions on γ is of the
form ψ ∼ e−qγ .

With this quotient, we can identify (x, ρ) with a rescaled version of the AdS coordinates

ds2 =
dx2 + dz̃2

z̃2
= dρ2 +

1

/2
e2ρ dx2 , z̃ = /e−ρ (94)

where the rescaling, with / → 0 is related to the fact that we are taking the Schwarzian limit, where
the boundary is far away.

We can then proceed to compute the propagator. We consider functions of two points, charac-
terized by two sets of coordinates as above, with a wavefunction of the form

P ∼ e−q(γ1−γ2)F (x1, ρ1;x2, ρ2;u) , ∂uP = −HP (95)

Notice that the second particle has the opposite eigenvalue under the right generator, LR
1+ =

−LR
2+ = −q. In particular, we demand that it is invariant under the sum of the left generators

acting on the two coordinates (L1 a+L2 a)P = 0. This implies that P is a function of two invariants
only:

p = γ1 − γ2 + ϕ12 , ϕ12 =
e−ρ1 + e−ρ2

x1 − x2
eℓ = eρ1+ρ2(x1 − x2)

2 (96)

Of course, since (95) has a specific dependence on γ12, then the dependence on the first invariant
is fixed. The dependence on the second invariant can be decomposed in terms of eigenfunctions of
the Hamiltonian. Then we end up with an expression of the form [11, 10]

P = e−(γ1−γ2+ϕ12)

# ∞

0
dEρ(E)e−Eue−ℓ/2K2i

√
E(2e

−ℓ/2). (97)

after we have set q = 1. The function ρ(E) can be determined by demanding that the propagator
obeys the composition law

9
dx2dρ2e

ρ2P (1, 2;u)P (2, 3;u′) = P (1, 3;u + u′). This argument gives
ρ(E) ∝ sinh 2π

√
E [11, 10], see also Appendix I.

4.1.1 Connection with Liouville quantum mechanics

We can connect this discussion with the wavefunctions of Liouville quantum mechanics.
To evaluate the expectation value of a function of the distance we would need to integrate that

function against the product P (1, 2)P (2, 1) over each of the points and divide by the volume of
SL(2). Note that in this product of two propagators, the exponential prefactors in (97) cancel out.
Dividing by the volume of SL(2) can be achieved by fixing a gauge, such as

x1 = 1 , x2 = 0, ρ2 = 0 , ⇒ eℓ = eρ1 (98)
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The Fadeev Popov determinant is trivial in this gauge. Then we find that the factor of eρ1 = eℓ in
the measure of integration over the first point cancels out against the two prefactors of e−ℓ/2 in the
Bessel functions in (97). This leaves just the simple measure

9
dℓ, integrating the Bessel functions

ψE(ℓ) = K2i
√
E(2e

−ℓ/2) which are the ones appearing in the Liouville approach as eigenfunctions of
the Liouville Hamiltonian

H = −∂2ℓ + e−ℓ (99)

More explicitly, we can consider a wavefunction of two points that is only a function of the
invariants e−q̂(γ1−γ2+ϕ12)F (ℓ). Then we may write the Casimir acting on the first point as

C1 = ∂2
ℓ + ∂ℓ − qe−ℓ (100)

Now notice that if we define P = e−(γ1−γ2+ϕ12)e−ℓ/2ψLiouville(ℓ), we get

(−C1 −
1

4
)P = e−(γ1−γ2+ϕ12)e−ℓ/2

:
−∂2

ℓ + e−ℓ
;
ψLiouville(ℓ) = HP, (101)

where in the last line we substituted in a Liouville eigenfunction ψLiouville(ℓ) = ψE(ℓ).
We now will repeat all these steps for the N = 2 supersymmetric case. The N = 1 case is

discussed in appendix C.

4.2 The N = 2 supergroup and its symmetry generators

The N = 2 superconformal algebra is given by (88) and

[Lm,Gr] =
:m
2

− r
;
Gm+r,

<
Lm, Ḡr

=
=

:m
2

− r
;
Ḡm+r

[Lm,J ] = 0
>
Gr, Ḡs

?
= 2Lr+s + (r − s)J δr+s

{Gr,Gs} =
>
Ḡr, Ḡs

?
= 0,

[J ,Gr] = Gr ,
<
J , Ḡr

=
= −Ḡr,

(102)

with m = 1, 0,−1 and r, s = ±1
2 . This is also known as the superalgebra SU(1, 1|1) or OSp(2|2).

We can write a supergroup element as

g = e−xL−eθ−G−+θ̄−Ḡ−eρL0eθ+G++θ̄+Ḡ+eγL+eiaJ (103)

As before, we can define the left generators by multiplying g on the left and rewriting the result
as a differential operator acting from the left side. As with the bosonic case (88), the abstract
generators appearing in (103) obey the opposite superalgebra compared to the left generators. Here
“opposite” means that we add and extra minus sign to the right hand side relative to (102), both
for commutators and anticommutators.
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The left generators of the group are

J = −i∂a + θ̄−∂θ̄− − θ−∂θ− + θ̄+∂θ̄+ − θ+∂θ+ ,

L− = −∂x,

L0 = −x∂x + ∂ρ −
1

2

:
θ̄−∂θ̄− + θ−∂θ−

;

L+ = e−ρ∂γ − x2∂x + x
:
2∂ρ − θ̄−∂θ̄− − θ−∂θ−

;
− θ−θ̄−J − e−ρ/2

5
θ̄−D̄+ + θ−D+

6

G+ = e−ρ/2D+ + x(∂θ− − θ̄−∂x) + θ̄−J + 2θ̄−∂ρ

Ḡ+ = e−ρ/2D̄+ + x(∂θ̄− − θ−∂x)− θ−J + 2θ−∂ρ

G− = ∂θ− − θ̄−∂x

Ḡ− = ∂θ̄− − θ−∂x

(104)

where
D+ = ∂θ+ + θ̄+∂γ , D̄+ = ∂θ̄+ + θ+∂γ (105)

We can check that these generators obey the algebra (102). We can similarly define right generators
by multiplying (103) on the right and then expressing the result as a left acting differential operator,
e.g., LR

a g = gLa, GR
r g = gGr. These right generators obey the relations9

[L,LR] = [L,GR] = {G,GR} = 0

[LR
a ,LR

b ] = −LR
[a,b], [LR

a ,GR
b ] = −GR

[a,b], {GR
a ,GR

b } = −LR
{a,b},

(106)

Explicitly,

J R = −i∂a,

LR
− = −e−ρ∂x + γ2∂γ − γ

:
2∂ρ − θ̄+∂θ̄+ − θ+∂θ+

;
− θ+θ̄+J R − e−ρ/2

5
θ̄+D̄− + θ+D−

6

LR
0 = −γ∂γ + ∂ρ −

1

2

:
θ̄+∂θ̄+ + θ+∂θ+

;

LR
+ = ∂γ

GR
+ = e−ia

<
∂θ+ − θ̄+∂γ

=

ḠR
+ = eia

!
∂θ̄+ − θ+∂γ

"

GR
− = e−ia

!
e−ρ/2D− − γ(∂θ+ − θ̄+∂γ) + θ̄+J R − 2θ̄+∂ρ

"

ḠR
− = eia

!
e−ρ/2D̄− − γ(∂θ̄+ − θ+∂γ)− θ+J R − 2θ+∂ρ

"

(107)

with
D− = ∂θ− + θ̄−∂x , D̄− = ∂θ̄− + θ−∂x. (108)

The right generator J R is interpreted as the global symmetry generator (the R-charge) of the
boundary theory. We will discuss the interpretation of the other right generators shortly.

We need the expression for the Casimir, which is

C = −1

4
J2 + L2

0 −
1

2
(L+L− + L−L+)−

1

4
[Ḡ−, G+]−

1

4
[G−, Ḡ+] (109)

9The last minus sign in (106) is explained by considering [#αLR
Hα

, #βLR
Hβ

] = −LR
[#βHβ ,#αHα], where H denotes any

generator and LH its differential operator. For fermionic generators, # should be a Grassmann-odd number. The right
generators formally satisfy the same algebra as the abstract generators in (103).
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If we insert the left generators into the Casimir we find the following differential operator

C = ∂2
ρ + e−ρ∂x∂γ −

1

4
(i∂a + θ+∂θ+ − θ̄+∂θ̄+)

2 − 1

2
e−ρ/2(D−D̄+ + D̄−D+) (110)

with D+ and D− as in (105), (108).
If we want to describe the bulk superspace, then we would need to quotient by a combination of

the LR generators which acts as a rotation. In addition, we also quotient by J R. This leaves two
bosonic variables and four θ variables, which is what is necessary to describe a bulk two dimensional
theory with (2, 2) supercharges. We want a bulk quantum field theory with (2, 2) supersymmetry
and an anomaly free R symmetry.

4.3 The boundary superparticle

Now we turn to the description of the boundary particle, which is described by the N = 2 super-
schwarzian theory. We want to recover this description by thinking about a particle moving in the
supercoset. The advantage of this description is that it will make the target space symmetries of
the model very explicit.

As in the bosonic case, we quotient by a null bosonic generator, which we can take to be LR
+.

We also demand that the wavefunctions have LR
+ = −q. This leaves us with three bosonic degrees

of freedom: the two coordinates of AdS2 and an angular coordinate associated to the R symmetry,
which is good. However, it also leaves us with four fermionic coordinates, and their derivatives,
which would build up to four complex fermions along the boundary. However, the N = 2 super-
Schwarzian has only three complex fermionic degrees of freedom (or one complex fermion with a
three derivative kinetic term), so we have an excess of one complex fermionic degree of freedom.

In general, the ungauged right symmetry generators that commute with LR
+ have the interpre-

tation as generators of a global symmetry. For example J R is the physical charge operator10. In
addition, if we quotient by LR

+ we see that we have some extra global symmetries, such as the ones
generated by GR

+ , which commute with all the left generators and also with LR
+. These are not

symmetries of the superschwarzian theory. Therefore we are not reproducing the superschwarzian
theory. We will describe two equivalent ways to deal with this problem.

A word of clarification: when we are discussing “gauging” in this context, we are talking about
the right symmetries. This should not be confused with the symmetries of the Schwarzian action,
which are sometimes also called “gauge symmetries”. Those symmetries are the left symmetries.
At this stage, we are trying to go from the particle on a supergroup manifold to the Schwarzian; to
do so, we need to remove some of the right symmetries that do not appear at all in the Schwarzian
action. In later steps, we will also gauge the left symmetries but we are not there yet.

4.3.1 The enlarged gauging formalism

One way to deal with this problem is to imagine that we are additionally gauging the GR
+ and

ḠR
+ generators. We cannot just demand that the wavefunction is invariant under these generators

because their anticommutator is LR
+ which is non-zero. A procedure that produces the desired

answer is the following. We first introduce an extra degree of freedom consisting of a single complex
fermion ζ. This realizes a representation of the subalgebra generated by LR

+, G
R
+, Ḡ

R
+, J

R as

ĜR
+ =

-
2q ζ , ˆ̄G

R

+ =
-
2q ζ̄ , L̂R

+ = q , JR =
1

2
[ζ, ζ̄] , {ζ, ζ̄} = 1 (111)

10If we had an AdS2 problem with a non-Abelian global symmetry G, the low energy description would be the
Schwarzian mode plus a particle on a group manifold G. The right generators would be the physical charge operators.
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We now consider the full system given by the original coordinates in (103) and we now add the
coordinate χ. We further demand that the wavefunction is invariant under the sum of the two
generators,

(LR
+ + L̂R

+)Ψ = 0 , (GR
+ + ĜR

+)Ψ = 0 , (ḠR
+ + ˆ̄GR

+)Ψ = 0 (112)

This procedure effectively removes one combination of the θ+ and θ̄+ variables.
As a comment, note that this procedure is analogous to the following. Imagine that we are

gauging a non-abelian symmetry, say SU(N). One option is to demand that the wavefunction
is invariant. Another option is to introduce an extra “quark” degree of freedom, just a single
fundamental representation and demand that the total system is invariant. Notice that the Hilbert
space of the degree of freedom only needs to furnish a representation of the gauge algebra in (112),
but not of the full supergroup.

4.3.2 A formalism with fewer Grassmann variables

There is a second equivalent procedure where the extra variables are removed from the beginning.
This works as follows. We first note that that the left generators involve the θ+ and θ̄+ variables
only in the combination D+ and D̄+, see (104). We can realize the algebra of these operators in
terms of just one Grassmann coordinate, instead of two

D+ → 2eiaχ∂γ , D̄+ = e−ia∂χ (113)

In addition, we remove the θ+ and θ̄+ terms from J so that

J = −i∂a + θ̄−∂θ̄− − θ−∂θ− (114)

Here the factors of eia are included so that the commutation relations of J with D+ and D̄+ are
the same as before, and χ is neutral under J . In addtion, we have that now

J R = −i∂a − χ∂χ (115)

With this definition we see that (113) is invariant under J R, as are all the rest of the generators
(104).

