
Response to referee #2

We would like to express our gratitude to the referee for their thorough review
of the manuscript. We appreciate their valuable comments and suggestions. We
largely agree with the referee’s feedback, and as a result, we have made significant
improvements to the paper, particularly in Section IV, to enhance its quantitative
aspects. Below, we address each point raised by the referee and outline the corre-
sponding changes made in the manuscript.

The manuscript presents a study of circuit (and geometric) complexity of various quantum
algorithms and unitary evolutions where the initial and target states are potentially separated by
a quantum phase transition. The purpose of the manuscript is to show that the crossing of the
quantum critical point leads to complexity increasing with system size. While such divergence
is studied systematically for the Fubini-Study complexity where the scaling (dominated but the
neighborhood of the QCP) is essentially connected to that of the fidelity susceptibility, for the
Nielsen complexity the computation is done numerically for adiabatic algorithms and for VQE.
The qualitative statement obtained is that whenever the algorithm is “aware” of a QCP the asso-
ciated complexity is seen to increase and diverge with system size.

I think the subject matter of this paper quite interesting though at present the study seems
more a collection of semi-qualitative observations rather than a systematic study of the relation
between complexity and QCP. The introduction, section 1.A, is very nice though it would help
to expand the explanation a bit, in particular between Eq.(11) and (14) where it is explained a
connection between the two concepts. In particular I think it would be better not to confuse the
reader and maybe use more space but state clearly the problem at all stages: the Nielsen complex-
ity is related to transformations between two fixed initial and target state, the FS is a distance
between states belonging to a given parametric manifold, the relation is given by such and such.

We are glad to hear that the referee finds our work interesting. We also agree
that it is important to discuss the differences between the two complexities. In the
initial version, we dedicated a subsection exclusively to addressing the distinctions
between the Nielsen and Fubini-Study approaches (Subsection 1.A.3) . In response
to the referee’s comment, we have further revised this section to provide clearer ex-
planations. We hope that the updated discussion now better reflects the connection
between the two approaches.

In the part concerning FS Complexity is not clear to me what new quantitative elements
are brought in in this paper as compared to what was already know about fidelity susceptibilities
though QCP (see e.g. the works of De Grandi, Gritsev and Polkovnikov a few years back). It
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would be useful to state it clearly.

We acknowledge the referee’s observation that our previous statement was
somewhat misleading. We now clarify that once the relationship between the com-
plexity derivative and the metric tensor is established, the scaling of the former can
be directly derived from studies on the metric tensor, particularly those related to
quantum phase transitions (QPTs). We have taken into consideration the referee’s
suggestion and searched for the referenced paper. We believe the referee is referring
to the work titled "Quench dynamics near a quantum critical point: application to
the sine-Gordon model.” We have cited with other papers using the fidelity suscep-
tibility.

In turn, the part concerning Nielsen complexity, which to my knowledge is novel, is ex-
tremely qualitative. Certainly it gives a hint towards interesting phenomenology but It would
have been useful to have a study (even numerical) of scaling with systems size, how this is af-
fected (or not) by the properties of the QCP, etc.

We appreciate the valuable feedback from the referee, and we agree that our
initial version lacked a more quantitative discussion. Their criticism has helped us
to significantly improve this section.

In response to the referee’s comments, we have made major changes to Section
IV and added Appendix C. In Section IV, we now discuss adiabatic preparation (IV.
A) and the use of VQE (IV. B). Additionally, we have included both theoretical and
numerical studies on complexity scaling with various parameters, such as the system
size, the energy gap, and the model parameters. Appendix C contains a detailed
numerical investigation of the dependence of complexity in adiabatic algorithms on
the energy gap between the ground state and the first excited state, validating the
theoretical relationships discussed in Section IV A1.

Apart from rewriting Section IV, we have added a comprehensive summary of
our quantitative study and its interpretation in the new version of the subsection
“Main Results and Manuscript Organization” Section IB. This summary is provided
in this response for the convenience of the referee:

“ ... After this general discussion, we focus on calculating the complexity when preparing
a fundamental state in a quantum computer. Here, obviously, we compute CN in its discrete
version. We explore two algorithms in detail. First, we discuss the circuit complexity in adiabatic
algorithms with and without shortcuts to adiabaticity. We focused our study on one-dimensional
spin lattices of different sizes. In this investigation, we found that using shortcuts does not
significantly alter the complexity CN. However, we demonstrated that CN ∼

√
L× T , where L

represents the system size, and T is the total time required to achieve a fixed fidelity, F , with
the exact ground state (in our case, F = 0.9 was chosen). Thus, the complexity inherits the
behavior of T close to a Quantum Phase Transition (QPT). Specifically, T is bounded by ∆−2,
where ∆ represents the minimum gap between the ground state and the first excited state in the
adiabatic algorithm.
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Then, we discuss the circuit complexity using VQEs. These algorithms are variational and
do not need to cross the critical point even if the reference and target are in different phases. In
such a case, CN is not necessarily aware of the QPT. On the other hand, if the target state is
close enough to a phase transition, also in VQEs, the complexity grows. Importantly, we provide
an explicit formula for CN, and by combining it with the correlation length generated using local
Variational Quantum Eigensolver (VQE) ansatzs, we can show that CN ≳ L3/2. Therefore, this
scaling poses challenges for our numerical capabilities, explaining the difficulties in finding reli-
able solutions around Quantum Phase Transitions (QPTs) when simulating the action of a VQE.”

We hope that the referee may find the added discussions and results relevant
and enriching to the previous version.

Overall I think that the paper with significant improvements in the presentation, in dis-
cussing the relation with previous literature and more quantitative statements in the final part
could be published in SciPost Physics.

With all this, we thank the referee again for his helpful suggestions and com-
ments and hope that the new version of our work will be to the referee’s liking.
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