
Resubmission letter

Dear editor,

Herewith we resubmit our manuscript titled “Dual symplectic classical cir-
cuits: An exactly solvable model of many-body chaos” to SciPost. We would
like to express our gratitude to the reviewers for their time and their invaluable
feedback on the initial submission. In response to their constructive comments,
we have made improvements to our work, enhancing its scientific rigour and
clarity. Please see our response below.

Yours sincerely,
Alexios Christopoulos (on behalf of all coauthors)

(We use the Italic font style to indicate the reviewers’ comments and reports)

1 Report 1

• Strengths

– 1. Generalizes ideas from dual unitary circuits to classical determin-
istic ones

– 2. Proves several exact results, in particular for two-point correlators

– 3. Brings methods more commonly used in quantum dynamics (cir-
cuits, tensor networks) to classical many body

– 4. Shows explicitly (and in full detail for a class of examples) how
deterministic overall dynamics contracts to stochastic dynamics for
a subset of degrees of freedom (2-pt correlators in this case)

• Weaknesses: None

• Report: This is an important paper which adds to the growing corpus of
work on ”dual” circuit dynamics, an area of much current study started by
one of the authors and coworkers. While most work has been on quantum
circuits with dual unitary dynamics (i.e. unitary both for time and space
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propagation) these ideas can also be applied to classical systems. This is
what this paper does by considering dual *symplectic* (i.e. phase space
volume preserving) classical dynamics. The key property is that of (let’s
call it) unitality in both space and time, see Eq. (15), whereby time and
space propagation leave the flat probability vector invariant (both forward
and back). As for DU circuits, several results follow immediately. The
focus of interest here is on two-point correlators: they are non-trivial only
in rays, and their dynamics reduces to a stochastic one. These general and
exact results are fleshed out for class of problems corresponding to coupled
dynamics of spherical spins, for which many results are made explicit. One
can immediately think of follow up questions to this work, so it is clearly
opening up avenues for further research. Except for very minor changes
(see below) the paper can be published as is.

We would like to thank the reviewer for his/her positive comments on our
work.

We proceed, by mentioning the details of the changes made according to the
requests of the reviewer:

• Montecarlo → Monte Carlo in the abstract.

We corrected this typo on p.1.

• Please clarify what the ”hooks” are meant to be at the right and left edges
of Fig.2.

We added an explanation in the caption of Fig.2, where we clarified that
the ”hooks” or the ”curly” edges as we denote them represent the periodic
boundary conditions of the model.

• Present the Appendices in the same order as they are mentioned in the
main text.

We believe that the reviewer is right and we changed the order of the
appendices, such that they appear in the same order as in the main text.

2 Report 2

• Report: In this work, the authors study a special type of classical dynami-
cal system known as dual-symplectic circuit. It consists of a discrete set of
classical variables updated using local rules in a discrete fashion, similarly
to classical cellular automata. In addition to symplecticity, these dynam-
ics are also symplectic ”in the rotated channel”. This is a very strong
mathematical property that allows for the derivation of analytic results.
This fact is remarkable because the model is not integrable in the tradi-
tional sense. This set of models, which are natural classical versions of
so-called dual-unitary circuits previously studied, were not introduced in
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this paper. However, the authors develop a general formalism to compute
analytically dynamical correlation functions, similar to the quantum case.
The general formalism is nicely applied to one specific model (the Ising
swap model) and the predictions are tested quantitatively against numer-
ical Montecarlo data. Overall, I think this is a strong paper. Although
perhaps not extremely innovative, it fills a gap in the literature, by extend-
ing to the classical case the formalism previously developed in the context
of dual-unitary quantum circuits. The draft is well written and all the pre-
dictions are supported by convincing numerics. I don’t have any particular
comment on how to improve the readability of the draft, so I recommend
publication of the manuscript as is.

We would like to thank the reviewer for his/her positive remarks.

We proceed with answering the two questions of the reviewer:

• First, I believe that, compared to the quantum case, this model could be
useful to study more easily the periodicity of the classical orbits and how
this depends on integrability/non-integrability of the model. It would be
interesting to study in particular the scaling of the orbit sizes with the sys-
tem size. Do the authors have some intuition about this aspect?

The spectral form factor (SFF) can be a tool that can help study the
periodic orbits of the classical model since in the classical limit the SFF
at time t is related to the number of periodic orbits of size t. There has
already been some research about the SFF of dual unitary circuits (”Ran-
dom Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits”)
where SFF was calculated explicitly for a family of dual unitary circuits in
the thermodynamic limit, showing agreement with random matrix theory,
thus indicating strong chaoticity of these models. Although we have not
carried out the classical limit of these models explicitly, it is reasonable to
expect that, through the classical limit, these results translate directly into
the dual-simplectic models. This suggests that (modulo discrete symme-
tries such as time reversal), dual-simplectic models have a single periodic
orbit for each length t. However, direct even numerical verification of this
statement is not easy and remains an interesting prospect for the future
that is now mentioned in our conclusion.

• Second, would it be possible to also generalize, say, tri-unitary quantum
circuits (as introduced in ”Triunitary quantum circuits”) to the classical
case?

In the paper “Triunitary quantum circuits”, 3-site gates are defined and
dubbed tri-unitary since they have the property of being unitary in three
different arrows in time. Then, the authors work on the “folded picture”
in order to extract a diagrammatic proof of their results for the 2-point
function. The “folded picture” is diagrammatically equivalent to the one
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on the density space for a classical system where the dynamics are being
performed by the Frobenius–Perron operator of the local gate. We believe
that, using the same definitions and methods as in the dual-classical case
one can generalise it to a tri-symplectic case, where like in the tri-unitary
case we demand our 3-site local gate to be symplectic in three directions of
time. Moreover, in the classical case the diagrammatics represent integrals
over the phase space and a change of variables is what makes them being
interpreted in each of these directions of time where the local gate is being
replaced by the symplectic gate that propagates the state in the respec-
tive direction of time. In order to ensure equivalence of these diagramatics
one has to impose extra conditions which come from the generalization of
Eq. (15) (of the resubmitted version) in the three directions of time by
demanding that the Jacobian coming from the change of variables is 1.

