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Authors: Shivam Mahajan and Massimo Pica Ciamarra

Dear Editor,

We thank Reviewer 2 for the supportive comments and provide below a detailed answer to the Re-
viewer’s remarks and a list of changes.

We hope that our revised manuscript is now fully suitable for publication in Sci Post, and thank you for
your consideration.

Your sincerely,
Massimo Pica Ciamarra

List of changes:

1. Following the reviewer’s suggestions, we have added data for the distribution of the local shear
modulus.

2. We have investigated the spatial correlation function of the local shear modulus, as suggested by
the referee. This study was particularly useful as it evidenced constant elastic correlation length.

3. We explain in the manuscript the increase in shear modulus with f stems from an increase in its
affine component and a decrement of its non-affine one.

4. We discuss in the manuscript how our algorithm affects the strength of the boson peak.
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Referee #2:
Although the method is too artificial, the results seem to be reasonable. The relation between local
heterogeneities and vibrational properties is an important issue, and the present works can contribute
to this issue. I think the paper could be considered for publication, if the authors could address issues
and questions below.

Reply: We thank the reviewer for acknowledging that our work contributes to understanding the
relationship between elastic heterogeneities and vibrational properties. Our method is certainly
artificial: its value is in that it creates mass-spring networks with diverse elastic heterogeneities
at fixed connectivity and prestress (we added more data to highlight this point in the revised
manuscript), allowing us to elucidate how these heterogeneities influence the vibrational prop-
erties.

Fluctuations of elastic properties are central quantities in this work. So, the authors should present
distribution of local stiffness. What is the functional form of distribution? The fluctuating theory
assumes several different functional forms of distributions (please see PHYSICAL REVIEW B 88, 064203
(2013)). The authors could discuss numerical results with the theoretical assumption.

Reply: We show the local elastic properties distribution in Fig. R1a. Different curves refer to
different values of the swapping fraction f . The distributions have a Gaussian core and asym-
metric fat tails at the considered length scales. We reported a similar shape in three dimensions
in model three dimensional glasses in Phys. Rev. Lett. 127, 215504. The uniform, power-law,
truncated Gaussian and log-normal distribution considered in the article mentioned by reviewer
do not describe the distribution we find.
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Figure R1: Distribution at microscopic level coarse-grained at different w.

If I correctly understand, the correlation length ξe is measured as the coarse-grained length that the
disorder parameter converges. But, a more honest way to measure the correlation length is to calculate
the spatial correlation function of the local stiffness. The authors could check the correlation function
decays with the distance ξe.

Reply: We thanks the reviewer for this comment that suggested us to critically reconsider the
approach we used to extract the correlation length. We have investigated the radial correlation
function of the local shear modulus, taking into account the expected quadrupolar symmetry.
Fig. R1b shows that the correlation function is f independent, indicating that our algorithm does
not influence any microscopic length scale. This finding agree with another observation reported
in our manuscript, namely that the size of the QLMs is also f independent.
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What is the meaning of the scale of ξe ∼ γ1/2?

Reply: In the revised manuscript, we clarify that ξe is constant, indicating that in our system γ is
only affected by changes in the variance of the distribution of the single particle shear modulus
(as we verify in Fig. b in the main text). As such, our revised analysis do not support the relation
ξe ∼ γ1/2, in the system we have considered. This relation holds when comparing systems only
differing the in the correlation length of the local shear modulus. When this is the case, by virtue
of the central limit theorem, the fluctuations of the coarse-grained shear modulus scales as the
correlation volume. Hence, γ∼ ξ2

e in two spatial dimensions.

This work considers only the shear modulus. How about the bulk modulus? If the bulk modulus is
much larger than the shear modulus, it can not be important for low-frequency vibrational properties.
The authors should add this point on discussion.

Reply: We understand the reviewer’s concern concerning the bulk modulus. In dense glasses, the
bulk modulus is sensibly larger than the shear modulus and does not contribute to low-frequency
vibrational properties. Our systems estimate that the bulk modulus is four to five times larger
than the shear modulus.

In fig2c, the shear modulus increases from 60 to 90. I do not yet understand why the modulus is change
so much, by the algorithm of swapping. The prestress shows only a tiny change, so I guess change of the
connectivity leads to the increase of shear modulus. Is this correct? The authors would put comments
on this point with some figure of connectivity.

Reply: The change in shear modulus does not originate from a change in connectivity. Indeed,
our algorithm does not influence the connectivity as it acts by swapping the stiffness and rest
length of randomly selected bonds. Similarly, the change in shear modulus does not originate
from the change in prestress, as the reviewer notices. We demonstrate this point in a clearer
manner in the revised manuscript by comparing systems with the same prestress.

To rationalize the physical origin of the observed increase of the shear modulus, we consider that
the modulus has an affine (µa > 0) and a non-affine (µna ≥ 0) contribution

µ= µa −µna.

In the absence of swapping, we find µna/µa ≃ 0.5. On increasing f , the affine contribution
increases (up to 12%) and the non-affine one decreases (up to 20%). These changes drive the
observed increase in the shear modulus.

While the non-affine contribution is of difficult analytical estimation, the variation of the affine
contribution is easily determined. Indeed, at fixed connectivity, µa ∝ 〈k(L2 − 3/4Ll0)〉, with L
the length of a bond, l0 its rest length, and k its stiffness.

The authors study the boson peak frequency, but it is good to study the boson peak strength as well. The
boson peak strength is measured as D(ωBP)/Ddeb ye(ωBP) (where Ddeb ye(ω) is the Debye DOS), which
is also described by the fluctuating theory. How is the elasticity fluctuation (or disorder parameter γ)
related to the BP strength?

Reply: We find the Boson peak strength increases with the degree of disorder, e.g., at smaller f .
As we find D(ωbp)ω−1

bp to growth with γ, in agreement with theoretical predictions. Since γ only
varies in a small range, it is arduous to establish a quantitative relationship.

In Fig. 6, crossover between ω3 and ω2 seems to vanish as f increases (fluctuations become small).
Why so? Is this consistent with the theoretical prediction?

Reply: Increasing f leads to more stable systems with a smaller sound attenuation parameter.
The crossover between the two regimes persists as f increases but shifts to higher frequencies.
We have added guiding lines to Fig 8 to put this crossover in evidence.
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