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I. RESPONSE TO REFEREE

We thank the Referee for his comments and detailed analysis of our manuscript and we

appreciate his supportive report and recommendations.

Below we address his comments point by point.

1. Is there an intuitive understanding of why the Rytova-Keldysh potential provides a

more significant BCS regime than the Coulomb interaction? I would have thought

that the shorter range nature of the Rytova-Keldysh potential would suppress the band

renormalization that made it possible to exhibit the BCS regime.

The Rytova-Keldysh potential is actually effectively more long-ranged than the un-

screened Coulomb interaction: it is screened at short distances by the dielectric environment

rather than at long distances like in the usual case of Thomas-Fermi screening, and it thus

retains the same 1/r behavior at large r while having a reduced potential at small r. In

particular, this means that the bandgap renormalization (which is governed by the long-

range part of the potential) will be enhanced relative to the exciton binding energy (which

is affected by the short-distance part), thus making it easier to access the BCS regime.

We have now added the following sentence to highlight the above point:

“This can be intuitively understood from the fact that increasing r0/a0 leads to increased

screening at short range, thus reducing the exciton binding energy (dependent on the short-

range behavior of the potential) relative to the bandgap renormalization (governed by the

long-range part of the potential).”

2. In Sec. IV, the authors consider the effect of dissipation by introducing a gain and a

loss to the exciton and photon component, respectively, in a phenomenological man-

ner. However, I find some of their treatment problematic. The chemical potential µ

must not have an imaginary part since its presence implies damping or gain of the

condensate. Note that, in the canonical ensemble, the condensate has an oscillating

phase determined by the chemical potential, as ∆(t) = ∆0exp[I2µt]; see Ref. [49].

This contradicts the assumption that the system is in a steady-state. In general, there

would be a nonlinear imaginary term that gives rise to the saturation effect (as done

in [Wouters and Carusotto, PRL 99, 140402 (2007)] for the one-component case and

Ref. [49] and [Hanai and Littlewood, PRR 2, 033018 (2020)] for the two-component
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case) that automatically makes the steady-state condition (= µ being real) satisfied in

the long-time limit. This can be achieved by interpreting their gamma (RX in Ref.

[49]) to include these nonlinear effects. In particular, gamma should be considered as

a parameter that is determined by demanding µ to be real, as done in Ref. [49] (instead

of assuming gamma = kappa as done in the manuscript).

We thank the Referee for alerting us to this issue, which was very much an oversight on

our part. We certainly agree that the chemical potential of the condensate needs to be real

in order to be in the steady state. We have now revised our analysis of the upper and lower

branches with gain/loss, where we have allowed γ to vary such that both µ and the density

are real. We have also cited [Hanai and Littlewood, PRR 2020] as the new reference [31].

On the other hand, there is no need to add an imaginary part to the electron den-

sity Eq. (37). In the Keldysh formalism, adding dissipation to the system would

make the spectrum have a Lorentz distribution rather than the delta-function of

the mean-field approximation but would never give rise to an imaginary part of

the density (See, e.g., Ref. [14].). Therefore, solving Eq. (49) is not necessary.

What one should solve instead is the requirement that the chemical potential µ

is real, WITHOUT assuming by hand that γ = κ, as mentioned above.

We needed to solve Eq. (49) [Eq. (50) in the revised version] to ensure that the density

remained real. The reason is that our analytic expression for the equation of state has the

density as a function of chemical potential, in contrast to the 2×2 matrix at low density in

Eq. (47) where we instead have the chemical potential as a function of density. Thus, we

have a requirement on the density rather than µ, which we can take to be real at the outset.

However, as noted above, we agree that we should not have assumed γ = κ, so we have

now modified the equations to reflect this. Indeed, one can show that |X|2γ = |C|2κ for

Eq. (47) in the steady state and we have checked that our analysis agrees with this in the

limit of low density (large exciton binding energy εB).

One of the reasons that I strongly recommend the authors to perform the above

analysis is that assuming gamma = kappa would lead to a somewhat mislead-

ing conclusion that one always goes through an exceptional point by tuning the

density. Instead, as pointed out in Ref. [30] (and more recently in [Fruchart,
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Hanai, Littlewood, Vitelli, Nature 592, 363 (2021)] from a symmetry perspec-

tive), one needs to fine-tune TWO parameters to go through an exceptional point

in a U(1)-broken system like exciton-polariton condensates.

We thank the referee for bringing the reference Fruchart et al. to our attention, which is

now included in the manuscript as the new reference [59].

3. I am confused by the authors’ comment “Reference [49] has proposed that ... due to

Pauli blocking or phase space filling effects [2, 3, 54]. However, we observe no such

decrease of the Rabi splitting with increasing density ...” I am pretty sure that the

Pauli blocking effect already appears at a meanfield level; see Eq. (S81) of the SI of

Ref. [49]. Could the authors comment on why they could not see such effects in more

detail?

Of course, we agree with the Referee that Pauli blocking is present in the BCS formalism,

and indeed we have the same Pauli blocking term as in Eq. (S81) of Ref. [30] ([49] in the

previous version) in our Eq. (25a). What we meant was simply that we do not observe

a closing of the Rabi splitting in any of our calculations, numerical or analytical. The

behavior of the Rabi splitting involves an interplay between photon-mediated electron-hole

interactions and Pauli blocking, rather than just Pauli blocking alone, and it is crucial to

use a properly renormalized theory to describe this. For instance, previous calculations that

ignore the underlying UV divergence have hugely overestimated the role of saturation in the

polariton-polariton interaction strength (see the discussion in Ref. [26]).

We have now tried to make this point clearer in the manuscript.

Finally, we would like to respond to the Referee’s assessment:

The overall picture of what the authors obtained is not very different from the

known results.

We respectfully disagree with this assessment. For instance, we have demonstrated that

the properly renormalized theory has very small saturation of the Rabi coupling. This is as

opposed to Ref. [22], which predicted a strongly varying Rabi coupling with detuning, which

we believe arises from the unrenormalized model used in that work (i.e., the detuning did
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not correspond to that which would be found in solving the single-polariton problem). This

in turn led to a disagreement in that work between the observed low-energy behavior of the

chemical potential and that expected based on the two-body polariton-polariton scattering

[Eq. (41)], i.e., they did not recover the expected polariton energy at zero density, and

the polariton interactions weakened more rapidly with decreasing detuning than would be

expected from the Born approximation. Conversely, our fully renormalized theory is the

first to demonstrate how the correct low-energy behavior of the chemical potential arises

from the BCS equations.

