
Reply to Report 2 by Gabriel Lemarié

Strengths:

1- The authors consider 5 types of random graphs to assess the universality of their
results.

2- The authors determine the critical value of the disorder strength independently of
the finite-size scaling procedure. This is usually a major source of uncertainty in the
determination of the critical exponent, so this is particularly interesting.

3- The authors propose an alternative scenario for the existence of a finite-range in
system size non-ergodic regime in the delocalized phase, associated to the existence of
a new length scale ξ with a critical exponent ν = 1.

We thank Dr. Lemarié for the careful reading of our work and the positive assessment of its signif-
icance and originality.

Weaknesses:

The numerical demonstration of the new critical exponent ν = 1 does not seem to me
convincing. I propose an alternative analysis of the data of the authors which shows that
they are perfectly compatible with ν = 1/2. These two approaches should be compared
quantitatively.

Below, we address the critical remarks raised in the Report of Gabriel Lemarié showing a quanti-
tative comparison between our approach with the critical exponent ν = 1 and the approach with
ν = 1/2.

The authors mainly consider a very popular, although rather imprecise, observable of
localization: the average gap ratio r

We decided to employ the average gap ratio r in our analysis of the Anderson transition on
random graphs to be able to quantitatively compare the finite system size drifts at the delocal-
ization/localization crossover in this quite well controlled setting (with a known critical disorder
strength WC) to earlier investigations of the MBL transition. The r parameter behaves like any
other spectral indicator, measuring the probability that level is repelled from the neighboring ones,
it does not show any pathological scaling that we know of.

LT = a0 + a1(WC −W )−ν (1)

I would suggest that the authors test the behavior (1) with their data for the other models
they have considered (I have done that for RRG D=4 and it works very well also) and
compare the goodness of fit with the behavior they propose LT (W ) ∼ (WC − W )−1.
Moreover, it seems to me that their estimation of W T

∞ depends crucially on the range of
system sizes where they make a linear fit of W T (L)−W T

∞ as a function of 1/L. Could
the authors quantify that uncertainty?
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Figure 1: Disorder strength W T (L) as function of 1/L where L is the system size is for RRG with
D = 3, 4 respectively in panels (a) and (b). For better visibility, the data for W T

r=0.47 are shifted
upwards by 1 (2) for D = 3 (D = 4). The red dashed lines show the fits with of (2) and the green
dashed lines correspond to the fits of (3).

The requested comparison is presented in Fig. 1. For presentation purposes, we invert (1) which
leads us to

W T
r = WC −

(
b1

L+ b0

)2

. (2)

This behavior of W T
r can be compared with the 1/L behavior consistent with ν = 1. To compare

formulas which have the same number of fitting parameters equal to 2 (b0 and b1 in (2)), we include
also the first sub-leading term not written explicitly in the Eq. (12) in our manuscript, which is
∼ L−ω−1/ν ∼ L−3. This results in the following formula

W T
r = WC + a0/L+ a1/L

3, (3)

with 2 free parameters a0 and a1.

To quantitatively compare the hypotheses (2) and (3), we calculate

χ2 =
∑
i

(
W T

r (li)− f(li)
)2

, (4)

where the sum extends over system sizes li ≥ 9 for D = 3 and li ≥ 8 for D = 4. Moreover, to check
the robustness of the results, we consider two values of pr and study both W T

r=0.52 and W T
r=0.47.

The values of χ2 displayed in Fig. 1 show that both functions (2) and (3) reproduce the behavior
of W T

r with comparable accuracy. Furthermore, the crossover to the asymptotic ∼ 1/L behavior of
(3) which correctly reproduces the value of WC occurs already for system sizes L ≈ 12. In contrast,
the coefficient b0 in (2) is of the order of the largest system size available (the value of b0 is given in
Fig. 1), which implies that the crossover to the asymptotic behavior 1/L2 consistent with ν = 1/2
occurs only at system sizes L ≫ b0, beyond the reach of present numerical methods.
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As pointed out in the Report, our estimate of W T
∞ does depend on the range of system sizes taken

into account in a fit W T
r = W T

∞ + a0/L. The values of W T
∞ listed in our manuscript were obtained

for the 5 largest system sizes available (with the exception of RRG D = 4 for which we used 3
data points at the largest L). The obtained values of W T

∞ are close to WC , in accordance with our
hypothesis of ν = 1. When we include smaller system sizes and try to fit W T

r = W T
∞ + a0/L, we

obtain smaller values of W T
∞. For instance, using points with L ≥ 10 (L ≥ 8) we get W

′T
∞ = 17.5

(W
′T
∞ = 16.6) for RRG with D = 3. Such an extension of the fitting interval is, however, not well

justified due to the obvious curvature (on the 1/L axis) of the data for smaller L, which shows that
the sub-leading terms in the scaling play an important role at smaller system sizes.