The net effect is that we have replaced θ+ and θ̄+ by just one Grassmann variable χ. We have
done this at the cost of breaking the manifest charge conjugation symmetry. With this procedure
we can now no longer define the GR

+ generators, so we lack the unwanted symmetries, which is a
good thing. In this formalism we impose just the condition LR

+ = −q.
We found this to be a good compromise, and we are going to use these variables to describe the

propagators. In summary, the claim is that the Schwarzian theory is described by a Hilbert space
generated by functions of the form e−qγF (x, ρ, a, θ−, θ̄−,χ) with the supergroup symmetries acting
as in (104) with D± defined in (113) and J in (114).

4.3.3 Equivalence of the two procedures

Let us be more explicit about the procedure in section 4.3.1. The Hilbert space for a particle on
the supergroup manifold consists of functions of the form F (x, ρ, γ, a, θ−, θ̄−, θ+, θ̄+). Let us ignore
all the arguments except (γ, θ+, θ̄+). Now when we add the extra fermion ζ we should consider
functions e−qγF (θ+, θ̄+,χ) and we now represent

ĜR
+ = −2χ∂γ ,

ˆ̄GR
+ = −∂χ, ĴR = −χ∂χ, L̂R

+ = −∂γ , ζ =
√
2χ , ζ̄ =

1√
2
∂χ (116)
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where we introduced
√
2 in a asymmetric way since the formalism is breaking the manifest charge

conjugation symmetry anyway. All the other right generators, left and right, (104) (107), leave χ
invariant. The physical R-charge is JR + ĴR, which is indeed (115).

Imposing the conditions (112), we restrict to a 2-dimensional subspace of functions of the form

e−qγF (θ+, θ̄+,χ) = exp
>
−q

5
γ + θ+θ̄+ + 2eiaθ+χ

6? <
a+

5
χ+ e−iaθ̄+

6
b
=
. (117)

This 2-dimensional subspace is the physical Hilbert space. If we had only imposed the bosonic
constraint in (112), we would have had an 8-dimensional “auxiliary” Hilbert space consisting of
arbitrary functions of (θ+, θ̄+,χ).

Now notice that since the physical Hilbert space is 2-dimensional, we can gauge fix θ+ = θ̄+ = 0
in (117) to get e−qγ(a+ χb), where the second factor is simply an arbitrary function of χ. But this
is precisely what we have done in the formalism of section 4.3.2. Once we know a, b we could always
restore the θ+, θ̄+ dependence using (117).

4.4 The worldline supercharge

The Schwarzian theory has an N = 2 worldline supersymmetry. This means that, besides the
Hamiltonian, we should be able to construct two Grassmann-odd operators, Q, Q̄ with the algebra
Q2 = Q̄2 = 0 and {Q, Q̄} = H. These should be invariant under all the left generators which are
gauge symmetries.

We have not found a systematic way to derive them. We have simply guessed them and then
checked the algebra. One efficient way to guess them is to use the right generators, which are already
invariant under all the left ones. We pick Grasssmann-odd combinations which are invariant under
LR
+ and GR

+ , ḠR
+ so that they are invariant also under the gauging procedure described near (111)

This gives

Q = LR
0 ḠR

+ − LR
+ḠR

− − (1− 1

2
J R)ḠR

+

Q̄ = LR
0 GR

+ − LR
+GR

− − (1 +
1

2
J R)GR

+ (118)

Using these expressions it is possible to write the supercharges as differential operators

Q =
1√
2
eia

@
[∂ρ −

1

2
(i∂a + θ+∂θ+ − θ̄+∂θ̄+ + 1)]D̄+ − e−ρ/2∂γD̄−

A

Q̄ =
1√
2
e−ia

@
[∂ρ +

1

2
(i∂a + θ+∂θ+ − θ̄+∂θ̄+ + 1)]D+ − e−ρ/2∂γD−

A
(119)

with D− and in (108) and D+ is as in (105) if we use the θ+ and θ̄+ variables, as in section 4.3.1.
Note that Q has charge one under J R and Q̄ has charge minus one.

Alternatively, in the formalism of section 4.3.2 we get

Q =
1√
2
eia

@
[∂ρ −

i

2
∂a + 1]D̄+ − e−ρ/2∂γD̄−

A

Q̄ =
1√
2
e−ia

@
[∂ρ +

i

2
∂a + 1]D+ − e−ρ/2∂γD−

A

C = ∂2
ρ + e−ρ∂x∂γ +

1

4
∂2
a −

1

2
e−ρ/2(D−D̄+ + D̄−D+) (120)

with D+ and D̄+ as in (113). We have also given the expression of the Casimir in these variables.
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These obey the algebra

Q2 = 0 = Q̄2 , {Q, Q̄} = ∂γC = LR
+C (121)

In the next subsections we will describe the construction of the propagator P which is a function
of two sets of coordinates as above with opposite eigenvalues under LR

+. Namely the γ dependence
of the propagator is

P ∝ e−q(γ1−γ2) (122)

The rest of the dependence on the other bosonic and fermionic coordinates is constrained by de-
manding that P is a function of OSp invariants. These invariants are just the superanalog of the
distance in the bosonic case.

4.5 Invariants in the formalism with fewer Grassmann variables

In this subsection we consider invariants under the sum of two generators of the form (104) with D±
defined in (113). We have a total of 2× (4|3) variables and a set of (4|4) + (1|0) constraints, where
the last constraint comes from LR

1+ +LR
2+ invariance. Therefore we expect a total of 3|2 invariants,

three bosonic and two fermionic ones.
The three bosonic ones are completions of the two invariants we had in the bosonic case, (96),

γ12+ϕ12, the distance ℓ, together with U(1) Wilson line ei(a1−a2). We can work them out explicitly
to find

w = e(ρ1+ρ2)/2
<
x1 − x2 − θ1−θ̄2− − θ̄1−θ2−

=
(123)

eiΣ = ei(a1−a2)

*
1− (θ1− − θ2−)(θ̄1− − θ̄2−)

(x1 − x2)

+
(124)

Φ = γ1 − γ2 +
e(ρ1−ρ2)/2 + e−(ρ1−ρ2)/2

w
+ 2(eia1eρ2/2χ1 − eia2eρ1/2χ2)

(θ1− − θ2−)

w
+

−(eρ1 − eρ2)
(θ1− − θ2−)(θ̄1− − θ̄2−)

w2
(125)

η1 = χ1 − e−ia1eρ2/2
(θ̄1− − θ̄2−)

w

η2 = χ2 − e−ia2eρ1/2
(θ̄1− − θ̄2−)

w
(126)

It is also possible to write the invariants using the extra gauging formalism of section 4.3.1 where
we keep the θ+ and θ̄+ variables. The explicit expressions are given in appendix D. We have also
shown how those invariants together with the formalism of section (4.3.1) reduces them to the ones
above.

4.6 Assembling the zero energy propagator

We will concentrate on the propagator for the zero energy states which should obey Q1P = Q̄1P =
Q2P = Q̄2P = 0, where the subscript index indicates whether the supercharge acts on the first
or second point. These also imply that H1P = H2P = 0. We can also fix the R charge j of the
boundary particle.

As part of the right gauge symmetry, we fix the eigenvalue of LR
+ of the first particle to be −q.

Note that η1 has charges (−1, 0) under J R
1 , J R

2 . Similarly, η2 has charge (0,−1). This implies
that there is no way to write a propagator containing these fermions which will be neutral under
J R
1 +J R

2 . This is not a problem because the integral over the positions will also include an integral
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over χ,
9
dχ, which has J R charge one. So the propagator should have J R

1 + J R
2 = −1. We then

write the expression

P = e−qΦeijΣ
!
η2e

− i
2
ΣA(w) + η1e

i
2
ΣB(w)

"
(127)

which has R charges (J R
1 ,J R

2 ) = (j − 1
2 ,−j − 1

2). Since this is an expression in terms of invariants,
it is convenient to express the supercharges (120) as differential operators acting on the invariants.
It is clear that this is possible because the supercharges (anti)commute with the left generators, so
they should map invariants to invariants. We find

Q1 =
1√
2

$
1

2
(w∂ω − i∂Σ)∂η1 +

eiΣ

w
∂η2∂Φ

%

Q̄1 =
1√
2

$
(w∂ω + i∂Σ)η1∂Φ − 2

e−iΣ

w
η2∂

2
Φ

%
(128)

Imposing that these annihilate (127) we get

(w∂w − j +
1

2
)A− 2

q

w
B = 0 , (w∂w + j +

1

2
)B − 2

q

w
A = 0 (129)

which implies that

A =
1

w
K 1

2
+j(

2q

w
) , B =

1

w
K 1

2
−j(

2q

w
) (130)

Hence we can write the final expression for the propagator as

Pj = e−qΦeijΣ
2 cosπj

π

1

w

$
η2e

− i
2
ΣK 1

2
+j

*
2q

w

+
+ η1e

i
2
ΣK 1

2
−j

*
2q

w

+%
Θ(x1 − x2) (131)

The normalization factor will be explained in section 4.7.1. We have also included the step function
Θ to ensure x1 > x2; this follows from the constraint that the particle only moves forwards in bulk
time, see [11]. At this point we want to set q = 1 to match the conventions we had in section 2. We
explain the overall normalization of (131) below.

Note that for j = 0 the propagator takes a particularly simple form

P0 = e−qΦ
!
η2e

− i
2
Σ + η1e

i
2
Σ
" e−

2
w

√
π
√
w

Θ(x1 − x2) (132)

The measure of integration for each bulk point is

#
dµ =

1

2πq̂

#
dρ dx dθ− dθ̄− da dχ (133)

This measure is invariant under the left generators, but it has right R-charge equal to minus one,
which cancels against the R-charge of the product of the two boundary propagators coming in and
out of this point.

4.7 The two point functions and comparison with the Liouville approach

Here we connect this propagator approach to the one we found in section 2 using the super-Liouville
approach. First we note that we have only computed the zero energy propagator. So we can only
compare to the zero energy wavefunctions in (22). We see that they have the same form when q = 1,
which is why we set this value.
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In the Liouville approach we were working directly with invariant quantities. These are related
to the ones in (123-126). These are related as follows

eℓ/2 = w , a = Σ , ψr = − i√
2
∂η1 , ψ̄r = i

√
2η1 , ψl = − 1√

2
∂η2 , ψ̄l = −

√
2η2 (134)

Note that in the Liouville realization the fermions were operators whose anticommutation relations
are realized in terms of the Grassmann variables of the formalism in this section. With this identifi-
cation we see that the supercharges in (128) become Qr and Q̄r in (8), after we set ∂Φ = −q = −1.
This shows that the results in this section should match the Liouville results because we are solving
the same equations. It is however instructive to compute the two point function in the current
formalism to match it with the previous one.

In the formalism of this section, the zero energy two point function in a vacuum of R charge j
is computed as

〈2 pt〉j,zz = πeS0

#
dµ1 dµ2

Vol(OSp(2|2))Pj(1, 2)Pj(2, 1)e
−∆ℓ (135)

where the overall factor of π was chosen so that the final answers, after the gauge fixing procedure,
agree with the Liouville case. It is useful to note that the propagator in the other order P (2, 1) is
given by

Pj(2, 1) = eqΦe−ijΣ 2 cosπj

π

1

w

$
η1e

i
2
ΣK 1

2
+j

*
2q

w

+
− η2e

− i
2
ΣK 1

2
−j

*
2q

w

+%
Θ(x1 − x2) (136)

This was obtained by solving the Q1P = Q̄1P = 0 again. In particular, this means that the term
involving Φ cancels out in (135).

The gauge symmetry allows us to make the gauge choices

x1 = 1, x2 = 0 , ρ2 = 0 , a2 = 0 , θ1− = θ2− = θ̄1− = θ̄2− = 0 (137)

With these choices we find that (123-126) become

w = e−ℓ/2, with ℓ = ρ1, Σ = a1, η1 = χ1 , η2 = χ2 (138)

The Jacobian is just a constant so that the correlator (135) becomes

〈2 pt〉j,zz = πeS0
1

2πq̂

#
dρ1 da1 dχ1 dχ2Pj(1, 2)Pj(2, 1)e

−∆ℓ

= eS0(cosπj)2
#

dℓ

B$
2√
π
e−ℓ/2K 1

2
+j(2e

−ℓ/2))

%2
+

$
2√
π
e−ℓ/2K 1

2
−j(2e

−ℓ/2)

%2C
e−∆ℓ (139)

The last expression is what we obtained for the zero energy sector using the Liouville approach.
Here we have compared the neutral operator, but we can also obtain the answer for the charged
operators. And we can also include the sum over j if we wanted.