The heart of the matter is the correct identification of the two-body physics, which pro-

vides the starting point of many-body physics. This can also be illustrated by how Ref. [11]

found that the excitons become Frenkel-like in the photon dominated regime (strongly bound

with a small radius). Instead, in our fully renormalized model we find that the electron-hole

separation approaches a universal value, independent of the details of the interactions.
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We investigate the many-body behavior of polaritons formed from electron-hole pairs strongly
coupled to photons in a two-dimensional semiconductor microcavity. We use a microscopic mean-
field BCS theory that describes polariton condensation in quasi-equilibrium across the full range
of excitation densities. In the limit of vanishing density, we show that our theory recovers the
exact single-particle properties of polaritons, while at low densities it captures non-linear polariton-
polariton interactions within the Born approximation. For the case of highly screened contact
interactions between charge carriers, we obtain analytic expressions for the equation of state of the
many-body system. This allows us to show that there is a photon resonance at a chemical potential
higher than the photon cavity energy, where the electron-hole pair correlations in the polariton
condensate become universal and independent of the details of the carrier interactions. Comparing
the effect of different ranged interactions between charge carriers, we find that the Rytova-Keldysh
potential (relevant to transition metal dichalcogenides) offers the best prospect of reaching the
BCS regime, where pairs strongly overlap and the minimum pairing gap occurs at finite momentum.
Finally, going beyond thermal equilibrium, we argue that there are generically two polariton branches
in the driven-dissipative system and we discuss the possibility of a density-driven exceptional point
within our model.

I. INTRODUCTION

When light is confined in a semiconductor microcav-
ity, it can become strongly coupled to excitons (bound
electron-hole pairs) to form hybrid light-matter quasi-
particles — exciton polaritons [1–3]. Such polaritons in-
herit properties of both light and matter, thus providing
a versatile platform for exploring a range of quantum phe-
nomena such as Bose-Einstein condensation (BEC) and
superfluidity at elevated temperatures [4, 5], polaron-
polaritons in the presence of charge doping [6], and non-
Hermitian topological effects [7]. One particular regime
of interest is that of large excitation densities, where the
interparticle spacing starts to approach the exciton Bohr
radius a0 and non-linear interaction effects play a dom-
inant role [8, 9]. Here, there is the prospect of achiev-
ing a crossover from a polariton BEC to a BCS-like state
analogous to the paired state in superconductors [10–13].
However, there is yet to be an unambiguous observation
of the BEC-BCS crossover in current polariton experi-
ments [14–18]. In particular, a measurement of a BCS-
like pairing gap at high densities remains elusive.

Theoretically, it is challenging to describe the high-
density regime of the exciton-polariton system since it
is a complex many-body problem where the microscopic
composite nature of the excitons must be included. This
goes beyond the usual coupled-oscillator description of
exciton polaritons which treats the exciton as a structure-
less bosonic mode [2]. For the case of localized excitons
(e.g., due to disorder), it is possible to study the effect of
the underlying electrons and holes by approximating each
electron-hole pair as a two-level system, corresponding
to a generalization of the Dicke model [3, 19–21]. How-
ever, this cannot capture the possibility of overlapping
electron-hole pairs and related BCS pairing phenomena,

which require the relative motion of electrons and holes.

To describe the mobile case, previous theoretical works
have employed a BCS variational wave function, which
accounts for the internal structure of electron-hole pairs
within a mean-field approximation [10–13, 22]. Such an
approach has provided important insight into the BEC-
BCS crossover in cold-atomic and excitonic systems in
the absence of coupling to light [23–25]. However, an out-
standing question in the polariton system is the effect of
high-momentum unbound electron-hole pairs, which are
present in the microscopic model and which have been
shown to modify the cavity photon [26], but which have
so far been ignored in the mean-field theories. Further-
more, there remain questions about how the many-body
electron-hole-photon description is connected to the po-
lariton BEC at low densities, with Ref. [22] obtaining
polariton-polariton interactions from the BCS mean-field
theory that are weaker than expected based on few-body
calculations [27].

In this work, we resolve these questions regarding
the polariton BEC-BCS crossover by employing a mi-
croscopic mean-field theory that properly renormalizes
the high-energy electron-hole pairs using exact few-body
calculations [26, 28]. We formally show that the BCS
mean-field approach recovers the expected properties of
a polariton BEC at low densities, and we find that
the polariton-polariton interaction strength agrees with
that obtained within the standard Born approxima-
tion [26, 27]. We furthermore compare different types
of interactions between charge carriers, including the di-
electrically screened Rytova-Keldysh potential which ap-
pears in atomically thin transition-metal dichalcogenides
(TMDs) [29]. In particular, we find that, due to bandgap
renormalization, the Rytova-Keldysh potential in TMDs
offers the best prospect of reaching the BCS regime of
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strongly overlapping electron-hole pairs, where there is a
BCS-like pairing gap at finite momentum.

With increasing excitation density, we show that the
condensate ground state eventually hits a photon reso-
nance at a chemical potential that lies above the cavity
photon energy. Here we find that the system becomes
photon dominated and that the electron-hole correlations
become universal and independent of the range of the car-
rier interactions. In the case of strongly screened contact
interactions between carriers, we can go further and de-
rive an analytic expression for the electron-hole-photon
equation of state for any excitation density. This allows
us to extend our results for the equilibrium ground state
to the driven-dissipative non-equilibrium system, where
we investigate the possibility of an exceptional point in-
volving upper and lower polariton branches [30, 31].

The paper is organized as follows. In Sec. II we set
out the theoretical model and renormalization schemes
for the long-range Coulomb and Rytova-Keldysh inter-
actions and short-range contact interaction. In Sec. III
we present the general BCS variational formalism for the
equilibrium system, which allows us to investigate coher-
ent phenomema across the full range of excitation densi-
ties and which provides a benchmark for more complex
non-equilibrium theories. Section IV presents the analyt-
ical results for the case of screened contact interactions,
while Sec. V discusses the general behaviour of the BCS-
BEC crossover and presents our numerical results for the
case of long-range interactions. Finally, in Sec. VI we dis-
cuss the driven dissipative system and its connection to
the many-body upper and lower branches. We conclude
in Sec. VII.

II. MODEL AND FEW-BODY PROPERTIES

We consider a two-dimensional (2D) semiconductor
embedded in a planar microcavity, such that photons can
excite electron-hole pairs across the semiconductor band
gap. This scenario can be modeled with an effective low-
energy Hamiltonian that includes electrons, holes, and
photons [3]

Ĥ =
∑

k

(
ϵeke

†
kek + ϵhkh

†
khk

)
+
∑

k

(ω0 + ϵck)c
†
kck

− 1

2

∑

kk′q

Vq

(
2e†k+qh

†
k′−qhk′ek

−e†k+qe
†
k′−qek′ek − h†

k+qh
†
k′−qhk′hk

)

+ g
∑

kq

(
e†kh

†
q−kcq + c†qhq−kek

)
. (1)

Here, c†k, e
†
k, and h†

k respectively create cavity photons,
electrons, and holes with in-plane momentum k, while
the corresponding 2D dispersions are ϵαk = |k|2/2mα ≡
k2/2mα in terms of the effective masses of the photons,
electrons, and holes, mc, me, and mh, respectively. For

convenience, we write the cavity photon frequency at zero
momentum, ω0, separately, and we measure all energies
from the band gap energy. We also neglect the spin de-
grees of freedom, since we are interested in the simplest
minimal model for exciton-polariton condensation. Note
that throughout this paper we work in units where ℏ and
the system area A are both 1.
The potential Vq corresponds to the interactions be-

tween charge carriers. In this work, we consider the
long-range Coulomb and the Rytova-Keldysh potentials,
which are typically employed for semiconductor quan-
tum wells and atomically thin TMDs, respectively. In
both cases, the interaction originates from the three-
dimensional Coulomb interaction, and the difference be-
tween the two potentials arises from the different dielec-
tric environments in the two geometries [32–34]. For com-
parison, we also consider the case of a highly screened
short-range contact interaction. As we will show, the
latter has the advantage that it admits a semi-analytical
solution for the relevant thermodynamic properties, and
therefore it acts as a highly useful benchmark for other
theories.
Finally, the light-matter interactions are parameter-

ized by the bare coupling strength g, which we take to
be constant up to an ultraviolet (UV) momentum cutoff
Λ. We have chosen a form of light-matter coupling where
only s-orbital electron-hole states couple to the photon,
and we have utilized the rotating wave approximation,
which is reasonable when the semiconductor band gap
greatly exceeds all other energy scales in the problem.

