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--------------------------------------------------------------------------------------------------------------------- 

Responses to Referee Dániel Varjas: 

---------------------------------------------------------------------------------------------------------------------   

We thank Dr. Dániel Varjas for carefully reading our manuscript and judging our paper as 

“clearly written, good presentation”, “the results are sound”, “discusses the timely problem of 

amorphous topological phases, and more broadly, topological phases protected by non-

crystalline spatial symmetries” and “novel use of "momentum-space" invariants derived from 

twisted periodic boundary conditions with more k components than spatial dimensions.”. The 

referee's main concerns are “the novelty of the results compared to the earlier works on 

quasicrystals” and “the relevance of the results to physical amorphous materials”. In the 

following response, we have addressed these concerns very carefully and made changes as 

requested. 

 

Strengths:  

1) Clearly written, good presentation. 

2) Discusses the timely problem of amorphous topological phases, and more broadly, topological 

phases protected by non-crystalline spatial symmetries. 

3) Novel use of " momentum-space" invariants derived from twisted periodic boundary 

conditions with more k components than spatial dimensions. 

 

Reply: We thank the referee for the positive comments of our work. 

 

Weaknesses 1: My main concern is the novelty of the results compared to the earlier works on 

quasicrystals (refs 28 and 29), and the relevance of the results to physical amorphous materials. 

The p-fold rotational symmetries (particularly p=8, 10, 12) arise naturally in quasicrystals, but 

seem artificial in an amorphous system. Amorphous materials are typically isotropic, possessing 

continuous rotation symmetry on average, lacking any preferred directions. ln my view, the 

systems studied here are better described as highly disordered quasicrystals - or perhaps an 

amorphous layer on a quasicrystal substrate - inheriting the discrete rotational symmetry in the 

hopping Hamiltonian, but the atomic positions completely disordered. Do the authors agree with 

this view? Can the authors suggest other physical setups that these models can describe? I 

believe that these considerations should be discussed at some point of the manuscript to make the 

context of the research clear to the reader, and motivate the relevance of the results to physically 

realizable amorphous materials.  

 

Reply: We thank the referee for the insightful comment. Below are our detailed responses to the 

referee’s concerns. 

 

For the novelty of the results compared to the earlier works on quasicrystals (Refs. [30,31], 

previous Refs. [28,29]), we acknowledge that we drew inspiration from quasicrystals, especially 

the excellent work Ref. [30] in the definition of the ℤ2 topological invariant. Nevertheless, our 

work is far from a straightforward generalization of the quasicrystal case in both the nature of 

amorphous matter and the construction of two topological invariants. 

 

Previous works show the existence of higher-order topological phase supporting eight corner 

modes in quasicrystals. The phase is protected by the eight-fold rotational symmetry. A ℤ2 
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topological invariant is defined based on the 𝐶8𝑀 symmetry. In addition, prior to our paper, it 

was still unclear whether the quadrupole moment could be extended to characterize the higher-

order topology in quasicrystals without crystalline counterparts. As the referee must know, 

amorphous systems are short of the exact rotational symmetry protecting the higher-order phases 

in quasicrystals so that one cannot define the ℤ2 topological invariant. Therefore, it is not 

obvious to deduce whether higher-order topological phases can exist in amorphous systems from 

the previous results in quasicrystals. In fact, the higher-order topological phases in amorphous 

systems are protected by the average rotational symmetry, different from the exact symmetry in 

quasicrystals.  

 

Furthermore, to the best of our knowledge, whether all 4𝑛-fold (𝑛 is a positive integer) 

rotational symmetries can arise in quasicrystals remains unclear. For instance, there has been no 

quasicrystals constructed with sixteen-fold or twenty-fold rotational symmetry [Generalized 

Dynamics of Soft-Matter Quasicrystals: Mathematical Models, Solutions and Applications 

(Springer, Singapore, 2022), 2nd ed]. In comparison, amorphous materials can possess any 4𝑛-

fold average rotational symmetry, and we can explore richer higher-order topological phases 

with arbitrary 4𝑛 corner modes which cannot be realized in quasicrystals. 