All in all, we believe that the above comparison shows that the behavior of W T
r at the Anderson

transition on random graphs is described with similar accuracy by fitting forms consistent both
with ν = 1/2 and ν = 1. To highlight this point in our work, we included Fig. 1 in the Appendix
of our manuscript. Data for larger sizes (say up to Lm = 20 − 24 for RRG with D = 3) could be
used to check whether the value of W T

∞ starts to overestimate the value of WC as we increase Lm

beyond Lm = 17. Such a behavior would indicate that there is another change of the curvature (on
1/L scale) of W T

r data at even larger system sizes, which could suggest that 1/L behavior is not the
asymptotic one. However, we presently have no numerical resources to check this hypothesis (we
note that obtaining numerical results for L = 20 for SWN or URG is significantly less demanding
than for RRG with D = 3).

One important new point of the argumentation of the authors is that ω should be equal
to 2. In the insets of figure 8, they show that the numerical data seem to follow this trend
at sufficiently large system sizes. The value of ω = 2, together with ν = 1, is crucial to
explain the observation of an “effective” critical exponent νeff = 1/2 for the crossover
to delocalization observed in several references, see e.g. [30] and arXiv:1810.07545. I say
effective because, according to the analysis of the authors, the true critical exponent is
ν = 1. I don’t understand the claim of the authors that the data follow the trend with
ω = 2, even at large system sizes. In Fig. 2, I plot directly ln(r(WC)− rP ) as a function
of lnL. I observe clearly a linear behavior, consistent with Eq. (4) with however ω = 2
and not universal. In particular, I do not observe a different trend of the data at ”large”
system sizes as compared to small ones. Why do the authors plot in the insets of Fig. 8
their data as r as a function of 1/L2?

We believe that our results for r(WC)− rP do suggest universal behavior valid for different types of
random graphs. Moreover, this behavior seems to crossover to a L−2 scaling at the largest system
sizes available. To illustrate this point, we plot r(WC)−rP as function of system size L on a log-log
scale, see Fig. 2. The value r(WC) is extracted as the value of a cubic spline that interpolates our
data for r(W ) taken exactly at W = WC (this leads only to minor shifts of the results shown in the
Report; we note that we supplemented our results for D = 4 with data for larger disorder strengths
at L ≤ 10, see Fig. 14(a) in the manuscript). Importantly, the curvature of r(WC) − rP for URG
and SWN is visible on the log-log scale when the results are plotted as a function of L, which we
believe is the relevant variable that describes the size of the system. As pointed out in the report,
the data at intermediate system sizes are described by L−α dependence with 1 < α < 2. However,
the power α increases with increasing system size and is close to 2 for the largest system sizes
available, which is especially well pronounced for RRG with D = 3. Thus, we believe that plotting
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Figure 2: The value of r−rP at the critical point W = WC for Anderson models on random graphs.
The number of vertices with degree bigger or equal to 3 is given as 2L, i.e. for RRG with D = 3, 4
we have L = L; for URG we have L = L + log2(2p); for SWN, L = L + log2 f (consistently with

the manuscript). The solid and dashed lines correspond to L
−3/2

and L
−2

behaviors. Errorbars are
smaller than data points.

the data as function of 1/L2, as done in Fig. 8 of the manuscript, is justified. However, in order to
give a complete account of the data, we also include Fig. 2 in the Appendix to the manuscript.

The data in the scaling plots reach at W → WC the value rP . However, the authors
have also data for W > WC , in the localized regime. How do these data scale? They
have values lower than rP ? How to understand that? The authors suggest a modified
scaling assumption, Eq. (10) to describe this regime, but how do they justify its form
and how precisely this works in the localized regime?

Our scaling assumption predicts that r is always larger than the Poisson value rP . This is enforced
by the forms of the functions f(x), which vanishes at x > 0, and f1(x), which decays exponentially
with L for x > 0. To keep the scaling analysis more restrained, we consider only the first non-trivial
term in f1(x) at x < 0, namely f1(x) = A. This is justified in the vicinity of the critical point.
In particular, in order to better describe the data at W > WC , we would have to include terms in
f1(x) that would ensure its exponential decay at x > 0. This is implied by the behavior of r − rP
which decays exponentially with system size L at W > WC , as shown in Fig. 3. The exponential
decay is clearly visible at W ≥ 22 for the available system sizes, but we believe that it occurs at
all W > WC for sufficiently large L. Presently, we do not have a precise theoretical argument that
would indicate the exponential decay of r− rP at W > WC . We believe that such an argument can
be provided for other measures of localization in the system, which we, however, leave for future
work. In the present work we concentrate on the scaling collapses for x < 0. For that reason we do
not include in our finite size scaling analysis terms which describe the exponential decay of r − rP
in the localized phase.