4.7.1 Check of the composition law for the boundary propagator

A non-trivial check of our formulas is that the propagator, (131), obeys the composition law

#
dµ2Pj(1, 2)Pj(2, 3) = Pj(1, 3) (140)
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This check is described in detail in appendix F. Demanding that there is a unit coefficient in the
right hand side fixes the overall normalization in (131).

Let us comment on some aspects of this check that will be useful later. For simplicity, consider
the case j = 0, where the propagator simplifies (132). To perform this check, it is convenient to use
the symmetries to choose

x1 = 1 , x3 = a3 = 0 = ρ3, θ1− = θ̄1− = θ3− = θ̄3− = 0 (141)

This leaves an integral over some Grassmann variables in (140) which can be explicitly computed
to obtain an expression of the form

I =

# 1

0

dx2-
x2(1− x2)

# ∞

0
d
√
z2 e

− (
√

z1+
√

z2)
2

(1−x2)
− (1+

√
z2)

2

x2

$
(1 +

√
z2)

2

x22
+

(
√
z1 +

√
z2)

2

(1− x2)2
+

+
2(1 +

√
z2)(

√
z1 +

√
z2)

x2(1− x2)
− 1

2

*
1

x2
+

1

1− x2

+%
, zi = e−ρi (142)

This integral can be done, as explained in appendix F. However, here we want to point out one
feature of it, which is that the integrand is not positive definite. For example, it becomes negative
for small values of z1 and z2, and x2 ∼ 1. This implies that after we integrate out the fermions, we
do not get a positive measure on the space of paths. Therefore we cannot answer easily questions
like: “what is the typical path that contributes”. Below we discuss another application of (142).

4.8 Higher order correlators

This expression for the propagator enables us to compute the general expression for any correlator
in the long boundary distance limit. The correlator involves two pieces. One is a correlator of a
supersymmetric field theory in AdS2 when we take the limit that the points are near the boundary.
The other is the propagator of the boundary particle that we discussed above. We will discuss these
two pieces in turn.

4.8.1 The boundary limit of a bulk correlator

Let us first recall how the boundary limit of bulk field correlators behave in the case with no
supersymmetry

〈φ(x1, ρ1) · · ·φ(xn, ρn)〉 =
7
D

i

/∆ie−∆iρi

8
〈O(x1) · · ·O(xn)〉 (143)

Note that our variables ρi have been already defined so that they are of order one near the boundary.
This is the origin of the factors of /∆i in (143). That is also why we wrote an equality above. The
fact that we have a simple behavior for the ρ variable can be obtained by noticing that the bulk fields
obey a massive wave equation given by the Casimir operator (93), but now with no γ dependence,
Hiφi = m2

iφi. Acting on each variable this constrains the ρ dependence to the one in (143), with
the usual relation between m and ∆. Here the notation 〈O(x1) · · ·O(xn)〉 indicates that this term
behaves as the correlation function of operators of dimensions ∆i as a function of the bulk boundary
times xi.

As we explain below, in the case of correlators of bulk superfields, we expect that as we approach
the conformal boundary we get

〈Φ(x1) · · ·Φ(xn)〉 ∼
nD

i=1

/∆ie−∆iρi〈O(x1, θ1−, θ̄1−) · · ·O(xn, θn−, θ̄n−)〉
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with xi = (xi, ρi, θi−, θ̄i−, θi+, θ̄i+) (144)

In other words, the correlator becomes θ+ and θ̄+ independent, and it depends on the ρi variables
in a simple way. The correlator on the right hand side can be viewed as a “boundary” correlator
defined via the boundary limit of the bulk one; it depends on x and the θ−, θ̄− variables.

The θ+ independence is expected for the following reason. The bulk fields live in AdS2 which
is a coset. This means that they are functions with zero eigenvalue under LR

+. However, since GR
+

and ḠR
+ (see (107)) anticommute to this generator, and we expect a unitary representation, then

this implies that they also annihilate the bulk field in this limit. Looking at (107) we conclude that
we have no dependence on the θ+ variables. Note that this is an argument near the boundary only,
not about the bulk of AdS2, since in the bulk we are quotienting by a different bosonic generator.
Once we demonstrate this θ+, θ̄+ independence, we can impose that the casimir has an eigenvalue
(∆2− r2/4), with r the R-charge of the bulk field. This leads to the ρ dependence in the right hand
side of (144).

4.8.2 General expression

The correlation function for a general correlator has the form

〈Ô1 · · · Ôn〉 = πeS0

# E
i dµi

vol(SU(1, 1|1))P (1, 2)P (2, 3) · · ·P (n− 1, n)P (n, 1)×
7
D

i

e−∆iρi+iriai

8
〈O1(x1, θ1−, θ̄1−) · · ·O1(x1, θ1−, θ̄1−)〉 (145)

where the measure dµi is defined in (133). The factor of volume of the group in the denominator is
fixed so that when we perform a gauge choice similar to the one we did for the two point function
(137) we get no additional factor, as in (139). We have added a factor that ensures that the R
charges of the propagators are conserved at the vertices, taking into account the R charges of the
fields.

We could not evaluate these integrals but we expect them to be convergent so that they give us a
finite constant for each correlation. Notice that the bulk piece, 〈O1(x1, θ1−, θ̄1−) · · ·O1(x1, θ1−, θ̄1−)〉
could have an intricate x dependence. However, after we dress with the zero energy propagators
and integrate, we simply get a constant.

Note that the correlator (145) is cyclically invariant but not fully permutation invariant.
We could also imagine integrating the propagators and the factor in parentheses in (145) over

the variables ρi,χi, ai. This gives a function of xi, θi−, θ̄i− with conformal dimensions such that we
can integrate it against 〈O1(x1, θ1−, θ̄1−) · · ·O1(x1, θ1−, θ̄1−)〉 in a conformal invariant fashion.

5 Applications of the propagator formalism

5.1 Supersymmetric wormholes

In holography, a wormhole is described by an entangled state in two copies of the boundary theory.
A simple wormhole state is the thermofield double with inverse temperature β, which corresponds
to the eternal black hole [32]. The β → ∞ limit of the wormhole is a finite length supersymmetric
wormhole. It is supersymmetric in the sense that it respects the boundary supercharges. Therefore,
these configurations are an example of ER=EPR for supersymmetric states.

We can generate other states by inserting operators during the long time of euclidean evolution.
These produce further wormholes that are filled with matter, which also have E = 0 and are
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Figure 13: Diagrams that represent the creation of a zero energy wormhole, a supersymmetric wormhole.
(a) A wormhole with one particle. (b) A wormhole with two particles. (c) An overlap between two
different ways to construct a wormhole with two particles.

therefore supersymmetric. So we have an interesting situation where supersymmetry seems to be
broken in the bulk by the bulk matter, but nevertheless, the quantum mechanics of the boundary
modes projects us again into a supersymmetric state. So this is a family of supersymmetric Einstein
Rosen wormholes.

If we insert a single operator of dimension ∆, then we get a single state whose properties will
depend on the dimension of the operator we inserted, see figure 13a. One particular question we
are interested in is the length of the wormhole in the presence of this additional matter.

We will explain how to compute this length in a saddle-point approximation when ∆ is large.
We consider the OTOC involving a pair of operators of dimension ∆ and another pair of dimension
∆′, see figure 14. If ∆ is the dimension of the particle we insert, then we can think of ∆′ as a small
dimension which is a probe that will tell us how long is the wormhole. In particular, we could take
the ∆′ → 0 limit to extract the length. More precisely, the length is given by taking the derivative
with respect to ∆′ of the OTOC and then setting ∆′ = 0. This is the four point function in figure
14 for very small ∆′.

Imagine first taking the limit ∆′ = 0. In this case, the OTOC reduces simply to two pairs of
propagators. Each pair involves an integral of the form (140), which of course can be used to recover
the two point function of the inserted operator. Let us now assume that the dimension ∆ of this
inserted operator is large. We can then estimate the distance in the bulk by looking at the integral
for the two point function which, for j = 0 has the form

〈e−∆ℓ〉j=0 ∝
#

dℓe−∆ℓe−ℓe−4e−ℓ/2
(146)

Using a saddle point approximation for large ∆ we find that the saddle value is

ℓ∗ ∼ −2 log(∆+ 1) (147)

This is the distance ℓ13 in figure 14 when ∆′ = 0. The +1 is not to be trusted, but we left it
because it gives the right order of magnitude when ∆ = 0 for the peak of the wavefunction of the
empty wormhole. We see that the length becomes shorter when ∆ is large. This is to be expected,
the bulk geodesic pulls in the boundary particle. Of course, inserting this saddle point value in the
integral (146) we get the large ∆ approximation to the zero energy contribution to the two point
function11 (59). This gives:

〈e−∆ℓ〉 ∝ exp [2∆(log∆− log 2− 1)] . (148)
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Figure 14: We imagine a 4pt function involving a pair of heavy operator of dimension ∆ ≫ 1 and
another operator of dimension ∆′ between points 2 and 4. If we do not insert any operator at 2 and
4, we have a wormhole that contains matter in the representation with weight ∆. The typical distance
between 2 and 4 gives us an estimate for the size of the wormhole.

Now let us consider the expression for the OTOC using the results of the propagator formalism.
It is convenient to make a gauge choice of the form

x1 = 0, x3,−ρ3 → ∞ with x23e
ρ3 = 1 , a3 = 0 , θ1− = θ̄1− = θ3− = θ̄3− = 0 (149)

With this gauge choice, the distance ℓ13 is12

eℓ13 ∼ 1/z1, with zi = e−ρi (150)

Then, in this limit the exponential piece of the propagators involving particle 3 goes as

P (2, 3)P (3, 4) ∝ exp (−x2 + x4 − 2
√
z2 − 2

√
z4) (151)

where we imagine that x2 > 0 and x4 < 0. Adding then the exponential pieces of the other two
propagators we get

P (1, 2)P (2, 3)P (3, 4)P (4, 1) ∼ exp

*
−
(
√
z1 +

√
z4)

2

(−x4)
−

(
√
z1 +

√
z2)

2

x2
− x2 + x4 − 2

√
z2 − 2

√
z4

+

(152)
we focus on the exponential pieces because we will see that there are large values in the exponents
that we want to minimize, so that we expect that possible prefactors of the exponentials are not as
important as the exponent.

We assume that ∆ is large, so that ℓ13 is approximated by (147). Then z1 is large, z1 ∝ ∆2.
We now want to find the typical values of x2 and x4 that contribute when z1 is large. As a first
approximation we find that we minimize the exponent at z2 = z4 = 0. Then the problem for x2 and
x4 factorizes and we find that the action is maximal at

x2 ∼ −x4 ∼
√
z1 (153)

11Up to powers of ∆ in the prefactor.
12The zi coordinates can be viewed as a rescaled version of the usual Poincare z coordinate, see (94).

37



We now set these values in (152). Then we expand the resulting exponent in z2 and z4 to find that
only values of order one in z2 and z4 contribute. Finally, we notice that the distance is of the form
(see (183))

eℓ24 ∼ (x2 − x4)
4

z2z4
−→ ℓ24 ∝ 2 log z1 ∼ 2 log∆ (154)

For large ∆ we see that the distance between the two sides is growing when we add matter. Inserting
the heavy particle has disrupted the simple correlations between the two sides.

5.1.1 The OTOC for large ∆

We now consider the OTOC correlator in the large ∆ = ∆′ ≫ 1 limit. We perform a saddle point
approximation to the integral. We have a symmetric configuration and therefore we expect a saddle
point that is symmetric, as in figure 15. We see that there are two distinct distances in the problem,
one is the distance between consecutive points, called ℓ′ in figure (15) and the other the distance
between opposite points. These two distances can be computed by thinking about the expression
for the distance in the radial coordinates ds2 = dρ̃2 + sinh2 ρ̃ dθ2

e−ℓ =
1

/2
e−ρ̃1−ρ̃2

(sin θ1−θ2
2 )2

=
e−ρ̂1−ρ̂2

(sin θ1−θ2
2 )2

, with eρ̂ = /eρ̃ (155)

with / → 0 and ρ̂ kept finite. We now write the two distances in question

e−ℓ = e−ℓ13 = e−2ρ̂ , e−ℓ′ = e−ℓ12 = 2e−2ρ̂ (156)

where the two comes from (sin π
4 )

−2. The correlator involves the factors

e−2∆ℓ exp
:
−4× 2e−ℓ′/2 − 4e−ℓ′+ℓ/2

;
= e−4∆ρ̂ exp

:
−8

√
2e−ρ̂ − 8e−ρ̂

;
(157)

where the first factor comes from the two bulk propagators, the first term in the exponential from
the Bessel function part of the propagator and the last term from the“phase” factors, which we
simplified using (279) . Here we have ignored all Grassmann coordinates since they involve factors
of the coordinates multiplying (157) and could contribute only powers of ∆ but not exponentials in
∆, which is what we will get from (157).