 

For the ℤ2 topological invariant, in quasicrystals, the effective Hamiltonian is constructed based 

on the plane wave in the 4D Brillouin zone. However, amorphous lattices cannot be generated 

from a higher-dimensional space with translational symmetry by a cut-and-project method, thus 

the construction method of the effective Hamiltonian for quasicrystals are no longer applicable. 

To fix the problem, we introduce unconventional twisted boundary conditions to construct the 

effective Hamiltonian in 𝒌 space. This helps us build the ℤ2 topological invariant. 

 

Another important contribution of our work is the introduction of how to calculate the 

quadrupole moment in topological phases without crystalline counterparts in amorphous 

systems. In fact, such a topological invariant is also applicable to quasicrystals (please see 

arXiv:2307.14974). Compared with the ℤ2 index introduced in Ref. [30], the generalized 

quadrupole moment can also be extended to characterize the chiral and helical hinge modes in 

3D quasicrystals (arXiv:2307.14974). For example, one can use the winding number of the 

generalized quadrupole moment to characterize the chiral mode of 3D second-order topological 

insulators in quasicrystals without crystalline counterparts. We therefore believe that the 

generalized quadrupole moment introduced here will play an important role in the study of 

higher-order topology in non-crystalline systems. 

 

Finally, we would like to emphasize that while both the higher-order topological phases in 

amorphous and quasicrystal lattices can support corner modes lacking crystalline equivalents, 

they have fundamentally distinct properties. In the amorphous case, the topological phase is 

gapless with a vanishing bulk energy gap, and the bulk states near zero energy are spatially 

localized corresponding to an Anderson insulator. However, in the quasicrystal case, the 

topological phase is gapped with a finite bulk energy gap corresponding to a band insulator. 

 

Because of the above points, we believe that our work is novel and meets the acceptance criteria 

of SciPost Physics. 
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For the relevance of the results to physical amorphous materials, we agree with the referee that 

ideal amorphous materials are typically isotropic. However, in experiments, anisotropy can be 

introduced in the growing process by applying magnetic field [J. Appl. Phys. 106, 023918 

(2009)] or through interface interactions [Phys. Rev. Lett. 100, 117201 (2008)]. As the referee 

suggests, using quasicrystals as the substrate is a good way to realize the 𝐶𝑝𝑇 symmetry in our 

model. For general 𝑝 = 4𝑛 without quasicrystal counterparts, the 𝐶𝑝𝑇 symmetry might be 

realized by doping magnetic impurities. Ideally, one can dope magnetic impurities with spin up 

in one 1/𝑝 sector and spin-down impurities in its adjacent sectors. Other sectors are doped in 

the similar manner such that the 1/𝑝 sectors have magnetic moments in alternating up and 

down directions. In this way, the average continuous rotational symmetry of amorphous 

materials is broken while the average 𝐶𝑝𝑇 symmetry is respected. Another approach is to apply 

local magnetic fields under the substrate with alternating directions for each 1/𝑝 sector during 

the growing process of amorphous materials. We understand that realizing the phase in 

experiments is a significant challenge. However, it is theoretically possible. 

 

We therefore believe that our work is novel and is far from a straightforward generalization of 

Refs. [30,31] and it is also relevant to physical amorphous materials. We have added the 

discussion on the relevance to physical amorphous materials in the revised manuscript and hope 

that these responses will satisfy the referee and convince the referee to recommend publication of 

our work in SciPost Physics. 

 

Weaknesses 2: What guarantees that there are no gapless modes at the boundary of the segments 

after restoring the rotational symmetry when constructing the Hamiltonians H j, or when 

applying periodic boundary conditions? As described in the text, the amorphous structure is not 

completely uncorrelated, rather it is a random set of hard disks. ls this constraint on the minimal 

interatomic distance obeyed by the symmetrized systems? Based on the description of the 

construction, it is not, which may result in additional sub-gap states at the gluing interfaces in the 

symmetrized and periodic boundary condition systems. I ask the authors to clarify these 

questions and demonstrate that no new subgap physics arises at the gluing interfaces, for 

example by examining the spatial localization of the low-energy states that appear at large 

system sizes (fig 3c inset). 