Another question is why the authors consider a limited range of system sizes in their
scaling analysis? They have for the SWN with p = 0.06 data for 7 ≤ L ≤ 16. Could
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Figure 3: The value of r − rP at W > WC for Anderson models on RRG with D = 3 as a function
of system size L. The dashed magenta line shows asymptotic behavior ∼ L−2 at the critical point
W = WC . The dashed red lines show an exponential decay ∼ e−b0L where b0 is a disorder strength
dependent parameter.

the authors show the collapse of the data for the whole range of system sizes? This is
particularly important as the critical behavior with ω = 2 is clearly not valid for small
system sizes, such that one could expect to observe significant deviations. My final
question is the limited range of W values shown in Fig. 8. In particular, the authors
use this scaling behavior to recover the behavior of the boundary of the ergodic region
W T (L), see Eq. (12). Therefore, their scaling hypothesis Eq. (11) should be valid up to
the ergodic regime, i.e. for small values of W far from the transition point WC . Could
the authors show this scaling behavior in this regime?

The Referee is correct that our finite size scaling procedure leads to a systematic deviation of the
results at L ≤ 9 − 11 (depending on the type of the random graph) and that this can be traced
back to the behavior of r − rP in the vicinity of the critical point. However, the obtained data
Fig. 8 are well collapsed for sufficiently large system sizes. As we discuss below, we do find it useful
to include further sub-leading terms that would remedy this situation, as it is the behavior at the
largest system sizes which is relevant in the thermodynamic limit.

As requested, in Fig. 4, we show our collapses for RRG with D = 3 in a wider range of disorder
strengths. There are certain deviations from the scaling as r approaches the GOE value, which,
however, become less significant as the system sizes increase (note that the 1/L behavior of W T

r (L)
is also observed only for few largest system sizes available to us).

The authors state that they have used our scaling approach to analyse their data for
RRG D = 3 and D = 4 and find critical exponents ν = 0.64 and 0.67, and that they find
deviations from our scaling for data with r ≥ 0.4 which is quite small and could indicate
that our scaling behavior Eq. (5) would have for these models a very limited range of
validity. I am surprised by these observations because I found I am able to fit accurately
the data of the authors for these models with our assumption Eq. (5), using the critical
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Figure 4: Data collapse as in Fig. 8(a) of the manuscript but in wider range of disorder strengths.

disorder determined by the authors and the critical exponent taken as ν = 1/2. More
precisely, I fit the data with

r − rP = L−ωF (L1/νw) (5)

equivalent to (5), with w = (W −WC) + A2(W −WC)
2 + A3(W −WC)

3 and F (X) =∑5
k=0BkXk. In this analysis, the fitting parameters are the Aks, Bks and ω, whereas

WC and ν = 1/2 are fixed. All curves for different W , in a range that I indicate for each
model, are fitted simultaneously.

In the manuscript, we have written: ”the authors of [81] take a different approach than ours to the
scaling. In particular, they study (r(W,L)− rP )/(r(WC , L)− rP ) where WC is the critical disorder
strength, and find that an exponent ν⊥ ≃ 1/2 dominates the scaling behavior close to the critical
point. We have analyzed our data using their procedure (we thank Gabriel Lemarié for discussions
regarding this) and we found that a similar phenomenology could be adopted to scale data for RRG
with D = 3 (resp. D = 4) but with a different exponent ν ′⊥ = 0.64 (resp. ν ′⊥ = 0.67), instead of
1/2 as dictated by data for SWN [81]”. It is clearly written that we adopted there the procedure
of Ref. [81]. In that work the scaling (5) is used with w = (W − WC), see Fig. 3 of Ref.[81].
The resulting collapses for Anderson model on RRG are shown in Fig. 5, and yield the critical
exponents 0.64 and 0.67, precisely the ones which are listed in our manuscript. Furthermore, if one
enforces the exponent ν to be equal to 0.5, the data collapses are very poor already at data points
corresponding to r ≈ 0.4, as written by us in the manuscript. Therefore, we believe that our claims
in the manuscript are presented clearly.

Importantly, however, the story is much different when one uses w = (W −WC) +A2(W −WC)
2 +

A3(W −WC)
3 while fixing ν = 0.5 as proposed by the Referee in his report. When this is done, the

role played by ν is effectively assumed by the parameters A2 and A3 – this allows to obtain good
data collapses by keeping ν = 0.5. Below, we present further analysis of this point.

This figure 3 shows quantitatively that the data of the authors close to the transition are
also compatible with a critical exponent ν = 1/2. I think the authors should compare the
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Figure 5: Collapses of r(W )−rP
r(W )−rP

as a function of W−WC
WC

L1/ν as proposed in [Phys. Rev. Research 2,

012020(R) (2020)] for RRG with D = 3 (the left panel) and D = 4 (the right panel). We fix the
value of critical disorder strength WC and treat ν as a fitting parameter.