Extremizing (157) we get 2(
√
2 + 1)e−ρ̂ = ∆ and substituting in (157) we get

exp

B
4∆ log∆+ 4∆

)
−1 + log

7
(
√
2− 1)

2

8,C
(158)

We when we compute the ratio of (158) to the square of the two point function (148) we get

OTOC

TOC
∼ exp

:
4∆ log

:√
2− 1

;;
∼ exp(−(3.52...)∆) (159)

which is saying that the OTOC is suppressed relative to the TOC.

5.2 States with two particles

We can also create a wormhole state that contains two particles, such as the one displayed in figure
13b. These states arise by inserting two operators, each of which is separated by an infinite amount
of Euclidean boundary time. It is interesting to ask how this wormhole looks from the inside. We
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Figure 15: Computing the OTOC for large ∆ = ∆′ ≫ 1. We expect the saddle point to be a symmetric
configuration.

expect that the state for given matter primaries is unique, once we attach the boundary particles in
the zero energy state. However, the state constructed as in figure 13b will contain a superposition
of primaries with dimensions

∆ = ∆1 +∆2 + n (160)

It is an interesting problem to figure out which linear combination of primary states this produces.
One way to understand that is to first construct the two particle primary operator in the bulk and
then dress that with the boundary particles, as in the top part of figure 13c. As in that figure,
we can consider then the overlap between that state and the one we constructed in figure 13b. By
taking the overlap with the various states we can figure out what state we get. This amounts to
evaluating various 3-pt functions.

There are some special cases where the problem is easy to analyze. For example, we could
consider the two operators to be BPS operators like the elementary fermions of a supersymmetric
N = 2 SYK model. In that case, we find that the action of such operators is independent on the
distance between them, as discussed after eqn (86). This means that the two particles that are
created are on top of each other in this case. This is closely related to the following identity that
holds for the zero energy correlators:

〈Zj−2∆1−2∆2 |e−∆1(ℓ+2ia)|Zj−2∆2〉〈Zj−2∆2 |e−∆2(ℓ+2ia)|Zj〉
〈Zj−2∆2 |Zj−2∆2〉

= 〈Zj−2∆1−2∆2 |e−(∆1+∆2)(ℓ+2ia)|Zj〉

(161)
which can be easily checked from (36). The left hand side is the expression we would obtain if two
two operators are separated by a long time; the last expression is if they were on top of each other.
Here we used the special properties of BPS boundary operators. So we expect that the insertion
of two BPS particles as in figure (13)b produces two particles on top of each other, or equivalently
that only the n = 0 primary in (160) is produced.

5.3 Entropy of a wormhole with particles

Here we consider the 2-sided state produced by the insertion of an operator O and evolved by long
Euclidean times so that we get POP = Ô which is the projection of O to the low energy BPS
sector. This produces an unnormalized density matrix ρ̃ = POPO†P . For simplicity we will take a
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neutral operator O = O† and we will also specialize to the case where P projects onto states with
0 charge. The unnormalized Renyi entropies

Zn = Tr[ρ̃n] (162)

are given by an 2n point function of the operator. We will consider the limit where ∆ is very large
and all crossed diagrams are suppressed, which follows from section 5.1.1. With this assumption,
the computation of Zn involves planar contractions. This implies that O has an eigenvalue spectrum
of a Gaussian L × L Hermitian matrix, e.g., a semi-circle distribution µ(λ) = 2L

√
a2 − λ2/(πa2).

Here a is determined by the 2-pt function and L = eS0 . To compute the entanglement spectrum of
ρ, we need to consider the normalized eigenvalue distribution of p = λ2/Z. So we obtain

µ(p) = µ(λ)dλ/dp =
2LZ

πa2

F
a2

pZ
− 1 (163)

Enforcing the normalization condition
9
µ(p)dp p = 1 sets Z = La2/4, giving an entanglement

spectrum that is independent of a:

µ(p) =
L

2π

G
4

Lp
− 1 (164)

This is independent of the operator and its dimension, as long as∆ ≫ 1. We can use this distribution
to calculate the von Neumann entropy:

S = −Tr[ρ log ρ] =

#
dp µ(p)(−p log p) = logL− 1

2
. (165)

So we see that the entropy is smaller than maximal, but only by an order one quantity. Curiously, the
answer is independent of the conformal dimension of the operator (in this large ∆ approximation).

Notice that in the large L limit we have the structure of a type II1 algebra, with an entropy
that can only become smaller than maximal, when we add extra bulk particles.

In the classical approximation, one can computes the entropy using the RT formula, which
instructs us to minimize the value of the dilaton. The minimum value is simply S0 = logL,
independent of ∆. When we include the quantum corrections, we get a shift by −1/2, (165).

As a side comment, we can also compute the Renyi entropies of ρ, either by using the distribution
µ(p) or by simply counting planar Wick contractions [33]. We obtain

Zn/(Z1)
n = L1−nCn, Cn =

(2n)!

(n+ 1)!n!
(166)

where Cn are known as the Catalan numbers. Then by replacing the factorials in the formula with
Gamma functions, we can use the replica trick to compute the entropy:

S = − ∂n

*
logZn

n

+&&&&
n=1

= logL− 1

2
(167)

We can also consider a setup where we insert q particles of the same species, all separated by
long Euclidean times. Then we simply shift Cn → Cqn. This gives

S − S0 = log (Cq)− q
:
−Hq+1 +Hq− 1

2
+ log(4)

;
, (168)
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Figure 16: Entanglement entropy of a BPS wormhole with q particles inserted (all particles are separated
by infinite imaginary time). The entropy decreases as a function of q away from its classical value S0.

where in Mathematica, Hq = HarmonicNumber[q]. We plot S in Figure (16) below.
Notice that in (168) the entropy decreases monotonically without bound, with S − S0 ∼ −3

2 log q
for large q. Presumably higher topologies are relevant in the regime where S is negative.

We could also imagine that there are multiple non-interacting very heavy free fields in the bulk.
Then we could imagine a wormhole with particles of different species. Then to compute the Renyi
entropies, we would need to compute traces like tr(M1M2M3 · · ·)(M1M2M3 · · · )†. Each of these Mi

is an independently drawn Gaussian matrix; since the matrices do not commute, a more general
state would involve “words” of matrices in various different orders. Computing such correlators is
an exercise in “free probability.” We will leave a general discussion for the future. Similar issues
have been discussed in [29].

We can also consider a very light operator ∆ = 0. For a light operator, the Witten diagram
part of the computation becomes independent of the positions, since e−∆ℓij → 1 as ∆ → 0. We just
get a combinatoric factor due to the different possible Wick contractions13. Then

Zn/(Z1)
n = L1−n(2n− 1)!! = L1−n2n

Γ(n+ 1
2)√

π

S = logL− 2 + γE + log(2)

(169)

Curiously, the entropy deficit S − S0 = −0.7296... is actually larger for a light dimension operator
than it is for a heavy operator S − S0 = −1/2. Similarly, we can generalize this computation to
inserting q particles of the same species, all separated by long Euclidean evolution. We get

S − S0 = log((2q − 1)!!)− q

*
ψ(0)

*
q +

1

2

+
+ log(2)

+
(170)

Notice that at large q, we get approximately S−S0 ∼ −q. Hence there is a unitarity problem when
q ∼ S0.

In Appendix K we study the relative entropy using similar techniques. This quantity is relevant
for bulk reconstruction.

13This might be modified at large n but we are interested in the small n behavior. We expect that the Gaussian
spectrum is valid to linear order in ∆, since e−∆ℓ = 1 − ∆ 〈ℓij〉 = 1 − ∆ 〈ℓ〉, where 〈ℓ〉 is the length of the empty
wormhole. This linear piece in ∆ leads to a linear in n contribution to Zn so that it does not contribute to the entropy.
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5.4 Eigenvalue repulsion in the projected operators

As discussed above, the projected operator Ô∆ for ∆ ≫ 1 has a semi-circle spectrum which suggests
that the projected operator possesses random matrix behavior. Although we did not compute the
spectrum for general ∆, we believe that for ∆ > 0 the spectrum will have a square root edge. This
motivates us to ask whether there is eigenvalue repulsion in the spectrum of Ô14. To do so, we can
compute the spectral form factor of Ô, e.g.,

|Z(x+ iy)|2 = tr
!
exp

:
(x+ iy)Ô

;"
tr
!
exp

:
(x− iy)Ô

;"
(171)

Note that we have used x, y to emphasize that the “times” and “temperatures” in this spectral
form factor have nothing to do with the boundary times, which are infinite. We can expand the
connected part of the form factor

H
|Z(x+ iy)|2

(
c
=

.

j,k

(x+ iy)j(x− iy)k

j!k!

I
tr Ôj tr Ôk

J

c
(172)

The leading contribution to
I
tr Ôj tr Ôk

J

c
is given by cylinder diagrams with propagators (including

propagators which go between the same and different boundaries), see Figure 17 for an example
with j = k = 5. In the ∆ ≫ 1 limit, only the uncrossed diagrams contribute. Furthermore, each
possible uncrossed Wick contraction gives simply a constant aj+k in the infinite Euclidean time
limit, where a is the 2-pt function. We see that the gravity answer has the same form as that of a
Gaussian random matrix. This implies that the spectral form factor has a linear ramp

H
|Z|2

(
c
∝ y,

see e.g. [34].
Although our derivation of the ramp is only valid for large ∆, we expect a ramp-like behavior

for ∆ > 0 due to random matrix universality. It would be interesting to understand what happens
to the divergences that come from particles wrapping the cylinder.

Figure 17: A sample contribution to the “matter” spectral form factor |Z(x + iy)|2. All the Euclidean
times between the matter insertions (red points) are infinite.

5.5 The matter Casimir

As we have already emphasized, the boundary theory has zero Hamiltonian in the extremal limit.
One might wonder therefore whether the conformal dimension of an operator can even be defined

14Note that the operator O∆ might be simple, but projecting O∆ → Ô∆ to this 0 energy subspace might make it
very complicated. For example, if we start with the SYK fermions, there is obviously no eigenvalue repulsion in the
UV, but there can be once we project the fermions into the zero energy sector.
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without referencing a higher dimensional theory. In this subsection we point out the existence of
an interesting operator that lets us classify the matter inside the wormhole, which allows us to read
off ∆ purely within the topological theory.

In the disk approximation, the gravity theory Hilbert space for the two sided wormholes can
be viewed as H = (HL × HR × Hm)/OSp(2|2), where HL is the Hilbert space of the left side
boundary gravity mode, HR the right one and Hm the Hilbert space of (supersymmetric) matter
in AdS2. The quotient means that we keep just the states that are invariant under the overall
group, which we are viewing as a gauge constraint. The matter Casimir commutes with the gauge
constraints and is a physical operator of this theory. Using the constraints we can also express it
as the Casimir for the sum of the generators acting on the left plus the right boundary graviton
modes (e.g. −Lm = L1 + L2). Of course, this gives an explicit expression in terms of the sum of
generators given in (104) acting on the left plus the right particles. (Both are left generators in the
sense of (104)). See [35, 36] for a discussion in the N = 0 case.

It would be nice to identify the matter Casimir in the boundary theory (or its S0 → ∞ limit)
since it is directly related to the bulk time generator. Such an operator would necessarily involve
two-sided operators. One expects that it can be written in terms of the length mode and its
superpartners, and their conjugate variables. So a priori, it seems that finding such an operator
would be closely related to finding a boundary expression for the length of the wormhole. Notice
that the spectrum of this generator is telling us about the spectrum of the quantum field theory in
AdS2. Said slightly differently, the fact that the matter casimir can be non-zero while the boundary
energies are zero seems to be related to the emergence of a bulk time.

6 The low energy limit in ordinary, non-supersymmetric JT grav-
ity

(a) (b)
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Figure 18: (a) A connected diagram. (b) A disconnected diagram. The former is suppressed relative to
the latter.

As we remarked the correlation functions for ordinary JT gravity have the structure of some
propagators dressing a correlator in rigid AdS2. Here we point out that at long euclidean times
these correlators have a simple and universal time dependence

〈O1(u1) · · ·On(un)〉con =

$
1En

i=1(ui+1 − ui)3/2

%
C̃ (173)
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where C̃ is independent of time. Here ui+1 − ui is the euclidean time distance between the various
correlators. Notice that we have 0 < ui < ui+1 < β and un+1 − un = β − (un − u1). This formula
generalizes similar results for two and four point functions in [8].