 

Reply: We thank the referee for the nice question. We agree with the referee that when we 

restore the rotational symmetry, the new system may not satisfy the constraint on the minimal 

interatomic distance. As a result, the sub-gap states arise in the symmetry restored system as 

shown in the following figure (a), where the configuration averaged density distribution of two 

low-energy states near zero energy under periodic boundary conditions (PBCs) is plotted. 

However, we would like to clarify the following two points: 

 

1. We only use the symmetry restored system to calculate the topological invariants shown in 

Fig. 3(a). For all the other results, we consider random lattices without restoring the symmetry. 

For example, in Fig. 3(c), we calculate the energy gap for random lattices without restoring the 

symmetry so that no sub-gap physics arises from the gluing operations. This can be clearly seen 

in the following figure (b) where the configuration averaged density distribution of two low-

energy states near zero energy for the system under PBCs is plotted. Thus, the gapless behavior 

arises from the bulk states. 
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2. To calculate the topological invariant in Fig. 3(a), we consider restoring the rotational 

symmetry. Thus, the topological invariant χ can be constructed. For the quadrupole moment, 

the rotational symmetry is not required. One can directly calculate the quadrupole moment for 

the original system without restoring the symmetry. We find that the quadrupole moment 

exhibits nonzero values in the topological region and its value increases toward 0.5 with system 

size (see the following figure (c)), similar to the quadrupole moment calculated for the symmetry 

restored system. In addition, the calculated topological phase transition points agree well with 

the results of the energy gap and localization properties. All these results suggest that despite the 

presence of introduced sub-gap states, their existence does not affect the calculation of 

topological invariants.  

 

 
 

We have added the three figures in the Appendix C to show the existence of mid-gap states and 

provide arguments that their existence does not qualitatively affect the calculation of topological 

invariants there. 

 

Weaknesses 3: Why does the invariant chi_n not depend on n? The manuscript only presents 

numerical evidence for chi_1=chi_3. I would expect a similar scenario as in ref 28 SM, when 

additional symmetries forcing a vanishing Chern-number are responsible for this equality, and is 

not forced by protecting symmetries. It would be worth to check whether this is the case, or at 

least comment on the possibility. 

 

Reply: We thank the referee for the very interesting question. In the following, we will show that 

the equality 𝜒1 = 𝜒3 should not be forced by additional symmetries. 

 

According to Phys. Rev. B 82, 184525 (2010), for a Hamiltonian with particle-hole symmetry, 

there exists a relation 𝑒𝑖𝜋𝐶 = Π𝐾0
𝜈(𝐾0), where 𝐶 is the Chern number and 𝜈(𝐾0) is the sign 

of the Pfaffian of the anti-symmetrized Hamiltonian at particle-hole symmetry momenta 𝐾0. In 

Ref. [30], the equality is generalized to the quasicrystal case with 𝐶8 rotational symmetry, 

reading 𝑒𝑖𝜋𝐶 = Π𝑛𝜈𝑛, where 𝜈𝑛 = 𝜈𝑛,0/𝜈𝑛,Π with 𝜈𝑛,0 (𝜈𝑛,Π) being the sign of the Pfaffian of 

the anti-symmetrized Hamiltonian restricted in the eigenspace of 𝐶8𝑀 operator with eigenvalue 

𝜔𝑛 = 𝑒𝑖𝑛𝜋/8 for 𝑛 = [±1, ±3, ±5, ±7] at the high-symmetry momentum 0 (Π). Due to the 

zero Chern number of the effective quasicrystalline Hamiltonian, Π𝑛𝜈𝑛 = 1. Besides, the 

topology protected by 𝐶4 symmetry is trivial, so 𝜒1 = 𝜒7 and 𝜒3 = 𝜒5 for 𝜒𝑛 = (1 − 𝜈𝑛)/2, 
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which also ensures Π𝑛𝜈𝑛 = 1. Similarly, in our amorphous model, we also have 𝜒1 = 𝜒7 and 

𝜒3 = 𝜒5, as discussed in Appendix B. 