A. Renormalization scheme

Experimentally, the parameters characterizing the
light-matter coupled system are typically determined by
comparing the measured optical spectrum (e.g., absorp-
tion) with the expected energy eigenvalues for two cou-
pled oscillators (excitons and photons in this case) [9],

E± =− εB +
1

2

(
δ ±

√
δ2 + 4Ω2

)
. (2)

Here, ± refers to the upper and lower polaritons, respec-
tively, εB is the exciton binding energy, and the energies
are measured from the electron-hole band gap. Both the
effective cavity photon-exciton detuning δ and the light-
matter Rabi coupling Ω can be obtained from a fit to the
polariton energies at low excitation density.
In a similar manner, we can theoretically obtain the

physical parameters for a single polariton by comparing
the spectrum calculated within the microscopic Hamil-
tonian (1) with Eq. (2). This allows us to relate the
physical observables, the photon-exciton detuning δ and
Rabi coupling Ω, to the bare parameters of the model,
i.e., ω0, g, and the UV cutoff Λ. Given the need for
a UV cutoff, this procedure formally involves the pro-
cess of renormalization [26]. The precise identification
depends on the form of the electronic interactions, and
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this has previously been performed for Coulomb interac-
tions [26], the Rytova-Keldysh potential [35], and for the
case of strongly screened contact interactions [28, 36].
This procedure has, for instance, allowed the accurate
simulation of experimentally observed [37] diamagnetic
shifts in the presence of both a strong magnetic field and
strong light-matter coupling [38]. For completeness, in
the remainder of this section we briefly summarize these
renormalization schemes below.

1. Long-range interactions

We start by considering the case of interactions be-
tween charge carriers that scale as 1/r at large interpar-
ticle separation r, appropriate for either quantum wells
or atomically thin semiconductors in the microcavity. In
the absence of light-matter coupling, the most general
state for an electron-hole pair is

|Φ⟩ =
∑

k

ϕke
†
kh

†
−k |0⟩ , (3)

where ϕk is the bare exciton wave function, and we have
the normalization condition ⟨Φ|Φ⟩ =∑k |ϕk|2 = 1. The
state |0⟩ denotes the electron-hole-photon vacuum. The
wave function ϕk satisfies the Schrödinger equation:

(E − ϵ̄k)ϕk = −
∑

k′

Vk−k′ϕk′ , (4)

where ϵ̄k = ϵek+ϵhk = k2/2mr corresponds to the total ki-
netic energy and we write the electron-hole reduced mass,
mr = (1/me + 1/mh)

−1. The negative-energy solutions
of this equation correspond to the exciton bound states;
in this work, we focus on the lowest energy s-wave (1s)
state with binding energy εB.

In semiconductor quantum wells, the interactions be-
tween electrons and holes are typically described by the
long-range 2D Coulomb potential:

Vq =
π

mra0q
, (5)

where a0 is the effective 2D Bohr radius. In this case,
Eq. (4) yields negative energy solutions corresponding to
the infinite hydrogenic series of exciton bound states. In
particular, the 1s bound state has the wave function

ϕk =

√
8πa0

(1 + k2a20)
3/2

, (6)

binding energy εB = 1/2mra
2
0, and associated Rabi cou-

pling Ω = g
√
2/π/a0.

For atomically thin semiconductors, the bare Coulomb
interaction is modified by dielectric screening at short
distances, giving the Rytova-Keldysh potential [32–34]

V RK
q =

π

mra0q

1

1 + r0q
, (7)

where r0 is the effective screening length which is typi-
cally of the order r0 = 1 ∼ 10nm [39, 40]. In the absence
of coupling to light, the 1s exciton binding energy and
wave function must be solved numerically via Eq. (4),
and are functions of the screening length r0, i.e., εB(r0)
and ϕk(r0). To highlight the dependence on the screen-
ing length, we plot in Fig. 1 the 1s binding energy εB(r0)
in units of the r0 = 0 solution, as a function of r0/a0.
We see that as the screening length increases, the exci-
ton binding energy decreases with respect to εB(r0 = 0).
However, note that the binding energy in TMDs is typ-
ically much larger than that in semiconductor quantum
wells since the Bohr radius a0 in Eq. (7) can be orders of
magnitude smaller than the one in Eq. (5) [29].
Due to the choice of a short-range electron-hole-photon

interaction, the bare coupling g leads to an arbitrarily
large shift of the cavity photon frequency which should be
renormalized, as shown in Refs. [26, 35]. To this end, we
take the most general electron-hole-photon superposition

|Ψ⟩ =
∑

k

φke
†
kh

†
−k |0⟩+ γc†0 |0⟩ , (8)

where φk and γ are the exciton and photonic wave func-
tions, respectively. We ensure the total wave function is
normalized according to ⟨Ψ|Ψ⟩ =

∑
k |φk|2 + |γ|2 = 1.

Taking the Schrödinger equation at energy E and pro-
jecting it onto the electron-hole and photon subspaces,
⟨0| ekh−k(Ĥ − E) |Ψ⟩ = 0 and ⟨0| c0(Ĥ − E) |Ψ⟩ = 0,
gives [26]

(E − ϵ̄k)φk = −
∑

k′

Vk−k′φk′ + gγ, (9a)

(E − ω0)γ = g
∑

k

φk. (9b)

Inserting Eq. (9a) into Eq. (9b) and rearranging, yields

(
E − ω0 + g2

∑

k

1

ϵ̄k − E

)
γ = g

∑

kk′

Vk−k′φk′

ϵ̄k − E
. (10)

In the case of the long-range Coulombic potentials
considered here, the sum on the right-hand side of
Eq. (10) is convergent for k → ∞. However, the sum
on the left-hand side is logarithmically divergent and de-
pends on the UV momentum cutoff Λ. To obtain finite
cutoff-independent results when light-matter coupling is
present, we require the bare cavity frequency ω0 to cancel
the logarithmic divergence, leading to the renormalized
frequency

ω = ω0 − g2
∑

k

1

ϵ̄k + εB
. (11)

Here, we have assumed that the photon is resonant with
the 1s exciton such that the energy E ≃ −εB, which is
valid to logarithmic accuracy. Comparing to the coupled-
oscillator approximation for the upper and lower polari-
ton energies for a weakly light-matter coupled system in
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FIG. 1. The 1s exciton binding energy εB(r0) in units of the
zero screening (Coulomb) binding energy as a function of the
dielectric screening length. The typical range of r0/a0 values
in TMD materials is depicted by the shaded region.