This formula is true for a connected correlator, where the bulk diagram cannot be cut into
two separate diagrams. See figure 18 for examples of connected and disconnected correlators. The
reason for this simple time dependence is the following. The propagator involves a term of the form
[11]

P (1, 2) ∝ e−ϕ12

#
ds s sinh(2πs)e−s2u12 vK2is(v) , v = 2e−

ℓ12
2 (174)

When u ≫ 1 we can restrict to s ∼ 0. If we set s = 0 in the Bessel function term, and approximate
the other two terms as

#
dss2e−s2u ∝ 1

u3/2
⇒ P ∝ 1

u
3/2
12

P0 , P0 = e−ϕ12vK0(v) (175)

We then obtain (173) by making this approximation for each correlator. In this approximation,
then the constant C̃ involves a u independent equation where the propagator replaced by P0 in
(175). Therefore the constant C̃ is computed using these “zero energy” propagators, and it depends
on bulk couplings, the masses of the fields, etc.

This procedure fails when we have a disconnected diagram as we see in figure 18b. In this case
the propagators going between 12 and 45 will be unsuppressed at long distances. In other words,
K0 is not normalizable at long distances. In writing (175), we assumed that there is some matter
propagating from 1 to 2, which would exponentially suppress the integrand at large distances, giving
a finite answer. But for a disconnected diagram, there is no suppression factor, we cannot justify
the approximation leading to (175) for the two propagators connecting the two disconnected (in
the bulk) blobs. However, we can still approximate the long distance form of the propagators in
terms of the small argument behavior of the Bessel function and the spacetime integrals lead to
a delta function relating the s parameters of both propagators. After this, we can then use the
approximation similar to (174) but we now get a factor of

1

(u12 + u45)3/2
(176)

which is larger than the naive factor of 1/(u12u45)
3/2 we would have naively obtained from two

separate propagators. So, in the end for disconnected diagrams we still get a simple time dependence,
but with this new rule (176)15.

The final conclusion of this discussion is that the low energy limit of the pure gravity case is
conceptually similar to the low energy limit in the N = 2 case. Namely, in both cases the boundary
time dependence simplifies, and the constant factor encodes an AdS2 Witten diagram dressed with
a particular u independent “zero energy” propagator. A very minor complication is that we have
a slightly different formula for the disconnected diagrams16. This residual u dependence in the
non-supersymmetric case is also related to the fact that the entropy is decreasing. In both cases
the structure of the AdS2 theory seems to be related to the projection from the UV Hilbert space
to the IR Hilbert space.

In this case, we can also make the discussion about the random matrices, and we also get
a gaussian random matrix for a scalar operator. In this case, the non-planar contractions are
suppressed because of the disconnected vs connected time dependence we discussed above so that

15For the particular example of figure 18b, we get a time dependence [(u12 + u45)u23u34u56u67u71]
−3/2.

16This difference implies that the OTOC is smaller than the TOC by a factor of 1/u3/2 (in Euclidean time)[8].
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this is valid for any conformal dimension. This a special case of the general connection between JT
gravity plus bulk fields and random matrices originally proposed in [29].

7 Discussion

In this paper, we explored aspects of the very low energy behavior of black holes. This regime is
interesting because the quantum gravity corrections are very large but calculable.

We focused on supersymmetric black holes because they are conceptually simpler, since there is a
clean low energy limit when there is a gap between the zero energy states and the continuum17. The
problem is technically harder, because one needs to keep track of the fermionic variables. However,
the final formulas, specially for the zero energy propagator, are relatively simple and hopefully could
be used for further analysis.

We have computed the two point function as a function of Euclidean or Lorentzian time. This
two point function has a constant limit as the time between the two operators goes to infinity
u, u′ → ∞. This constant value reflects the two point function of the operator after it has been
projected on to the zero energy subspace. This is giving us information about the microstates and
how well they can be distinguished by the operators, as we discussed in more detail in [1].

In addition, we have argued that all n point functions go to constants at long times, and we
have given an integral formula (145) to compute it. These correlators are sensitive to interactions
among the bulk fields. It would be interesting to know whether we can reconstruct the bulk theory
from such correlators. This expression involves the zero energy propagator of the boundary (super)
gravity mode. It would be nice to find the propagator for arbitrary boundary energies (or boundary
times). For the N = 1 case we have given such a propagator in appendix C.

We have compared some of these results to numerical simulations in N = 2 SYK for N = 16
(sixteen complex fermions). We have found close agreement for the energy gap and the two point
functions. We have also found that the ratios of OTOC to TOC are also of order one, as indicated
by the general expressions of n point functions. We have also plotted the eigenvalues of the IR
operators, after the projection to the ground state.

The bulk theory, at the disk level, contains an interesting operator which is is the matter Casimir
operator, see section 5.5. This commutes with the boundary Hamiltonian and seems related to the
bulk time direction, since its spectrum contains the spectrum of bulk matter particles. We have not
given an expression for this interesting operator from the point of view of the boundary quantum
mechanical theory. Of course, the even simpler distance operator does not have a clear interpretation
in the boundary theory [37, 38].

The entropies of certain extremal black holes can be computed using certain supersymmetric
indices. Here we have discussed a new class of extremal black holes with matter inside the wormhole.
In certain cases we were able to compute the entropy using the bulk picture. It would be interesting
if supersymmetric techniques could be employed to compute (or at least bound) such entropies from
the boundary point of view.

We have remarked that many of the conceptual issues are similar in the non-supersymmetric
case. In that case, the boundary correlators of elementary fields develop a universal boundary time
dependence. They are multiplied by constants that depend on the masses and couplings of the bulk
theory. Here the derivation of the propagator is simpler [11, 10] but we have to be more careful in
keeping track of some of this time dependence, as discussed in section 6. We also have to distinguish
between connected and disconnected bulk diagrams.

17Even with N = 2 supersymmetry, whether this gap is present or not depends in detail on the precise spectrum of
charges and the possible presence of a certain θ-like term, see [9]. We have focused on cases where the gap is present.
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The authors of [24] developed a technique to perform computations in a double scaled N = 2
SYK limit. It would be interesting to understand the properties of zero energy correlators for any
value of the non-trivial q̂2/N parameter of that limit.
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A From the Schwarzian action to the Liouville action

The JT gravity action can be written as [4, 3, 5]

I = − 1

4π

$#
φ(R+ 2) + 2φb

#
K

%
−→ −φb

2π

#
dτ{f, τ} (177)

where φ is normalized so that the entropy is given just by S = φh where φh is the value at the
horizon. The arrow in the right hand side means that if we take φb large and we go near the
boundary, then the action reduces to the Schwarzian expression where τ is the proper time near
the boundary. It is sometimes customary to defined a rescaled version of these φb =

φr

/ , t = /τ that
remains constant as we take the boundary limit with / → 0. We could also do the further rescaling
u = π

φr
t which sets the coefficient of the Schwarzian to a half

I = −1

2

#
du{f, u} =

#
1

4
ℓ̇2 + πf (e

−ℓ − f ′) (178)

A simple way to connect the parameter φr to the parameters of black holes is to compute their
near extremal entropy as a function of the inverse temperature and compare with

S − S0 =
2πφr

β
(179)

For example, for the four dimensional Reissner Nordstrom black hole we have

S − Se =
4π

4GN
(r2+ − r+r−) = Se

4πre
β

, β = 4π
r2+

(r+ − r−)
, r+ − r− ≪ r+ (180)

so that φr = 2Sere, where re is the extremal radius, r2e = r+r−.
In these variables, we can think of the three SL(2) generators as

L− = −∂f , L0 = −f∂f + ∂ℓ , L+ = −f2∂f + 2f∂ℓ − e−ℓ (181)

where πf is the momentum conjugate to f and πℓ the momentum conjugate to ℓ.
When we consider the TFD, it is convenient to choose a new variable f̃ = 1/f , ℓ̃ = ℓ + 2 log x

related via an SL(2) transformation. This can be used to describe the left particle, we also used that
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γ̃ = γ− e−ℓ/f and implicitly assumed that the last term in (181) has a ∂γ acting on a wavefunction
with an eγ dependence, e−ℓ → e−ℓ∂γ . We can then express La in terms of f̃ .

Ll
− = f̃2∂f̃ − 2f̃∂ℓ̃ − e−ℓ̃ , Ll

0 = f̃∂f̃ − ∂ℓ̃ , Ll
+ = ∂f̃ (182)

We then make a gauge choice where we set f̃l = 0 and f̃ ′
l = 1. In addition, we make the choice

fr = 0, but no condition on f ′
r. The renormalized distance is then18

ed ∼ (t1 − t2)
2

z1z2
−→ e−ℓ =

f ′
lf

′
r

(fl − fr)2
=

f̃ ′
lf

′
r

(1− f̃lfr)2
→ f ′

r (183)

where d = ℓ− 2 log /, with / as discussed after (177).
In addition, we have that the Ll

− expression becomes

Ll
− = −1 (184)

and the gauge constraint Ll
− + Lr

− = 0 implies that π = 1. Then the Lagrangian then becomes (in
Euclidean time)

I =

#
1

4
ℓ̇2 + e−ℓ (185)

which is what we used in (2). We can view the other constraints as determining the ℓ̃ and f̃
dependence away from the point ℓ̃ = f̃ = 0.

B Away from the Schwarzian limit for the bosonic case

The description of the boundary gravitational mode in terms of an SL(2)/U(1) quotient was dis-
cussed in [10, 11, 39]. Here we just mention a few points about the form of the problem away from
the Schwarzian limit.

Let us first review the case of H2 space. Then we can write g ∈SL(2) as

g = eiφσ2/2eσ3ρ/2eiχσ2/2 (186)

Then the left invariant forms can be defined as

g−1 dg =
1

2
waσ

a =
1

2

!
e−iχσ2/2e−σ3ρ/2iσ2e

σ3ρ/2eiχσ2/2 dφ+ e−iχσ2/2σ3e
iχσ2/2 dρ+ iσ2 dχ

"

=
1

2

!
iσ2(dχ+ cosh ρ dφ) + e−iχσ2/2(dρ σ3 − sinh ρ σ1dφ)e

iχσ2/2
"

(187)

We quotient under the action g → geiασ2 . This breaks the right SL(2) symmetry to U(1). This shifts
the χ coordinate, χ → χ+constant. The left SL(2) symmetry remains and will be the isometries of
H2. This gives the usual left invariant forms

w2 = i(dχ+cosh ρ dφ) , w1 = dρ sinχ− sinh ρ dφ cosχ , w3 = dρ cosχ+sinh ρ dφ sinχ (188)

The metric in hyperbolic space is simply

w2
1 + w2

3 ∝ dρ2 + sinh2 ρ dφ2 (189)

18This comes from the formula cosh d = −Y1.Y2 =
(t1−t2)

2+z21+z22
2z1z2

and we have rescaled z → #z .
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which is invariant under the qoutient group, as expected. Because of this reason we do not need to
calculate the full χ dependence of the wi to get the metric (189). We can then write an invariant
action of the form

S =

#
dt

1

2
(w2

1 + w2
3) +

#
dtqi(w2 − iA) =

#
dt

1

2
(ρ̇2 + sinh2 ρφ̇2)− q

#
cosh ρφ̇ (190)

where we have added a term involving w2 − A where A is the gauge field. We choose the gauge
χ = 0 and integrate out A. In the end, a term like iq(w2 − A) give us the magnetic-like coupling
for the particle moving on H2.

This action, (190), is also equivalent to starting with the full naive G×G invariant action and
gauging the quotient group. The charge of the magnetic field coupling is imaginary. The reasonable
coupling to the magnetic field would be one where q is imaginary. However in our problem q is real
[10, 11]. We can take the large q limit, rescaling also ρ as eρ = qeρ̃. Then the first term combines
with the magnetic field coupling to get

1

2
q2(

1

2
eρ̃φ̇− 1)2 − 1

2
q2 (191)

The last term is a constant that we can neglect. The first term imposes that e−ρ̃ = φ̇/2. We can
then now substitute this back into the remaining terms of (190) to obtain

#
dt

1

2

!
˙̃ρ2 − φ̇2

"
=

#
dt

1

2

/

1
7
φ̈

φ̇

82

− φ̇2

2

4 = −
#

dt{tan φ

2
, t} (192)

where we have neglected some total derivatives. So we see that we get the usual Schwarzian action.
The wavefunctions can be viewed as representations where we diagonalize the right factor. In

other words, we can consider
Ψj,m,q(ρ,φ) = 〈jm|g(ρ,φ)|j, q〉 (193)

where we have removed the right most factor in g (186). For more details see [10, 11].