 

However, for the quasicrystal model in Ref. [30], 𝜒1 ≠ 𝜒3. As an indicator of the non-trivial 

higher-order topology, 𝜒1 = 𝜒7 = 1. In contrast, 𝜒3 = 𝜒5 = 0 because the subspaces with 

𝐶8𝑀 eigenvalues 𝑒±𝑖3𝜋/8 and 𝑒±𝑖5𝜋/8 are empty, which is straightforward given the matrix 

representation of the 𝐶8𝑀 operator 𝑈𝐶8𝑀 = 𝜎𝑧𝑒−𝑖𝜋𝜏𝑧/8 = diag (𝑒−
𝑖𝜋

8 , 𝑒
𝑖𝜋

8 , 𝑒
𝑖7𝜋

8 , 𝑒−
𝑖7𝜋

8 ) in the 

basis of the onsite internal degrees of freedom in Ref. [30]. For the amorphous model in our 

paper, numerical results also demonstrate 𝜒1 ≠ 𝜒3 near the phase transition point in a finite 

system. The transition points of 𝜒1 and 𝜒3 as a function of 𝑚𝑧 are different, as shown in the 

following figure. The discrepancy implies that 𝜒1 = 𝜒3 is not protected by any symmetry. 

However, the difference between the two transition points Δ𝑚𝑧 exhibits a power-law decay 

with the increase of the lattice size 𝐿 as shown in the figure below, suggesting that 𝜒1 = 𝜒3 in 

the thermodynamic limit. Perhaps this equality in the thermodynamic limit is protected by some 

emerging symmetry in an infinite system, which indeed deserves future investigations. 

 

 
 

We have added the figure of 𝜒1 and 𝜒3 as a function of 𝑚𝑧 for a typical random 

configuration in the revised manuscript. 

 

Weaknesses 4: Why is it necessary (or advantageous) to distort the system to calculate the 

quadrupole moment? Is the quantity measured this way really the quadrupole moment, or 

perhaps some higher moment? It is really unclear to me how a procedure like this manifestly 

breaking the protecting rotational symmetries, can extract a topological invariant. 

 

Reply: We thank the referee for the question. To be short, if we do not perform the site 

transformation, then we always obtain zero quadrupole moment in our case with 𝑝 = 8. 

 

Specifically, similar to the polarization, the quadrupole moment is a widely used topological 

invariant to characterize the quadrupole topological insulator. The higher-order topology of these 

insulators can be protected by chiral symmetry or particle-hole symmetry as we have previously 

proved that chiral symmetry (or particle-hole symmetry) protects the quantization of the 

quadrupole moment (see Refs. [62,63]). Similar to the Berry phase, the quadrupole moment is a 

ℤ2 topological invariant. For a quadrupole insulator on square lattices, when there are odd 
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number of corner modes, the quadrupole moment is equal to 0.5. However, in our case with 𝑝 =
8, there are two corner modes in each quarter in a topological phase, which may explain why the 

traditional quadrupole moment vanishes. To obtain the reliable topological invariant to 

characterize the topology of the system, we propose the site transformation while keeping the 

bulk wave functions unchanged. Such a method indeed gives the correct topological 

characterization of the system. 

 

In fact, in our another paper (arXiv:2307.14974), we apply the method to calculate the 

generalized quadrupole moment of a quasicrystalline system. We find that it can correctly 

characterize the topology of the 2D quasicrystal, similar to the ℤ2 index based on the rotational 

symmetry. In the paper, we also generalize the quadrupole moment to characterize the chiral and 

helical hinge modes in 3D quasicrystals based on the site transformations. For example, one can 

use the winding number of the generalized quadrupole moment to characterize the chiral mode of 

3D second-order topological insulators in quasicrystals without crystalline counterparts. We 

therefore believe that the generalized quadrupole moment introduced here will play an important 

role in the study of higher-order topology in non-crystalline systems. 

 

For the physical meaning of the quadrupole moment, let us consider the limiting case of the 

Benalcazar-Bernevig-Hughes model where the intracell hoppings are zero (see the following 

figure (a)). In this case, the quadrupole moment is equal to 0.5, and the Wannier center is 

localized at the position of A. However, in the general case, it remains an open question whether 

the connection of the nontrivial quadrupole moment to the position of Wannier center is always 

true. In the non-crystalline case, this connection becomes even more elusive. In our case, this 

quantity may represent a hidden moment structure. We admit that we do not know its exact 

nature, but it does serve as a topological invariant. This problem is indeed interesting and merits 

further study.  