Eq. (2), we obtain the renormalized photon-exciton de-
tuning and Rabi coupling as [26]

δ = ω + εB, (12)

Ω = g
∑

k

ϕk, (13)

respectively, valid for both long-range potentials. With
this identification, Eq. (9) yields solutions that, for Ω ≪
εB, are well described by the model of two coupled os-
cillators, Eq. (2), whereas there are some corrections in
the regime of very strong light-matter coupling where
Ω ∼ εB [26].

The Hopfield coefficients (light and matter amplitudes
C andX) can also be calculated numerically from Eq. (9)
using the fact that the photonic Hopfield coefficient is
given by the variational parameter γ together with the
normalization condition: we have |C±|2 = |γ±|2 and
|X±|2 = 1 − |C±|2, where ± again refers to upper and
lower polaritons energies found from numerically solving
Eq. (9).

2. Short-range interactions

When the interactions between electrons and holes are
strongly screened [41], the long-range Coulomb poten-
tial can be approximated by a short-range contact in-
teraction, i.e., a constant potential in momentum space,
Vq = V0 > 0. It is well known that the contact inter-
action needs to be renormalized, and within light-matter
coupled systems this has been carried out previously in
several works: [28, 36, 42, 43]. Here, we utilize the scheme
of Ref. [28], which uses the same cutoff for the carrier
interaction as for the light-matter coupling, since this re-
sults in a significant simplification of the renormalization
scheme and has the advantage of being fully analytic.
This approach is reasonable since both the coupling to

light and the exciton binding rely on the behavior of the
electron-hole wave function at short distances, and thus
both cutoffs are expected to be well-approximated by
the inverse lattice spacing. Importantly, the low-energy
physics that we aim to describe is independent of the
precise manner in which the cutoffs are introduced.
The contact interaction admits only a single electron-

hole bound state, with V0 related to the exciton binding
energy εB via Eq. (4) evaluated at E = −εB:

(εB + ϵ̄k)ϕk = V0

∑

k′

ϕk. (14)

This can be rearranged to yield

1

V0
=

Λ∑

k

1

εB + ϵ̄k
. (15)

We explicitly see that the bare coupling V0 vanishes log-
arithmically as the momentum cutoff Λ → ∞. The cor-
responding wave function is [28]

ϕk =

√
2πεB
mr

1

εB + ϵ̄k
, (16)

where we define an effective Bohr radius a0 = 1/
√
2mrεB.

To obtain the polariton spectrum using the short-range
contact interaction, and relate the bare parameters to
physical quantities, we consider the general light-matter
state (8) and use the contact interactions Vq = V0 in
Eq. (9). The upper and lower polariton energies can
then be obtained from the negative-energy solutions of
the implicit equation [28],

(ω0 − E) ln

(−E

εB

)
=

Ω2

εB
, (17)

where the effective Rabi coupling for the contact poten-
tial is

Ω = g
∑

k

ϕk =
g

V0

√
2πεB
mr

. (18)

To identify the detuning, we consider Ω ≪ εB and ex-
pand around E = −εB. Comparing with the expected
polariton energies in Eq. (2) then yields [28]

δ = ω0 −
Ω2

2εB︸ ︷︷ ︸
ω

+εB. (19)

Here the bare cavity frequency ω0 is independent of the
cutoff Λ, in contrast to the case of Coulomb interactions
in Eq. (11). Instead, it is the bare coupling g that van-
ishes logarithmically as Λ → ∞ similarly to V0, as can
be seen from Eq. (18).
Finally, one can also obtain the Hopfield coefficients

analytically [28], giving

|C±|2 ≡ |γ±|2 =
1

1 + εB
|E±|

(E±−ω0)2

Ω2

(20)

and |X±|2 = 1− |C±|2, where E± are the polariton solu-
tions of Eq. (17).



5

III. BCS APPROACH

We now apply the model and renormalization schemes
to the scenario of the many-body problem consisting of
electrons, holes, and photons in the semiconductor micro-
cavity. To investigate many-body coherent phenomena,
we focus on the equilibrium system at zero temperature
and consider a mean-field BCS-like variational wave func-
tion [10, 11]:

|ΨBCS⟩ = eλc
†
0−λc0

∏

k

(
uk + vke

†
kh

†
−k

)
|0⟩ , (21)

where we can take the variational parameters (uk, vk, λ)
to be real without loss of generality. This wave function
combines a BCS ansatz for electron-hole pairs with a co-
herent state of photons, such that the overall phase is well
defined but the number of excitations in the microcavity
is uncertain. For the wave function to be normalized we
require u2

k + v2k = 1.

We obtain the ground-state properties through the free
energy, F = ⟨ΨBCS| K̂ |ΨBCS⟩, where K̂ = Ĥ−µN̂tot. In
terms of the variational parameters uk, vk, and λ, the
free energy is given by

F =
∑

k

(ϵ̄k − µ)v2k + (ω0 − µ)λ2 + 2gλ
∑

k

ukvk

−
∑

k̸=k′

Vk−k′ukvkuk′vk′ −
∑

k̸=k′

Vk−k′v2kv
2
k′ . (22)

Here, N̂tot =
∑

k

[
c†kck + 1

2 (e
†
kek + h†

khk)
]
is the total

number of (bosonic) excitations and µ is the associated
chemical potential. Within the BCS ansatz (21), the pho-
ton density is given by

nc =
∑

k

⟨c†kck⟩ = ⟨c†0c0⟩ = λ2, (23)

while the electron and hole densities are (assuming charge
neutrality)

ne = nh =
∑

k

⟨e†kek⟩ =
∑

k

v2k. (24)

The total excitation density is then ntot = nc + ne.

In the absence of any interactions, the system decou-
ples into non-interacting photons and charge carriers. In
this case, a finite density of electrons (or holes) forms a

Fermi sea with Fermi wave vector kF = (4πne)
1/2

. We
will use kF as a measure of the charge carrier density in
general.

To determine the variational parameters uk, vk, and λ,
we minimize the free energy by defining uk = cos θk and
vk = sin θk, and then taking the stationary conditions
∂F/∂θk = 0 and ∂F/∂λ = 0. This yields the two coupled

equations:
(
ϵ̄k − µ− 2

∑

k′

Vk−k′v2k′

)
ukvk

+[u2
k − v2k]

(
gλ−

∑

k′

Vk−k′uk′vk′

)
= 0, (25a)

(ω0 − µ)λ+ g
∑

k

ukvk = 0. (25b)

In the low-density limit where vk ≪ 1 and uk → 1 [24],
Eq. (25) reduces to

(ϵ̄k − µ)vk + gλ−
∑

k′

Vk−k′vk′ = 0, (26a)

(ω0 − µ)λ+ g
∑

k

vk = 0, (26b)

which is equivalent to the set of equations for a single
polariton, Eq. (9), once we identify µ with the polariton
energy, λ ≈ √

ntotγ, and vk ≈ √
ntotφk. Thus, we ex-

pect µ → E− and nc/ntot → |γ−|2 as ntot → 0 in the
zero-temperature ground state. Note that there is also
an excited-state solution that is connected to the upper
polariton at low densities, which we discuss in Sec. VI.
To solve Eq. (25) for arbitrary density, we follow the

standard BCS approach [44] (see also Ref. [10]) and define
an order parameter

∆k = −gλ+
∑

k′

Vk−k′uk′vk′ , (27)

as well as the modified single-particle dispersion

ξk =
1

2
(ϵ̄k − µ)−

∑

k′

Vk−k′v2k′ . (28)

Here, the interaction-dependent term in Eq. (28) can be
viewed as a form of bandgap renormalization within the
BCS ansatz. From Eq. (25a), we then obtain

ukvk
u2
k − v2k

=
1

2
tan 2θk =

∆k

2ξk
. (29)

Using trigonometric identities, the coupled equations in
Eq. (25) finally become

∆k = −gλ+
∑

k′

Vk−k′
∆k′

2
√

ξ2k′ +∆2
k′
, (30a)

λ = − g

ω0 − µ

∑

k

∆k

2
√

ξ2k +∆2
k

. (30b)

Equation (30a) is a BCS-like gap equation for the or-
der parameter ∆k while Eq. (30b) describes the photon
field amplitude λ. In addition, we have the electron-hole
momentum occupation

v2k =
1

2
(1− cos 2θk) =

1

2

(
1− ξk√

ξ2k +∆2
k

)
, (31)
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which allows us to determine the electron (hole) density
ne and the single-particle energy ξk.