B.1 Generators

It is useful to write the generators of SL(2). These are obtained by acting with an SL(2) generator
on g and then writing the answer as g(x+ δx) where x = (φ, ρ,χ). In this way we get

iσ2/2 → ∂φ

σ3/2 → − sinφ

tanh ρ
∂φ +

sinφ

sinh ρ
∂χ + cosφ∂ρ

σ1/2 → − cosφ

tanh ρ
∂φ +

cosφ

sinh ρ
∂χ − sinφ∂ρ (194)

The quotient is obtained by setting ∂χ = q. But now we could construct the Casimir which gives

C2 ∼ ∂2
ρ +

1

tanh ρ
∂ρ +

1

sinh2 ρ
(∂φ − cosh ρ∂χ)

2 − ∂2
χ (195)

We can then identify this with the energy. This is the problem away from the Schwarzian limit
[10, 11], we can then further take the large q limit to obtain the Schwarzian limit.
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C N = 1 correlators

In this section we discuss some aspects about the N = 1 super-Schwarzian theory. This case was
analyzed in depth in [13] to whom we refer for further details (our conventions are slightly different).
Here we will work out the boundary particle propagator.

We now have the supergroup OSp(1|2) whose algebra is

[Lm, Ln] = (m− n)Lm+n

{Gr, Gs} = 2Lr+s

[Lm, Gr] =
:m
2

− r
;
Gm+r

(196)

We can introduce coordinates x, ρ, γ, θ± associated to each of the five generators. Writing the group
element as

g = e−xL−eθ−G−eρL0eθ+G+eγL+ (197)

we get the following expressions for the left generators

L− = −∂x,

L0 = −x∂x + ∂ρ −
1

2
θ−∂θ−

L+ = e−ρ∂γ − x2∂x + x
5
2∂ρ − θ−∂θ−

6
− e−ρ/2θ−D+

G+ = e−ρ/2D+ + x(∂θ− − θ−∂x) + 2θ−∂ρ

G− = ∂θ− − θ−∂x

with D+ = ∂θ+ + θ+∂γ

(198)

We also have the right generators

LR
+ = ∂γ , GR

+ = ∂θ+ − θ+∂γ , {GR
+ ,GR

+} = −2LR
+ (199)

and the Casimir

C = L2
0 −

1

2
(L+L− + L−L+)−

1

4
[G−, G+]

C = ∂2
ρ +

1

2
∂ρ + e−ρ∂x∂γ −

1

2
e−ρ/2D−D+ , D− = ∂θ− + θ−∂x (200)

The spacetime supercharge is

Q = (∂ρ +
1

4
)D+ − e−ρ/2∂γD− (201)

which obeys Q2 = ∂γ(C + 1
16) . We can define the Hamiltonian to be H = −(C + 1

16).
An interesting fact about the OSp(1|2) algebra is that there is a superCasimir or sCasimir

element Q = G−G+ − G+G− + 1/8 which is Grassmann-even, commutes with all the bosonic
generators, but anti-commutes with all the fermionic elements. There is a simple relation between
the right sCasimir and the supercharge:

Q = 4QRGR
+ (202)

Note that this definition of Q is manifestly left-invariant. In addition this notation makes it clear
that Q anti-commutes with GR

+ .
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C.1 Invariants

Here we record the form of invariants of two coordinates

w = eρ1/2+ρ2/2(x1 − x2 − θ1−θ2−) (203)

η1 = θ1+ − eρ2/2(θ1− − θ2−)

w
(204)

η2 = θ2+ − eρ1/2(θ1− − θ2−)

w
(205)

Φ = γ1 − γ2 +
e(ρ1−ρ2)/2 + e−(ρ1−ρ2)/2

w
+

(θ1− − θ2−)(−eρ2/2θ1+ + eρ1/2θ2+)

w
(206)

We can write the supercharge in terms of invariants

Q1 =
1

2
(w∂w +

1

2
)(∂η1 + η1∂Φ) +

1

w
∂Φ(∂η2 − η2∂Φ) (207)

We can also write the right supersymmetries in terms of invariants

GR
+1 = ∂η1 − η1∂Φ , GR

+2 = ∂η2 + η2∂Φ (208)

which anticommute with the supercharge. Note that we can interpret these as extra fermions which
do not appear in the Liouville description, which can be interpreted as the terms in parenthesis in
(207). We could remove this extra degree of freedom by imposing a condition of the form

(GR
1 + GR

2 )P = 0 (209)

This condition removes the extra unwanted fermionic degrees of freedom19. Note that the operator
in the left hand side squares to zero when acting on the propagator that is annihilated by LR

1++LR
2+,

due to
LR
1 P = −LR

2 P = −qP (210)

Note that we can “improve” the invariants by defining

Φ̃ = Φ− η1η2, η̃ = η1 − η2 (211)

Together with w, we have three invariants are annihilated by GR
+1 + GR

+2.

C.2 Propagator

Here we will compute the propagator for arbitrary times. In writing the propagator, it is convenient
to think in terms of a worldline superspace propagator

P = 〈1|eκ1Qe−(u1−u2)He−κ2Q|2〉 = e−(u12−κ1κ2)He(κ1−κ2)Q , with Q2 = H (212)

where κi are the superspace coordinates of the worldline theory. We define the covariant derivatives
Dκ = ∂κ + κ∂u. Note that the propagator can depend only on the combinations κ1 − κ2 and
U = u1 − u2 − κ1κ2. We can view this as a consequence of worldline supersymmetry20. In addition

19Imposing GR
+1 + GR

+2 = 0 is equivalent to imposing that GR commutes with the propagator e−uH . We could also
consider GR

+1 − GR
+2 = 0, which would impose that GR anti-commutes with the propagator. This would be incorrect

since the propagator is bosonic.
20These combinations are annihilated by Q̃1 + Q̃2 with Q̃ = ∂κ − κ∂u being the combination that anticommutes

with Dκ.
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we see that we have that Q1P = Dκ1P . When we compose the propagator as in P (1, 2)P (2, 3)
we do not integrate over κ2 (as we do not integrate over u2), we expect that the result should be
independent of it.

We now make an ansatz for the propagator which is a parity even function of the invariants of
the form

P̂ = e−qΦ̃ [A+ (κ1 − κ2)η̃C] = e−qΦ [(1 + qη1η2)A+ (κ1 − κ2)(η1 − η2)C] (213)

This ansatz is manifestly invariant under GR
+1 + GR

+2 as well as all the left generators.
We now impose the equation

Q1P̂ =
√
qDκ1P̂ (214)

where the factor of
√
q arises due to the normalization of Q1 in (207)21. This results in the conditions

Q1(1+qη1η2)A =
√
q(η1−η2)C , Q1(η1−η2)C = −

√
q∂U (1+qη1η2)A =

√
qE(1+qη1η2)A (215)

where we assumed that we are in the subsector of energy E. Using the form of the supercharge
(207), we find that (215) implies

C =

√
q

2

$
yA′(y) + (y − 1

2
)A(y)

%
, y =

2q

w
(216)

and an equation for A which is solved by

A(y) = y
!
K 1

2
+i2s(y) +K 1

2
−i2s(y)

"
=

√
yΨ+(y) , y =

2q

w
, E = s2 (217)

where we also defined the function Ψ+ which is related to a super-Liouville wavefunction as we will
review below. In summary, the final form of the propagator for fixed energy is (213) with A in (217)
and C1 in (216). In addition, we need to integrate over energy to find the fixed u propagator. In
principle, that measure factor is determined by demanding the composition law of the propagators.
In practice, we can determine it by comparing to the Liouville results in [17].

The integral over each point involves the measure

#
dµ =

#
dx dρ eρ/2 dθ− dθ+ (218)

where the factor of eρ/2 is fixed by scaling. Note that θ+ is neutral under scaling (198).
General correlators are given by

〈O1(u1,κ1) · · ·O(un,κn)〉 =

# E
i dµi

vol(OSp(1|2)) P̂ (1, 2)P̂ (2, 3) · · · P̂ (n, 1)×

×
D

i

e−∆iρi〈O(x1, θ1−) · · ·O(xn, θn−)〉 (219)

where the last factor include the expected form of the correlator of bulk fields when we take them
near the boundary.

21As discussed after (201) we get Q2 = qH.
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C.3 Recovering the Liouville two point functions

As a check of this result, we recover the two point functions that were computed in [17] using
the Liouville method. In the Liouville method one starts for a superliouville quantum mechanics
which is the dimensional reduction of a theory in 1+ 1 dimensions with (1, 1) supersymmetry. The
variables are the wormhole length, ℓ, and two fermionic partners arising from the action of the
supersymmetry acting on the left and the right sides. We will not give the explicit form of the
Lagrangian, which can be found in section 6 of [40]. We mention that we have two wavefunctions
whose bosonic components have the form

Ψs,±(ℓ) = e−ℓ/4
!
K 1

2
+2is(2e

−ℓ/2)±K 1
2
−2is(2e

−ℓ/2)
"

(220)

And the correlation functions have the form

〈E′|e−∆ℓ|E〉 ∝
#

dℓΨs′,+(ℓ)e
−∆ℓΨs,+(ℓ) , E = s2 (221)

Now we will recover this from our propagator and (219) for n = 2. First, we choose the gauge
conditions

x1 = 1 , x2 = 0, ρ2 = 0 , θ1− = θ2− = 0 , (222)

which implies that

w = e
ℓ
2 , ℓ = ρ1 , η1 = θ1+ , η2 = θ2+ (223)

whose Jacobian is trivial. We also set κ1 = κ2 = 0 for simplicity. Then the two point function
becomes #

dℓeℓ/2 dθ1+ dθ2+e
−ℓ∆P̂ (1, 2)P̂ (2, 1) (224)

The phase factor Φ cancels in this expression. We also set q = 1. After doing the θ+ integrals we
get something proportional to

#
dℓeℓ/2 dθ1+ dθ2+e

−ℓ∆As′(y)As(y) , y = 2e−ℓ/2 (225)

which agrees with (221) after we use (217). Notice that the extra factor of
√
y in (217) cancels

agains the extra measure factor in (225).
Of course, the full two point function in time also involves and integral over the energies with

the appropriate ρ(E)ρ(E′)e−u′E′−uE factors.

D Invariants in terms of the θ+, θ̄+ coordinates

In this appendix we discuss the expression of the invariants in terms of the superspace introduced
in (103) (104). We find

w = e(ρ1+ρ2)/2
<
x1 − x2 − θ1−θ̄2− − θ̄1−θ2−

=

Σ = ei(a1−a2)

*
1− (θ1− − θ2−)(θ̄1− − θ̄2−)

(x1 − x2)

+

Φ̂ = γ1 − γ2 +
e(ρ1−ρ2)/2 + e−(ρ1−ρ2)/2

w
+ (eρ2/2θ̄1+ − eρ1/2θ̄2+)

(θ1− − θ2−)

w
+

+(eρ2/2θ1+ − eρ1/2θ2+)
(θ̄1− − θ̄2−)

w
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f1 = eia1
*
θ1+ − eρ2/2

(θ1− − θ2−)

w

+

f̄1 = e−ia1

*
θ̄1+ − eρ2/2

(θ̄1− − θ̄2−)

w

+

f2 = eia2
*
θ2+ − eρ1/2

(θ1− − θ2−)

w

+

f̄2 = e−ia2

*
θ̄2+ − eρ1/2

(θ̄1− − θ̄2−)

w

+
(226)

The first two are identical to the ones in (123) (124). Note that now we have more fermionic
invariants because we have more fermionic variables. However, we also have additional constraints,
since we want to demand also invariance under the right generators as in (112). To do so, we again
introduce the Grassmann numbers χ1,χ2. These are two additional left-invariant quantities. So we
have in total 4 more invariants, but also 4 more constraints coming from (112), (GR

+ + ĜR
+)1,2 =

(ḠR
+ +

¯̂
GR

+)1,2 = 0.
The equation (117) now says that the two independent fermionic invariants are

η1 = χ1 + f̄1 , η2 = χ2 + f̄2 (227)

Similarly, (117) implies that we should define a new phase factor

Φ = Φ̂+ f1f̄1 + 2f1χ1 − f2f̄2 − 2f2χ2 (228)

where we use the dependence on θ+i to constrain it and we wrote it in terms of the invariants we
already had.

If we now use the gauge choice θ+i = θ̄+i = 0, then we see that the invariants (227) reduce to
(126) and Φ becomes the Φ in (125).

E Computing the matrix elements

In this appendix, we compute matrix elements of various operators in the super-Liouville quantum
mechanics.