 

 
 

We also would like to point out that the rotational symmetry is not an indispensable ingredient 

for the quadrupole insulator. Without it, a system can still exhibit a quadrupole moment of 0.5 

with zero-energy corner modes as long as chiral or particle-hole symmetry persists. To clarify 

our viewpoint, we consider a 2D quasicrystal with eight-fold rotational symmetry and add some 

structural disorder to explicitly break the symmetry. We find that this system still has eight zero-

energy corner modes [see the above figure (b) for the energy spectrum and (c) for the local DOS 

at zero energy] and its generalized quadrupole moment is still equal to 0.5. We understand that 
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the rotational symmetry is important as it ensures that the local DOS at zero energy also respects 

this symmetry. In the amorphous case, the average rotational symmetry plays the role. 

 

We have added some discussions to show that the generalized quadrupole moment can also be 

used to identify the higher-order topology of 2D and 3D quasicrystals in the revised manuscript. 

 

Report: The manuscript studies topological phases of amorphous systems protected by chiral 

and average p-fold (p even) rotation symmetries. The analysis is carried out using a tight-binding 

model on a random graph, using "momentum-space" invariants derived from twisted periodic 

boundary conditions, quadrupole moment, and spectral signatures, the manuscript is well written, 

and the results are sound. 

 

In my opinion the manuscript is an interesting, but fairly straightforward generalization of earlier 

work on quasicrystalline topological phases with added disorder (see point 1of the Weaknesses 

section for details).Hence l recommend moving the manuscript to SciPost Physics Core, and 

publication with minor clarifications: or would request the authors to further support the novelty 

of the work, and motivate why the paper meets the acceptance criteria of SciPost Physics in light 

of the questions raised. 

 

Reply: We thank the referee for the nice summary of our work, the positive comment that “The 

manuscript is well written, and the results are sound” and the critical comments and constructive 

suggestions. We have follow the referee’s suggestion to clarify the novelty of our work (see our 

reply to Weakness 1) and hope that this considerably improved version will satisfy the referee 

and convince him/her to recommend publication of this work in SciPost Physics. 

 

Requested changes 1:  

Minor change requests below, for major questions see the Weaknesses section.  

 

The hopping Hamiltonian in eqn.1 for p=8 is (up to a basis transformation, and inclusion of 

bond-length-dependent prefactors) is identical to that of ref (28), and the generalization of the 

last term for cases with p other than 8 was presented in ref(29), l ask the authors to make this 

clear by citations when introducing the Hamiltonian. 

 

Reply: We thank the referee for the nice suggestion. We have followed the suggestion to add the 

sentence that “This Hamiltonian can be derived through a unitary transformation of the 

Hamiltonian introduced in Refs. [30,31].” in the revised manuscript. 

 

Requested changes 2: The following statement is unclear to me: “Note that near m_z 0.3 there 

appears an intermediate region with the coexistence of topologically nontrivial and trivial 

samples where the gapless bulk states are extended as shown in Fig. 3(d).” Should clarify the text 

or fig. 3 to make this clear. 

 

Reply: We thank the referee for the comment. We have modified the sentence to “Note that near 

𝑚𝑧 ≈ 0.3, χ̅ lies between 0 and 1 and does not converge to 0 or 1 as 𝐿 increases, implying the 

existence of an intermediate region with the coexistence of topologically nontrivial and trivial 

samples. In this region, the gapless bulk states are extended as shown in Fig. 3(d).” 
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Requested changes 3: Should mention in the caption what the vertical dashed grey lines in fig. 3 

denote. 

 

Reply: We thank the referee for the nice suggestion. We have followed the suggestion to add the 

sentence in the revised caption of Fig. 3 that “The higher-order topological phase is separated 

from other phases by the vertical dashed grey lines”. 

 

 

Requested changes 4: "high-symmetric momenta" should be, following standard terminology, 

"high-symmetry momenta". 

 

Reply: We thank the referee for the nice suggestion. We have followed the suggestion to change 

“high-symmetric momenta” to “high-symmetry momenta” in the revised manuscript. 