In general, one must solve the set of equations (30)
numerically by iteration, from which all other quantities
such as the Bogoliubov dispersion and electron and hole
densities follow. Importantly, while Eq. (30) depends on
the bare parameters of the model, these should be re-
lated to the physical parameters of the exciton-polariton
spectrum as discussed in Sec. II A. For the case of long-
range Coulomb and Rytova-Keldysh potentials, we ar-
range Eq. (30b) into a renormalized form by substituting
(30a) into (30b) and using (11) to finally give

λ

[
ω − µ− g2

∑

k

(
1

2
√

ξ2k +∆2
k

− 1

ϵ̄k + εB

)]
=

−g
∑

k̸=k′

Vk−k′∆k′

4
√

ξ2k +∆2
k

√
ξ2k′ +∆2

k′
, (32)

where g is related to the Rabi coupling via Eq. (13).
We note that the equations here only depend on the

reduced mass mr, which is a consequence of only consid-
ering pairs at zero momentum. However, going beyond
the mean-field approximation, we expect the behavior to
also involve the electron-hole mass ratio as well as the
photon mass.

Finally, to consider the quasiparticle excitations, we
note that the BCS-like wave function (21) is the vacuum

for the Bogoliubov excitations γk↑ = ukek − vkh
†
−k and

γ−k↓ = vke
†
k + ukh−k as in standard BCS theory [44].

Therefore, at momentum k the pair-breaking energy of
the two fermionic quasiparticles is 2Ek with [45]

Ek =
1

2
⟨ΨBCS| (γk↑γ−k↓K̂γ†

−k↓γ
†
k↑ − K̂) |ΨBCS⟩

=
√

∆2
k + ξ2k, (33)

being the average quasiparticle energy. This has the same
form as in the usual BCS theory, with the effect of the
coupling to light incorporated into the gap and the single-
particle dispersion.

IV. SHORT-RANGE INTERACTIONS:
ANALYTICAL RESULTS

Remarkably, when the interactions between charges
are short-range such that Vq = V0, it is possible to
solve the problem analytically once we relate the bare
parameters to physical observables. In this case, the
bandgap renormalization term in Eq. (28) vanishes as
the cutoff Λ → ∞, since V0 → 0 while

∑
k v

2
k remains

finite. Thus, the single-particle dispersion simply be-
comes ξk = 1

2 (ϵ̄k − µ). Furthermore, since the interac-
tion is constant in momentum space, the right hand side
of Eq. (30a) is independent of momentum, and hence the
order parameter is constant, i.e., ∆k ≡ ∆. These prop-
erties allow us to simplify the coupled BCS equations:

substituting (30b) into (30a) and dividing by V0 and ∆
we have

1

V0
−
∑

k

1

2
√

ξ2k +∆2
=

1

ω0 − µ

g2

V0

∑

k

1

2
√

ξ2k +∆2
.

(34)

Using the relation in Eq. (15), we can write the bare cou-
pling constant V0 in terms of the exciton binding energy
to remove the dependence on the UV momentum cutoff
Λ on the left hand side of Eq. (34), i.e.,

1

V0
−
∑

k

1

2
√

ξ2k +∆2
=

mr

2π
ln

(√
4∆2 + µ2 − µ

2εB

)
.

(35)

To remove the cutoff dependence on the right hand side
of Eq. (34), we use the definition of the Rabi coupling in
Eq. (18) together with the fact that V0

∑
k

1

2
√

ξ2k+∆2
→ 1

as Λ → ∞. Thus, Eq. (34) finally becomes

mr

2π
ln

(√
4∆2 + µ2 − µ

2εB

)
=

1

ω0 − µ

mr

2πεB
Ω2. (36)

This can be rearranged into an analytical expression for
the order parameter:

∆2 = εBe
Ω2

(ω0−µ)εB

(
εBe

Ω2

(ω0−µ)εB + µ

)
. (37)

We can also find closed-form analytic expressions for
the excitation densities. Using the expressions for v2k [see
Eq. (31)] and ∆, we obtain the electron density

ne =
mr

2π

(
εBe

Ω2

(ω0−µ)εB + µ

)
. (38)

Note that in the limit ne → 0, we recover the implicit
energy equation (17) for a single polariton, as expected.
The photon density can similarly be found by substi-
tuting Eq. (37) into (30b). Using the definition of the
Rabi coupling in Eq. (18) and the renormalization scheme
where V0

∑
k

1

2
√

ξ2k+∆2
→ 1 as Λ → ∞, we find the pho-

ton field amplitude

λ = − Ω∆

ω0 − µ

√
mr

2πεB
. (39)

Equations (37–39) are key results of this work. They
show analytically how the order parameter and the den-
sities depend on the chemical potential and the semi-
conductor microcavity parameters, where the bare fre-
quency ω0 is related to the photon-exciton detuning via
Eq. (19). In particular, we see that there is a singular
point at ω0 = µ where the system is resonant with the
bare cavity frequency and the densities diverge, as is ap-
parent in Fig. 2. Such behavior has also been obtained
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FIG. 2. Chemical potential of the electron-hole-photon ground state as a function of electron density for short-range (solid) and
Coulomb (dashed) interactions. The Rabi couplings are (a,b,c) Ω/εB = 0.2 and (d,e,f) Ω/εB = 0.5, while the photon-exciton
detuning increases from left to right: (a,d) δ/εB = −1, (b,e) δ/εB = 0, and (c,f) δ/εB = 1 . The insets show the corresponding
photon fractions as a function of electron density.

in previous theoretical works [10, 13]; however, our an-
alytical calculations show that the divergence in density
is exponential and that the position of the resonance, ω0,
is slightly higher than the cavity frequency ω that would
be extracted from low-density measurements.

For vanishing light-matter coupling, Ω → 0, we recover
the mean-field results for the BEC-BCS crossover in a
2D Fermi gas, as first derived by Randeria et al. [46, 47].
In this case, one can solve for the order parameter and
chemical potential in terms of electron density, giving

∆ =
√

2EF εB, µ = 2EF − εB. (40)

Here we have defined the “Fermi energy” EF = πne/mr,
since this corresponds to the actual Fermi energy of a
non-interacting electron (or hole) gas when the electron
and hole masses are equal. We clearly see from the chemi-
cal potential in Eq. (40) how the system smoothly evolves
from a Bose gas of dimers to a weakly interacting BCS
state with increasing electron density, in the absence of
any coupling to light.