E.1 BPS operators

First we consider a matrix element of the state |F+〉. The integral involved is the same as for the
case with no supersymmetry [17] and we get

〈F+
s′,j′ |e

−∆(ℓ+2ia)|F+
s,j〉 =

√
E′E

π

Γ(∆± is± is′)

Γ(2∆)
δj′,j−2∆ (229)

Now, in order to compute the other matrix elements we use that the other wavefunctions are given
by

|Hs,j〉 =
1√
E
Q̄l|F+

s,j〉 , |Ls,j〉 =
1√
E
iQ̄r|F+

s,j〉 (230)

In addition, we can use commutation relations

[Q̄r, e
−∆(ℓ+2ia)] = [Ql, e

−∆(ℓ+2ia)] = 0 (231)
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This then leads to a simple evaluation of the matrix elements among H or among L. In those cases
we commute either the Q̄r or the Ql. For example, for

〈Hs′,j′ |e−∆(ℓ+2ia)|Hs,j〉 =
1

π
√
EE′

〈F+
s′,j′ |Qle

−∆(ℓ+2ia)Q̄l|F+
s,j〉 =

1

π
√
EE′

〈F+
s′,j′ |e

−∆(ℓ+2ia)QlQ̄l|F+
s,j〉 =

=
1

π
√
EE′

E〈F+
s′,j′ |e

−∆(ℓ+2ia)|F+
s,j〉 =

E

π

Γ(∆± is± is′)

Γ(2∆)
δj′,j−1 (232)

We can do the same for the |L〉 states and we get a similar answer, except that now we move the
Q̄r to the left side so we get a factor of E′ rather than E. In this way we can also see that

〈Hs′,j′ |e−∆(ℓ+2ia)|Ls,j〉 = 0 (233)

by commuting the Ql from the left side to the right side For the case

〈Ls′,j′ |e−∆(ℓ+2ia)|Hs,j〉 = −i
1

π
√
EE′

〈F+
s′,j′ |Qre

−∆(ℓ+2ia)Q̄l|F+
s,j〉 =

= −i
1

π
√
EE′

〈F+
s′,j′ |{[Qr, e

−∆(ℓ+2ia)], Q̄l}|F+
s,j〉

= −i
1

π
√
EE′

〈F+
s′,j′ |(2i∆e−ℓ/2+ia + 4∆2ψrψ̄l)e

−∆(ℓ+2ia)|F+
s,j〉

=
2∆

π
√
EE′

〈F+
s′,j′ |e

−(∆+ 1
2
)ℓ−ia(2∆−1))|F+

s,j〉

=
2∆

π

Γ(∆+ 1
2 ± is± is′)

Γ(2(∆+ 1
2))

δj′,j−2∆+1 (234)

where we used that the operators annihilate the appropriate state to write it just as some commu-
tators and anticommutators of the operator in question.

When we want to consider the zero energy states Zj , then it is convenient to obtain these from
limits of |H〉 as s → i

2(j − 1/2). And it is convenient to start with the matrix elements in (234)

which do not involve explicit factors of E that are going to zero. So, starting for 〈L|e−∆(ℓ+2ia)|H〉
and taking the limit, we get the matrix element 〈L|e−∆(ℓ+2ia)|Z〉. Similarly, we could start with
〈H|e−∆(ℓ+2ia)|H〉 and take the limit on the H on the left, setting s′ = ± i

2(j −
1
2) to obtain the

〈Z|e−∆(ℓ+2ia)|H〉 matrix element. Further talking a limit of this one we get the 〈Z|e−∆(ℓ+2ia)|Z〉
matrix element.

E.2 Neutral operators

The process for the neutral operator works similarly. We use the fact that each time we use
commutator relations, we have two choices for which way to move an operator. We can do the
calculation by averaging over these two choices. The basic matrix element needed is

〈F+
s′,j′ |e

−∆ℓ|F+
s,j〉 =

√
E′E

π

Γ(∆± is± is′)

Γ(2∆)
δj,j′ (235)

It is useful to keep this property in mind:

{A,BC} = B{A,C}+ [A,B]C (236)

Using this relation, we can derive

{Ql, [e
−∆ℓ, Q̄l]}+ {[Ql, e

−∆ℓ], Q̄l} = i∆e−∆ℓ
5
−i∂a +∆[ψl, ψ̄l]

6
(237)

{Qr, [e
−∆ℓ, Q̄r]}+ {[Qr, e

−∆ℓ], Q̄r} = i∆e−∆ℓ
5
i∂a +∆[ψr, ψ̄r]

6
(238)

{Ql, [e
−∆ℓ, Q̄r]} = −i∆e−ℓ∆

:
e−

ℓ
2
−ia − i∆ψlψ̄r

;
(239)
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We first compute 〈Hs′,j′ |e−∆ℓ|Hs,j〉:

2〈Hs′,j′ |e−∆ℓ|Hs,j〉 =
2

π
√
EE′

〈F+
s′,j′ |Qle

−∆ℓQ̄l|F+
s,j〉 (240)

=
E + E′

π
√
EE′

〈F+
s′,j′ |e

−∆ℓ|F+
s,j〉+

1

π
√
EE′

〈F+
s′,j′ |{Ql, [e

−∆ℓ, Q̄l]}+ {[Ql, e
−∆ℓ], Q̄l}|F+

s,j〉

(241)

Finally, since ∂a|F+
s,j〉 = i(j − 1

2), we obtain:

〈Hs′,j′ |e−∆ℓ|Hs,j〉 =
1

2π
(E + E′ +∆(∆+ j − 1

2
)
Γ(∆± is± is′)

Γ(2∆)
δj,j′ (242)

The matrix elements 〈Hs′,j′ |e−∆ℓ|Zj〉, 〈Zj′ |e−∆ℓ|Hs,j〉, 〈Zj′ |e−∆ℓ|Zj〉 follow from (242) by taking the
limit s → i

2(j −
1
2) for the appropriate state. Computing 〈Ls′,j′ |e−∆ℓ|Ls,j〉 using (238) we obtain

〈Ls′,j′ |e−∆ℓ|Ls,j〉 =
1

2π

*
E + E′ +∆(∆− j +

1

2
)

+
Γ(∆± is± is′)

Γ(2∆)
δj,j′ (243)

Finally, to compute the mixed matrix elements, we use (239) and the fact that F+ state is annihilated
by Qr, Ql:

〈Hs′,j′ |e−∆ℓ|Ls,j〉 =
i

π
√
EE′

〈F+
s′,j′ |Qle

−∆ℓQ̄r|F+
s,j〉 = − i

π
√
EE′

〈F+
s′,j′ |i∆e−ℓ∆

:
e−

ℓ
2
−ia − i∆ψlψ̄r

;
|F+

s,j〉

(244)

=
∆

π
√
EE′

〈F+
s′,j′ |e

−ℓ(∆+ 1
2
)−ia|F+

s,j〉 (245)

=
∆

π

Γ(∆+ 1
2 ± is± is′)

Γ(2∆+ 1)
δj′,j−1 =

1

π

Γ(∆+ 1
2 ± is± is′)

Γ(2∆)
δj′,j−1 (246)

F Check of the composition law

In this appendix we check the composition law (140). We will do this in two steps. First we will
check it for the particular case of j = 0. And then we will make a separate argument that is valid
for general j.

In order to check it for the j = 0 case, we can first make the gauge choices

x1 = 1 , x3 = 0 , ρ3 = 0 , a3 = 0 , θ1− = θ̄1− = θ3− = θ̄3− = 0. (247)

The propagator for j = 0 was given in (131) (132). Then, after integrating over a2,χ2, θ2−, θ̄2 with
Mathematica22 we get the integral

1

2πq̂

#
dx2dρ2 da2 dθ2− dθ̄2− dχ2P0(1, 2)P0(2, 3) = (χ1e

−ia1/2 + χ3e
ia1/2)z

1/4
1 e−(γ1−γ3) 1

π
I (248)

where zi = e−ρi and we set q = 1 in this calculation (note that z3 = 1 due to (247)). I is the
integral

22We used the package Grassmann.n from Mathew Headrick.
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I =

# 1

0

dx2-
x2(1− x2)

# ∞

0
d
√
z2e

− (
√

z1+
√

z2)
2

(1−x2)
− (1+

√
z2)

2

x2

$
(1 +

√
z2)

2

x22
+

(
√
z1 +

√
z2)

2

(1− x2)2
+

+
2(1 +

√
z2)(

√
z1 +

√
z2)

x2(1− x2)
− 1

2

*
1

x2
+

1

1− x2

+%
(249)

Note that this integrand is not positive definite. This means that, after integrating out the
fermions, we do not get a positive measure for the shape of the curve. From now on we drop the
subscript ‘2’. Note that the z integral in (249) is a total derivative, so that the integral over ζ =

√
z

can be done as

I =

# 1

0

dx-
x(1− x)

# ∞

0
dζeϕ

1

4

<
(∂ζϕ)

2 + ∂2
ζϕ

=
=

# 1

0

dx-
x(1− x)

1

4
eϕ(0)(−∂ζϕ(0)) =

=
1

2

# 1

0

dx-
x(1− x)

e−
z1
1−x

− 1
x

* √
z1

(1− x)
+

1

x

+

with ϕ(ζ) ≡ −(
√
z1 + ζ)2/(1− x)− (1 + ζ)2/x (250)

This final x integral is done via a change of variables

y =
x

1− x
, x =

y

1 + y
, 1− x =

1

1 + y
(251)

which is the SL(2) transformation that maps one to infinity. Now the range of y is y ∈ [0,∞]. After
this change of variables the above integral (250) becomes

I =
1

2
e−z1−1

# ∞

0

dy
√
y
(
1

y
+

√
z1)e

−z1y−1/y =
√
πe−(

√
z1+1)2 (252)

We see that we get the expected form of the propagator, P (1, 3) in the gauge (247).
Now we turn to the problem of checking the general j case. It turns out that it is useful to

derive an independent result which is also interesting.

F.1 Zero energy wavefunctions of the boundary particle

Here we look at the zero energy wavefunctions for the N = 2 problem. We solve for the functions
now of one boundary particle that satisfy

QΨ = Q̄Ψ = 0 (253)

These wavefunctions are functions of γ, ρ, x, a, θ−, θ̄−,χ. We work the reduced formalism of section
4.3.2. These functions are not invariant under the left OSp(2|2) symmetries, but we do impose the
right gauge symmetries. We will require that they transform in a definite way under JR. Since
Q, Q̄ has OSp(2|2) symmetry, the zero energy states must form a representation of this symmetry
group.

We can furthermore diagonalize the left generator L− to obtain

Ψq,k,j = e−qγ+ikx+ija
!
e−ia/2F (ρ, θ−, θ̄−) + eia/2χF̃ (ρ, θ−, θ̄−)

"
(254)

Note that in our notation j − 1
2 corresponds to the right R charge of the wavefunction. Note that

on these functions G− and Ḡ− act essentially as complex fermion. Of course, these commute with
Q. So it is convenient to split the solutions into two possibilities obeying

Ḡ−Ψ+ = 0 , G−Ψ− = 0 (255)
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Of course, due to the anticommutation relations we get that G−Ψ+ ∝ Ψ− and Ḡ−Ψ− ∝ Ψ+. Solving
these equations we find

Ψ+ = e−qγ+ikx+ijae−ρ/2
!
e−ia/2(1− ikθ−θ̄−)K 1

2
+j(v)− 2eia/2

-
ikqχθ−K 1

2
−j(v)

"

Ψ− = e−qγ+ikx+ijae−ρ/2

$
−e−ia/2 θ̄−

√
ikq

q
K 1

2
+j(v) + eia/2χ(1 + ikθ−θ̄−)K 1

2
−j(v)

%

v ≡ 2e−ρ/2
-

ikq (256)

where each is defined up to a normalization. Note that the wavefunction with opposite q and k
can be obained from these by simply taking k → −k and q → −q, which leaves v invariant. Also
note that Ψ+ is Grassmann-even and Ψ− Grassmann-odd. The fact that there is a unique solution
implies that there is a single zero energy solution for each j and k. In writing these wavefunctions we
have picked the solution of the equations that is normalizable when ρ → −∞. These wavefunctions
are localized in the radial ρ direction.

One of the lessons of this analysis is that, for each j = J R, there is a single irreducible repre-
sentation in the zero-energy representation.

So, when we Fourier transform the propagator, we expect to find an answer which involves these
functions. One question is: what is the inner product among these functions? The inner product
can be computed with the measure in (133) involves

#
dρ dθ− dθ̄− dχΨq,k,j,+Ψ−q,−k,−j,− ∝ −2ik

1

cosπj
(257)

#
dρ dθ− dθ̄− dχΨq,k,j,−Ψ−q,−k,−j,+ ∝ 2ik

1

cosπj
(258)

These wavefunctions were computed in Euclidean space, so they are appropriate for the descrip-
tion of the Fourier transform of the propagator. It is also interesting to discuss the wavefunction
in Lorentzian signature. In that case we simply change x → −it, k → −iω, so that the time
dependence is now e−iωt. Then the variable v becomes v = 2e−ρ/2√ωq. These are normalizable
wavefunctions.