χ2 they obtain from their fit with the χ2 I have indicated, taking into account all system
sizes in the range of W considered. After all, the scaling considered here is L/χ and one
should allow for L to vary in the largest range to have a significant determination of the
relevant scaling function and critical exponent.

In Fig. 6, we present a comparison of our scaling procedure with the finite size analysis proposed
by the Referee. In the former case, we follow the analysis performed in our manuscript and show
the values of χ2, as defined by the Referee in his report. In order to make the former scaling more
constrained, we use a second order polynomial w = (W −WC)/WC + A2(W −WC)

2/W 2
C . In our

scaling procedure, Fig. 6(a),(c), we assume that ω = 2, ν = 1 and fit the only single parameter A,
keeping ν = 1 and ω = 2. In contrast, there are two fitting parameters in the procedure suggested
by the Referee, ω and A2, while ν is kept as 1/2. The values of χ2 are comparable in all the
considered cases showing similar quality of the collapses (importantly, for the same range of system
sizes, i.e. considering only L ≥ 11 we obtain χ2 = 1.62e − 05 for RRG with D = 3 and 1.06e − 05
for RRG with D = 4 using the scaling proposed by the Referee).

There are two points that we would like to emphasize here. Firstly, the scaling procedure proposed
by the Referee works better in a larger interval of system sizes. In contrast, our scaling procedure
leads to systematic deviations when data for L ≤ 10 are included. This is already apparent from
the behavior of r−rP shown in Fig. 2. While we could remedy this by including a sub-leading term
in our analysis (leading to two parameter scaling, as in the procedure proposed by the Referee), we
opt not to do that as the data at system sizes L ≤ 10 do not follow the same trends as data at larger
L available to us. Secondly, the values of the term A2 in the analysis proposed by the Referee are of
the order or larger than unity. If the A2 term was dominating, we would get w ≈ A2(W−WC)

2/W 2
C

which means that the horizontal axis variable becomes (W −WC)
2/W 2

CL
1/ν which is equivalent to

a collapse in terms of (W −WC)/WCL
1/(2ν). Therefore, in the limit of large A2, ν = 1/2 assumed

by the Referee is the same as ν = 1 assumed in our scaling assumption. Clearly, the values of A2
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Figure 6: Comparison of the scaling analysis proposed in our manuscript, (a) and (c), with finite
size scaling (5) proposed by the Referee, (b) and (d). The values of the obtained and assumed
parameters are shown in the plot.
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obtained by us are not orders of magnitude larger than unity, and both the linear and the quadratic
term in w play a role. The combined effect of the two terms, is similar to assuming taking only the
linear term w = (W −WC)/WC and obtaining ν ≈ 0.65, as we did in Fig. 5.

For those reasons, we do not believe that the procedure proposed by the Referee is sufficient to clearly
demonstrate that ν = 1/2. To the contrary, both considered scaling procedures work similarly well
in the relevant regime of large system sizes.

I think the authors’ data are precise enough to determine quantitatively which of the
two scenarios, mainly ν = 1/2 or ν = 1 and ω = 2 is more likely. I therefore invite the
authors to make this quantitative comparison.

The detailed analysis presented above indicates that the data for Anderson localization transition
are well described by both the approaches, preventing us for unambiguously deciding which of the
critical exponents ν = 1/2 or ν = 1 is valid. We believe that both approaches have their advantages
and disadvantages and only numerical data for larger system sizes can decide which of them is
correct. However, we must point out that the difference between our two results backs-up two
completely different analytic understanding of the transition. In our case, ν = 1 is the exponent
of the transition coming from the localized region which is undoubtedly correct, from iterative
calculations dating back to Abou-Chacra, Anderson, and Thouless (a line of research which one
could call the Bethe lattice works since they write a recursion equation which does not take into
account the presence of loops, an approximation which is most probably correct in the localized
region). We are further advancing that ν = 1 describes the transition also from the delocalized
region, providing a good collapse for the data coming from that region as well, as long as one
irrelevant scaling function is added. Dr. Lemarié’s scaling ν = 1/2 is supposed to work well to
describe the transition also in the localized region, therefore contradicting the Bethe lattice works.
We do not think that there is enough numerics to support such a bold claim.

To give a full account about the two approaches to the Anderson transition on random graphs, we
have added an Appendix to our work. The Appendix is referenced in Sec. 4.3 and it contains the
most important points raised in our response to the Report by Gabriel Lemarié. In Acknowledg-
ments we thank the Referee for the suggestions of the alternative scaling forms. We hope that the
Referee will find our response to be convincing and our manuscript to be suitable for publication in
SciPost Physics.
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