V. BEC-BCS CROSSOVER

We now turn to the behavior of the light-coupled sys-
tem throughout the density-driven crossover for both
short- and long-range interactions. Our results in these
two scenarios are obtained, respectively, using the ana-
lytic expressions in Eqs. (37–39) or a numerical solution
of Eq. (30). In the low-density limit, where there are
tightly bound electron-hole pairs, we expect to recover
a dilute Bose gas of exciton-polaritons. In this regime,

the gas is well described as a weakly interacting Bose-
Einstein condensate. Conversely, in the high-density
regime, we expect the composite nature of the electron-
hole pairs to become important, potentially leading to
BCS-like pairing at the Fermi surface.

A. Low-density BEC regime

In the low density limit, the leading order contribution
to the ground-state chemical potential is the lower polari-
ton energy, as discussed in Sec. III, while the next order
term arises from interactions between polaritons. Thus,
the low-density behavior of the ground state is governed
by [48]

µ = E− + gPPntot , (41)

where gPP is the polariton-polariton interaction strength
which needs to be determined.
The calculation of gPP is in general a complicated four-

body problem, and it has only been performed in full for
the case of short-range contact interactions [43]. Within
the BCS ansatz (21), one can show that interactions are
only captured within the Born approximation [26, 27, 49],
such that we have (see Appendix A for a full derivation):

gPP = 2
∑

k

(ϵ̄k−E−)φ
4
LPk−2

∑

k,k′

Vk−k′φ2
LPkφ

2
LPk′ , (42)

where φLPk is the electron-hole wave function of the lower
polariton. The Born approximation provides an upper
bound on the interaction strength between identical po-
laritons and it is expected to become more accurate with
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FIG. 3. (a,d) Mean electron-hole pair size as a function of chemical potential for Rabi coupling Ω/εB = 0.2 and detuning
δ/εB = 1. The corresponding momentum distributions (b,e) and quasiparticle excitation spectra (c,f) at the values of the
chemical potentials indicated by the solid circles (I-V) in (a,d). The top and bottom panels are for Coulomb and contact
interactions, respectively.

increasing Rabi coupling [43]. For contact interactions,
Eq. (42) can be evaluated analytically, giving gPP =
2π|X−|4/mr with exciton fraction |X−|2 = ne/ntot. This
turns out to be equivalent to taking φLPk = |X−|ϕk in
Eq. (42), with ϕk the exciton wave function in the ab-
sence of coupling to light. However, this identification is
only approximately true for long-range interactions due
to the light-induced changes to the electron-hole wave
function [26, 50]. For Coulomb interactions, Eq. (42)
gives gPP ≈ 6|X−|4εBa20 = 3|X−|4/mr [27], and there are
some small deviations as Ω and |δ| approach εB [26].

B. BEC-BCS crossover for strongly screened and
Coulomb interactions

In Fig. 2 we compare the density dependence of the
chemical potential for Coulomb and contact interactions
at different detunings δ and Rabi couplings Ω. Note that,
at vanishing density, there is some difference in the values
of the lower polariton energy when the detuning is large
and negative [Fig. 2(a,d)], since the coupled-oscillator
model (2) becomes less accurate far away from the ex-
citon energy. We see that the initial increase (blueshift)
of µ with density is steeper for the case of contact in-
teractions, which is consistent with its larger polariton-
polariton interaction strength (42). However, the be-
havior is qualitatively similar between short- and long-
range interactions, with both featuring a resonance close
to the cavity photon frequency where the chemical po-
tential saturates and the densities diverge. In particular,
the resonance in the Coulomb case lies slightly above

ω = δ − εB, as in the contact case (see, also, Sec. IV).
For all detunings, the system becomes photon dominated
near the resonance (see insets in Fig. 2), even for positive
detuning δ = 1 where the condensate is largely excitonic
at low densities.

The existence of the photon resonance also means that
the ground state is confined to the region µ < 0 for
typical parameters in a microcavity, which is unlike the
usual BCS-BEC crossover in the absence of light [24, 46].
Furthermore, the crossover to the BCS regime is usu-
ally defined as the point where the excitation energy
Ek in Eq. (33) develops a minimum at finite momen-
tum [51]. For the case of contact interactions, where

Ek =
√

(ϵ̄k − µ)2/4 + ∆2, this occurs when µ = 0, which
means that the BCS regime requires µ > 0. Therefore,
this raises questions about whether the BCS regime can
be reached in the light-matter coupled system.

To further understand the nature of the BEC-BCS
crossover in the polariton system, we consider different
measures of the electron-hole pair correlations, as plot-
ted in Fig. 3 for fixed Rabi coupling Ω/εB = 0.2 and
detuning δ/εB = 1 [the same parameters as in Fig. 2(c)].
We estimate the size of the electron-hole pairs using the

many-body wave function ⟨e†kh
†
−k⟩, defined in real space

as

Ψ(r) =

∑
k ukvke

ik·r
√∑

k u
2
kv

2
k

. (43)

Note that this reduces to the Fourier transform of the
electron-hole wave function φk for the polariton in the
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FIG. 4. Ground-state chemical potential as a function of den-
sity for the Rytova-Keldysh potential at fixed Rabi coupling
Ω(r0)/εB(r0) = 0.2 and detuning δ(r0)/εB(r0) = 1. The
dielectric screening length is r0/a0 = 0, 1, and 10 (solid,
dashed-dotted and dashed respectively). The inset shows the
corresponding photon fraction as a function of density.

limit vk → 0. We then find the mean pair size via

reh =

�
dr r |Ψ(r)|2 . (44)

We compare this to the interparticle spacing (as encoded
in the Fermi wave vector kF ) to determine how much the
pairs overlap and thus how BCS-like the pairing is.

At low densities, reh is roughly constant and given by
the electron-hole separation in the lower polariton state.
Thus, the evolution of kF reh versus chemical potential
in Fig. 3 is initially determined by Eq. (41) such that

kF reh ∝
√

µ− E−, regardless of the range of the inter-
actions. The corresponding excitation spectrum Ek in
this regime is quadratic, with a minimum at k = 0, as
expected for a condensate of tightly bound dimers.

With increasing density, the momentum distribution
v2k smoothly evolves away from the electron-hole wave
function φ2

k for a single polariton and Pauli blocking
plays a stronger role. For Coulomb interactions, the exci-
tation dispersion in Fig. 3(c) develops a pronounced min-
imum at finite momentum, which shifts to larger values
of momentum as the density increases. By contrast, the
spectrum for contact interactions [Fig. 3(f)] displays no
such BCS-like behavior even as the density approaches
infinity. This difference in behavior can be traced back
to the bandgap renormalization term in Eq. (28), which
lowers the single-particle energies in the case of Coulomb
interactions, resulting in a greater density for a given
chemical potential. We can also see this in the behavior
of kF reh, which grows more steeply for Coulomb interac-
tions, reaching a greater maximum value in Fig. 3(a).