Note also that if we set θ− = θ̄− = 0 the functions become

Ψq,k,j,+ = e−qγ+ikx+ijae−ρ/2
!
e−ia/2K 1

2
+j(v)

"

Ψq,k,j,− = e−qγ+ikx+ijae−ρ/2
!
eia/2χK 1

2
−j(v)

"

v ≡ 2e−ρ/2
-

ikq (259)

where the dependence on χ appears in only one of the terms.

F.2 Checking the composition law for general j

The propagator (131) has two terms, one involves χ1 and the other χ2. Therefore we expect that
the propagator has the structure

P̂ ∼
#

dk [Ψq,k,j,+(1)Ψ−q,−k,−j,−(2) ± Ψq,k,j,−(1)Ψ−q,−k,−j,+(2)] (260)

where we have not worked out the precise signs and factors. The Fourier transform of the functions
appearing in the propagator can be computed at zero θ− θ̄−.

Note that [11]
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I =

# ∞

0
dxe−ikx q

√
z1z2
x

e−q
z1+z2

x Kν(
2q
√
z1z2
x

) = 2q
√
z1z2Kν(2

-
ikqz1)Kν(2

-
ikqz2) (261)

But we see that if we want to reproduce the above wavefunctions would would need to write them
as

I =
2

ik
[
-
ikqz1Kν(2

-
ikqz1)][

-
ikqz2Kν(2

-
ikqz2)] (262)

The extra factor of k seems consistent with the extra k in the inner product, in the sense that it
would cancel the extra k in the inner products (257), (258).

The simple j dependence in the inner products (257) (258) is also saying that the composition
law works for any j as is works for j = 0, once we put the extra factor of cosπj in the propagator
as in (136). So the check of the composition law for general j is now complete. Namely, we first
checked it for j = 0 in position space. Then for general j we go to Fourier space and we use the
wavefunctions discussed above. We do not have to work out the precise signs and factors of k
because we already know that they work out for j = 0. So, all we need to check is the j dependence
of the inner products.

G Extra zero modes for small N

Here we discuss the zero modes of the operator ψ1ψ̄2, projected into the zero eigenstate sector.
For even N , we find that the number of zero modes is

number of zero modes = D(N, j, q̂)−
*

N − 2

N/2 + j − 1

+

= D(N, j, q̂)−
*

N − 2
1
2(N − 2) + j

+ (263)

Here D(N, j, q̂) is the number of ground states with charge j. For j = 0, q̂ = 3, D = 2 × 3N/2−1.
This formula is valid if the above quantity is positive. If the above quantity is negative, there are
no zero modes. Note that D grows more slowly than

5
N
N/2

6
, so at large N there are no degeneracies.

To obtain this formula, consider starting with a ground state and acting with ψ̄. This gives a state
with charge j− 1. In general, this state is not a ground state, so we count the number of UV states
with charge j− 1, which would be

5
N

N/2+j−1

6
. If this Hilbert space is smaller than the Hilbert space

of ground states, we will get some degeneracies. So the naive number of zero modes would be the
difference in the dimensions:

naive number of zero modes = DIR −DUV = D(N, j, q̂)−
*

N

N/2 + j − 1

+
(264)

This counting is not quite right because ψ̄2 even as a UV operator has a kernel, e.g., states where
a ψ̄2 |0〉. So when counting the UV dimension, we should only count states that are in the image
of ψ̄2 and are not in the kernel of ψ1. This constraint reduces the effective number of spins from
N → N − 2 in the second term of (264), leading to (263).

We can obtain a formula for the number of ground states by fourier transforming the refined
index:

D(N, j, q̂) =
1

q̂

(q̂−3)/2.

l=0

2 cos

*
πj(1 + 2l)

q̂

+$
2 cos

π

2q
(1 + 2l)

%N
(265)

We numerically tested (263) for several small values of N and q̂.
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H Schwarzian coefficient at large q

In the large q̂ N = 1 SYK model, the Schwarzian coefficient is

CN=1 =
N

16q̂2J (266)

This can be read off from the thermodynamics computed in [12]. In the N = 2 model, the equations
of motion are the complexified version of the equations of motion of the N = 1 model. This implies
that the Schwarzian coefficient for N = 2 is simply twice that of the N = 1 model (for any choice
of q̂).

CN=2 =
N

8q̂2J (267)

If this is the case, extrapolating to q = 3, we get a prediction αs ≈ N/(108J), with J = 3J/2. This
is close to the answer [30] obtained by numerically solving the large N equations αs = 0.00842N/J .

I Computation of the disk partition function from the 2-sided Li-
ouville quantum mechanics

ℓc → − ∞

u1
u2

ℓc → − ∞

Figure 19: We can view the disk partition function with total length u1+u2 = β as an amplitude in the
2-sided Liouville theory 〈ℓc| e−βH |ℓc〉, where the proper length of the geodesic on the top and bottom
are going to zero. This implies that the renormalized length ℓc → −∞. In this limit, the red curves
disappear completely.

One question is whether we can reproduce the disk density of states using the Liouville quantum
mechanics. This is not obvious because the density of states is a 1-sided quantity, whereas the Hilbert
space of Liouville quantum mechanics is associated to the 2-sided theory. The idea is to compute
the partition function of the thermal circle with total length β. We can arbitrarily divide the circle
into a left side and right side. The two sides meet at two points, with the condition that the total
length of the circle is β, see Figure (19). Then the proposal is that

Z(β) ∝ lim
ℓc→−∞

〈ℓc| e−βHLiouville |ℓc〉 (268)

where |ℓc〉 is a position eigenstate. We are imposing that the renormalized length goes to −∞ at
two points in the Euclidean past and future. (This is because the length is going to zero). Now we
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can write this in terms of the energy eigenfunctions

Z(β) ∝
#

ds|ψs(ℓc)|2e−βs2 . (269)

Here ψs(ℓ) is an energy eigenstate with energy s2 with the scattering normalization that is
natural to the 2-sided problem (see, e.g., equation 3.4 of [26]):

ψs(ℓc) =
21−2is

Γ(−2is)
K2is(4e

−ℓc/2). (270)

The flat measure ds is natural if we think of s as the momentum of the incoming wave. Now notice
that at large ℓ, the Bessel function decays to zero, but in a way that is independent of the energy,
e.g., Kα(z) ∼ e−z

-
π/(2z). Hence we get |ψs(ℓ)|2 ∝ s sinh(2πs). This gives the expected density of

states ρ(E) ∝ sinh
:
2π

√
E
;
. The overall normalization ∼ eS0 is not determined in this method.

This works similarly in the N = 2 Liouville case, where the eigenfunctions are also Bessel
functions. In this case the boundary condition should be |ℓc, a = 0〉. (Since the length of the
segment is going to zero, the holonomy between the two sides should also go to zero if the gauge
field is continuous.) In addition, we choose

(ψl + iψr) |ℓc, a = 0〉 = (ψ̄l + iψ̄r) |ℓc, a = 0〉 = 0 (271)

This is the natural condition for fermions in the infinite temperature TFD. Notice that as ℓc → ∞,
we have that the second term in the supercharges (8) dominates (assuming that we regulate the
position eigenstates by a small amount of smearing independent of ℓc):

Qr = e−ℓc/2ψl , Q̄r = e−ℓc/2ψ̄l

Ql = −e−ℓc/2−iaψr , Q̄l = −e−ℓc/2ψ̄r (272)

Therefore this state satisfies

(Qr − iQℓ) |ℓc, a = 0〉 = (Q̄r − iQ̄ℓ) |ℓc, a = 0〉 = 0. (273)

Since the supercharges commute with the Hamiltonian, this must be true for the |TFD〉 state at
finite β:

|TFD〉 = e−βH/2 |ℓc, a = 0〉 . (274)

This provides a derivation of the equation

(Qr − iQℓ)|TFD〉 = (Q̄r − iQ̄ℓ)|TFD〉 = 0 (275)

Note that this method also generalizes to the disk with a finite chemical potential, by inserting
e−µQ, which can be achieved by acting with e−µJ in the 2-sided theory. In this way, we can read
off the density of states for each charge sector j.

The following comment is an aside. Note that we could imagine evaluating 〈ℓc| e−βHLiouville |ℓc〉
via saddle point. The saddle point solutions are

e−ℓ = sin−2(πu/β), a = 2πnq̂(u/β) (276)

Since the partition function is 1-loop exact, this implies that the saddle-point approximation in the
Liouville theory is 1-loop exact in the limit of large ℓc. It would be interesting to explain the 1-loop
exactness in the context of Liouville quantum mechanics.
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J Simplifying the “phase” factors

In this subsection we will consider the bosonic case and simplify the expression of the phase factors
that appears in the chain of propagators dressing a diagram. These involve the combination

ϕ12 + ϕ23 + ϕ34 + · · ·ϕn1 , with ϕij =
e−ρi + e−ρj

xi − xj
(277)

see (96). This does not involves the variables γi so we expect that they could be expressed in terms
of the distance variables. In fact, it is relatively easy to do that. First we note that a given ρi
appears in just two terms ϕi−1,i and ϕi,i+1 and these two combine into

e−ρi
xi+1 − xi−1

(xi − xi−1)(xi+1 − xi)
= exp

*
−ℓi,i+1

2
− ℓi,i−1

2
+

ℓi−1,i+1

2

+
(278)

where the total argument of the exponent in the right hand side is always negative due to the
triangle inequality for distances. Some care is needed for the last term involving ϕn1, but in the
end the formula is also valid for that case.

So the conclusion is that the final phase factor terms have the form

D

i

e−ϕi,i+1 = exp

7
−
.

i

e−
ℓi,i+1

2
−

ℓi,i−1
2

+
ℓi−1,i+1

2

8
(279)

In particular, only the lengths between nearest neighbors and next-to-nearest neighbors appear. For
the supersymmetric case, we expect a similar simplification.

K Relative entropy

An interesting question is whether there is any notion of the entanglement wedge of a subregion
in the extremal regime, where the boundary mode is highly quantum. Here a subregion could just
be one side of the 2-sided wormhole. To address this question, we compute the relative entropy
of different density matrices ρ,σ which are obtained by tracing out one side of the wormhole. By
inserting different types of matter in the middle of the wormhole, one could diagnose our ability to
do 1-sided bulk reconstruction. To compute the relative entropy, we can use the replica trick:

S(ρ | σ) = −∂n tr
5
ρσn−1 − ρn

6&&
n=1

(280)

If we take ρ to be the maximally mixed state (e.g. the empty wormhole) and σ to be 1-sided density
matrix of a wormhole with q identical light particles with ∆ = 0, we get (compare with (169)):

lim
n→1

1

1− n
((2q(n− 1)− 1)!!− 1) = ψ(0)

*
1

2

+
− log(2) = q × (1.270 . . . ) (281)

where the analytic continuation of the double factorial is as in (169).
For q heavy particles ∆ ≫ 1, we also get a relative entropy that grows linearly with q:

−∂n

$
(2q(n− 1))!

(q(n− 1) + 1)!(q(n− 1))!
− 1

%&&&&
n=1

= q. (282)

In the above calculations we are asking whether we can distinguish the empty wormhole from
the case for a wormhole with matter. Another question more closely related to the standard bulk

61



reconstruction question is whether we can distinguish a wormhole with a qubit in the state |↑〉 from
a wormhole with a qubit in the state |↓〉. To model this, we can consider 2 species of particles, both
with the same dimension. For ∆ = 0, we get

lim
n→1

1

1− n
((2(n− 1)− 1)!!− (2n− 1)!!) = 2 (283)

This says that we can recover some partial information about the state of the probe qubit. Of
course, we cannot recover the state exactly or else we would violate cloning.

An interesting setup for future work is to consider with K particle insertions, all separated by
infinite Euclidean time evolution. The state of K − 1 of the K particles are fixed, but one of the
K particles is treated as the probe qubit, the state of which we would like to reconstruct. In this
setup, it would be interesting to study the relative entropy as a function of which of the K particles
we choose to have an unknown state. The semiclassical picture would suggest that if the probe
qubit is to the left of the midpoint of the wormhole, the corresponding relative entropy of the left
boundary would be large, whereas if the probe qubit is to the right of the midpoint, the relative
entropy should be small. It would be interesting to do this computation at large ∆ ≫ 1; for ∆ = 0
we note that we just have Wick contractions so there is no difference in which order we put the
particles.
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