Approaching the cavity resonance where the densities
diverge, we see in Fig. 3(b,e) that the momentum dis-
tributions tend towards a constant value, vk → 1/2, as
expected from Eq. (31) when ∆k → ∞. Similarly, the

scaled dispersion Ek/E0 flattens as it becomes dominated
by the order parameter. Finally, the pair size reh goes
to zero (see, also, Refs. [10, 11]), but this does not result
in a BEC of tightly bound electron-hole dimers. Rather,
reh becomes tied to the interparticle spacing which goes
to zero as the density diverges. Using the fact that ∆k

is dominated by the coupling to the cavity photon when
ne, nc → ∞, one can show that

∆k ≃ 2πne

mr
, ukvk ≃ ∆k√

ϵ̄2k + 4∆2
k

. (45)

This gives the universal result kF reh ≃ 0.448 at reso-
nance, which should hold for any type of matter inter-
actions. For the case of contact interactions, this corre-
sponds to the maximum value of kF reh [Fig. 3(d)], i.e.,
the point where pairs are maximally overlapping.

C. Crossover for Rytova-Keldysh interactions

We now turn to the effects of dielectric screening
within the Rytova-Keldysh potential on the BEC-BCS
crossover. We again focus on the case of excitonic detun-
ing with δ(r0)/εB(r0) = 1 and Ω(r0)/εB(r0) = 0.2, where
the parameters now depend on the additional lengthscale
r0 (see Fig. 1). As shown in Fig. 4, the evolution of the
chemical potential with density is not significantly modi-
fied by screening. The low-density behavior is once again
governed by Eq. (41), and the larger slope for r0/a0 = 10
indicates a larger interaction strength gPP for the Rytova-
Keldysh potential, which is consistent with calculations
for exciton-exciton interactions within the Born approxi-
mation [52]. The larger gPP also results in a greater pho-
ton fraction for a given electron density (inset of Fig. 4)
since the chemical potential approaches the cavity reso-
nance faster.

While the density dependence of the chemical potential
appears to approach that of a screened short-range poten-
tial with increasing r0/a0, we find that the electron-hole
pair correlations display a completely different evolution.
Figure 5(a) shows that the maximum pair size grows
with increasing r0/a0 and exceeds 1/kF for r0/a0 = 10.
This implies that the dielectrically screened system can
go deeper into the BCS regime, an observation which is
further supported by the more step-like behavior of the
momentum distribution and the deeper finite-k minimum
in the excitation spectrum [Fig. 5(b,c)]. This can be in-
tuitively understood from the fact that increasing r0/a0
leads to increased screening at short range, thus reduc-
ing the exciton binding energy (dependent on the short-
range behavior of the potential) relative to the bandgap
renormalization (governed by the long-range part of the
potential). Therefore, this suggests that TMDs could be
a promising system for achieving a polariton BCS state,
with the caveat that it will require a much larger elec-
tron density than in quantum wells since the excitons are
more tightly bound [53, 54].
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FIG. 5. Electron-hole pair correlations throughout the BEC-BCS crossover for the Rytova-Keldysh potential, where we have
used Rabi coupling Ω/εB(r0) = 0.2, detuning δ/εB(r0) = 1, and dielectric screening lengths r0/a0 = 0, 1, and 10 (solid,
dashed-dotted and dashed respectively). We plot (a) the electron-hole pair size kF reh as a function of chemical potential and
the corresponding momentum distributions (b) and excitation spectrums (c) at the chemical potential where kF reh is maximal,
i.e., µ = −0.2,−0.25,−0.3 for screening lengths r0/a0 = 0, 1, 10, respectively. Here we have defined the effective radius for

the exciton as R(r0) = 1/
√

2mrεB(r0).

VI. CONNECTION TO THE UPPER
POLARITON BRANCH

The above discussion of the many-body properties of
the light-matter coupled system focused on the ground
state, i.e., the lower-polariton branch. However, the
mean-field light-matter coupled formulation also admits
a second higher energy solution which, in the zero-density
limit, is continuously connected to the upper polariton.
This upper branch is typically not accessed in steady-
state polariton BEC experiments, since it is metastable
and far detuned in energy from the chemical potential of
the lower polariton condensate. However, recent theoret-
ical work [30, 31] has shown that the dynamical and non-
equilibrium nature of the system potentially allows for a
coalescence of the lower and upper branches, which pre-
empts any crossover to the BCS regime. This lower-to-
upper-branch transition provides a mechanism by which
a polariton BEC can undergo a phase transition to a pho-
ton laser with increasing density, a scenario which has po-
tentially already been realized in experiment [30]. Thus,
the upper-branch solution is also physically relevant once
one considers a driven dissipative system beyond thermo-
dynamic equilibrium.

To explore this within our model, we consider a sce-
nario where a matter bath injects electron-hole pairs into
the system, while cavity photons are lost to the outside
through the mirrors. This can be captured with phe-
nomenological loss and gain rates, κ and γ respectively,
such that Eq. (25) becomes

(
ϵ̄k + iγ − µ− 2

∑

k′

Vk−k′v2k′

)
ukvk

+[u2
k − v2k]

(
gλ−

∑

k′

Vk−k′uk′vk′

)
= 0 (46a)

(ω0 − iκ− µ)λ+ g
∑

k

ukvk = 0. (46b)

We could have equivalently obtained these equations
from the Heisenberg equations of motion for the electron,
hole and photon operators [55].
In the limit of low density and for sufficiently large

exciton binding energy εB ≫ Ω, Eq. (46) reduces to a
simple non-Hermitian Hamiltonian [56]:

µ

(
C
X

)
=

(
ω − iκ Ω

Ω µX + iγ

)(
C
X

)
. (47)

where C and X are the usual photon and exciton ampli-
tudes (Hopfield coefficients), respectively, and we have
the exciton chemical potential in the absence of cou-
pling to light, µX = −εB + gxxne, with gxx the exciton-
exciton interaction strength within the Born approxima-
tion. This non-Hermitian problem yields two eigenvalues

µ± =
1

2

(
λX + λC ±

√
(λX − λC)

2
+ 4Ω2

)
. (48)

where λX = µX + iγ and λC = ω − iκ. These eigenval-
ues are in general complex, and thus in the steady state
the gain rate γ is adjusted to ensure that the chemical
potential is real [31].
We can investigate the behavior beyond the low-

density regime in the case of contact interactions by ex-
tending the expression (38) for the carrier density to in-
clude gain and loss rates:

ne =
mr

2π

(
µ− iγ + εBe

Ω2

(ω0−µ−iκ)εB

)
. (49)

Note that this is purely phenomenological and can be
viewed as an analytic continuation of the equation of
state from real to complex single-particle energies. More-
over, we see that we recover the characteristic equa-
tion for the eigenvalues of Eq. (47) in the regime where
εB ≫ Ω, gPPntot.
For the equation of state, we have carrier density in

terms of the (real) chemical potential, in contrast to
Eq. (48), and thus we instead impose the condition that
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the density is real, i.e., Im{ne} = 0. This yields an ex-
plicit equation for the gain parameter γ:

γ = εB exp

[
Ω2

(ω0 − µ)2 + κ2

ω0 − µ

εB

]

× sin

[
Ω2

(ω0 − µ)2 + κ2

κ

εB

]
. (50)

In the limit of large εB, where we recover the Hamiltonian
in Eq. (47), this reduces to γ = κ|C|2/|X|2, which is con-
sistent with simple models of driven-dissipative polariton
condensates [57].

In Fig. 6 we show the case of very strong light-matter
coupling Ω = 0.5εB and excitonic detuning δ = 0.1εB,
which goes beyond the regime described by the non-
Hermitian Hamiltonian in Eq. (47) [58]. For a given non-
zero κ, we observe that a region of densities exists where
multiple steady-state solutions are possible. Here, the
solid lines indicate physical solutions, where the system
can exhibit hysteresis when the matter part is directly
pumped. This picture is in agreement with previous re-
sults on the driven dissipative polariton system [30, 31],
and also with the behavior expected in a more general
theory of non-reciprocal phase transitions [59]. With in-
creasing κ, we see that the two branches approach each
other until eventually they merge at the exceptional point
where κc ≃ 0.51εB and µ = ω = −0.9εB. In particular,
we find that the exceptional point is set by the physi-
cal cavity frequency rather than the bare frequency ω0,
which is unlike the case of the singular cavity resonance
in the purely equilibrium scenario.

Note that the exceptional point within our model re-
quires a sizeable loss rate that takes us outside of the
strong-coupling regime (Ω > κc) in polariton experi-
ments. Reference [30] has proposed that the exceptional
point can be reached even for Ω > κc since the light-
matter coupling decreases with increasing density due to
Pauli blocking or phase space filling effects [2, 3, 60].
However, in our fully renormalized theory, we observe no
such decrease of the Rabi splitting with increasing den-
sity (see, e.g., the κ = 0 lines in Fig. 6) even though
the BCS wave function (21) clearly contains Pauli block-
ing. Therefore, the present BCS mean-field theory does
not capture the loss of strong coupling observed in ex-
periment at large densities, and we possibly require addi-
tional many-body effects beyond phase space filling in or-
der to theoretically describe a density-driven exceptional
point in realistic experiments.

VII. CONCLUDING REMARKS

In summary, we have determined the many-body prop-
erties of exciton-polariton condensates within a BCS vari-
ational theory. We have performed calculations for a
variety of different interactions between charge carriers
(both long-range and contact) within a fully renormalized
approach, where the results obtained are independent

0.00 0.01 0.02 0.03 0.04 0.05
-1.50

-1.00

-0.50

0.00

FIG. 6. The chemical potential for the upper (red) and lower
(blue) branches in the driven-dissipative polariton system.
The results are obtained by solving Eqs. (49) and (50) for fixed
Rabi coupling Ω = 0.5εB, detuning δ = εB, and for loss rates:
κ = 0, 0.3εB, 0.4εB, 0.51εB and κ = 0.6εB (top to bottom for
the upper branch, and vice versa for the lower branch). Since
the matter component is assumed to be pumped directly, the
electron density ne is proportional to the pump power [31].
The black dot indicates the exceptional point and the dashed
lines represent unstable solutions. The arrows indicate the
hysterisis loops obtained by changing the pump power in both
directions. Note that, for this value of Ω, there is no steady-
state solution for the upper polariton at low density, even in
the limit κ → 0.

of any UV cutoff in the low-energy microscopic model.
In particular, we have demonstrated that the BCS the-
ory recovers the single-polariton properties in the zero-
density limit, and the Born approximation of polariton
scattering at low density. At higher densities, we have
discussed how a photon resonance tends to confine the
ground state to negative chemical potential, which poses
a challenge to observing the BCS regime. Here, we found
that TMD monolayers appear to be particularly promis-
ing for achieving the BCS limit, due to the nature of the
carrier interactions in these materials.

The mean-field theory studied in this work can be ex-
tended to consider the effects of dynamics and quantum
fluctuations. An interesting question in this context is
the potential connection of the upper and lower many-
body branches which, due to the dynamical and non-
equilibrium nature of exciton-polariton condensates, can
coalesce at an exceptional point where loss, gain, and
Rabi coupling are equal.

An especially interesting extension of our work is to
investigate the role of spin (photon polarization), since
interactions between polaritons of opposite spin can be
strongly enhanced when their collision energy is close to a
biexciton resonance [61, 62]. In the vicinity of such a reso-
nance, the polariton interaction is strongly energy depen-
dent, and it may therefore be possible to effectively tune
to resonance using the many-body energy shifts shown
in Figs. 3 and 4. As a result, the BEC-BCS crossover
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and associated phases such as photon lasing can become
strongly dependent on polarization. This could have im-
plications for polariton condensation in TMDs, where the
polarization has already been shown to have a strong ef-
fect on the interactions [63].
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Appendix A: Low-density regime

In the limit of vanishing density ntot → 0, we re-
cover the behavior of a single polariton of energy E in
Eq. (9), where µ ≈ E, λ ≈ √

ntotγ and vk ≈ √
ntotφk

(see Sec. III). To obtain the leading order correction δµ
to the chemical potential due to the interactions between
polaritons, we expand Eq. (25) in powers of ntot, keeping
only the lowest order terms,

(
ϵ̄k − µ− 2ntot

∑

k′

Vk−k′φ2
k′

)
φkuk

+[1− 2ntotφ
2
k]

(
gγ −

∑

k′

Vk−k′φk′uk′

)
= 0 (A1a)

(ω0 − µ)γ + g
∑

k

φkuk = 0. (A1b)

Here we have divided out
√
ntot and we have used the

condition u2
k+v2k = 1. The latter also allows us to expand

the parameter uk in terms of density: uk ≈ 1− ntot

2 φ2
k.

To proceed, we make use of the normalization of the
polariton state by multiplying Eq. (A1a) by φk and sum-
ming over momentum k. Then, using µ = E + δµ and
Eq. (9), we obtain the low-density expressions

−δµ
∑

k

φ2
k − ntot

2

∑

k

φ3
k

[
gγ︷ ︸︸ ︷

(ϵ̄k − E)φk −
∑

k′

Vk−k′φk′

]

+2ntot


∑

k,k′

Vk−k′
(
φ3
kφk′ − φ2

kφ
2
k′
)
− gγ

∑

k

φ3
k


 = 0

(A2a)

−δµγ − ntot

2
g
∑

k

φ3
k = 0,

(A2b)

where we have used the symmetry Vk−k′ = Vk′−k in the
first line. Combining the equations gives

−δµ
[∑

k

φ2
k + γ2

]
− 2ntotgγ

∑

k

φ3
k

+2ntot

∑

k,k′

Vk−k′
(
φ3
kφk′ − φ2

kφ
2
k′
)
= 0. (A3)

Since the polariton state is normalized, we finally have

δµ = 2


∑

k

(ϵ̄k − E)φ4
k −

∑

k,k′

Vk−k′φ2
kφ

2
k′


ntot, (A4)

where we used Eq. (9) to rewrite the γ term in Eq. (A3).
Equation (A4) corresponds to δµ = gPPntot with gPP

given by Eq. (42) once we take the solution for the lower
polariton: E → E− and φk → φLPk. Thus, we have
shown that the BCS approach describes the polariton-
polariton interactions within the Born approximation.

[1] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P.
Laussy, Microcavities (Oxford university press, 2017).

[2] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev.
Mod. Phys. 85, 299 (2013).

[3] J. Keeling, F. M. Marchetti, M. H. Szymańska, and P. B.
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