We proceed to the changes made in the main text of the paper.

• ”Interestingly, dual unitary quantum circuits can exhibit strongly chaotic
quantum dynamics, whose classical simulation is in general expected to be
exponentially hard in system size”.We believe it would be important to cite
”Computational power of one- and two-dimensional dual-unitary quantum
circuits where a rigorous result along these lines was proven.”

We agree with the citation suggested and we would like to thank the
reviewer for his/her suggestion. We added the respective citation at the
point of the main text that, the reviewer mentioned (second paragraph of
p.2).

• Finally, two very trivial comments. It appears T. Prosen is misspelled (I
believe?) as ”T. c. v. Prosen” in multiple entries in the literature. Also,
journal names appear sometimes in short-hand notation (e.g. Phys. Rev.
Lett.), sometimes with full names (e.g. Physics Letters A). The authors
might want to make the notation uniform.

We thank the reviewer for the comment and we apologise for the mistake.
We corrected the names in ”References” to T. Prosen.

3 Report 3

• Strengths:

– 1- Exactly solvable models of classical dynamics.

– 2- Natural generalization of dual-unitarity to classical dynamics.

– 3- Detailed analysis and exact results for a representative example.
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• Report: In this work, the authors introduce the notion of ”dual symplectic
classical circuits” as the classical analogue of ”dual unitary quantum cir-
cuits”, which were recently introduced as exactly solvable models of quan-
tum chaos in which certain dynamical properties (e.g. correlation func-
tions) can be calculated exactly. These calculations are often done graphi-
cally, and the authors here show how demanding symplecticity in the time
and space direction results in identical graphical identities, from which
the calculations from dual-unitarity can be extended to classical circuits.
Specifically, it is shown that in these models two-point correlation func-
tions vanish everywhere except on the edge of the causal light cone, where
they can be calculated using a transfer operator formalism. In the specific
case of an Ising Swap model with additional single spin rotations, the au-
thors explicitly analyse this transfer operator. It is shown that the transfer
operator conserves total angular momentum and various exact results on
the eigenspectrum are presented, including autocorrelation functions for
the Sz spin component. The results are interesting, onvincing, and well
presented. Furthermore, there are various results in the growing litera-
ture on dual-unitarity that can subsequently be studied in these classical
circuits, such that this work opens up new pathways in this research di-
rection. As such, I am happy to recommend this work for publication in
SciPost Physics provided some questions/comments are addressed.

We are grateful to the reviewer for the positive assessment of our work.

We proceed with the requested changes proposed by the reviewer:

• One of the most remarkable properties of dual-unitary circuits is that it
could be explicitly shown that these circuits satisfy the usual ’definition’ of
quantum chaos, with major contributions from one of the authors. How-
ever, even though the title of this work is ”An exactly solvable model of
many-body chaos”, there is no discussion about whether or not these cir-
cuits are chaotic (although the ergodicity is discussed). Since classical
chaos is well defined, it would be interesting if the authors could explic-
itly comment on the chaotic properties of their analysed Ising swap model.
Lyapunov exponents are mentioned in the introduction, but then not dis-
cussed in the main text. In a related comment, classical and quantum
notions of integrability are defined differently, and it would be interesting
if the authors could comment on how these notions are satisfied in the
presented model when mentioning the integrable points of the Ising swap
gate

The reviewer is perfectly right and we are thankful for his comment. For
the purpose of this, we added above Eq. (28) the paragraph ”These mod-
els are also known [. . . ] is a characteristic property of chaotic systems.”.
With this additional text, we explain how one can generate more con-
served quantities through the local conserved ones and mention that the
Lyapunov spectrum vanishes for an integrable system for which we added
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the reference [34]. Moreover, we show that the Ising Swap model demon-
strates chaotic behaviour away from integrability and for this purpose, we
added in Section 4, the plot:
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Figure 1:

for two different values of the coupling constant α of the Ising Swap model
and for β, γ =

√
2π,

√
3π/2. This plot demonstrates a positive maximal

Lyapunov and thus sensitivity to initial conditions which is a characteristic
property of chaotic behaviour.

• On page 3, it is mentioned that the spectrum of the Jacobian needs to
include pairs of eigenvalues and that the Lyapunov exponents appear in
pairs. Could the authors provide either an argument or a reference as to
why that is the case?

We agree with the reviewer and thus we add the reference [28], which
provides a more detailed proof. In a few words, the proof is based on
the relation DgTωDg = ω for the Jacobian Dg of a symplectic map g.
Using this relation, one can prove that an eigenvalue gi of Dg is also an
eigenvalue of Dg−1 and thus they come in pairs of gi, 1/gi. Because the
Lyapunov exponents are obtained from the logarithm of the magnitude
of the eigenvalues gi of the Jacobian matrix of the map, in the case of a
symplectic map λi = log |gi|, λi′ = log |1/gi| = −λi.

• In the same section, when introducing the model, the authors write ”sym-
plectic maps always involve d-pairs of conjugate variables,the configuration
q and the momentum p, which can be seen as the coordinates of a 2d dimen-
sional manifold”, before discussing such properties as those in my previous
point. However, in the specific example considered in this manuscript the
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authors consider the dynamics of spin variables. It might be worthwhile
to also discuss/mention spin variables in that section and the connection
with typical pairs of conjugate variables.

We agree with the suggested change from the reviewer and thus, we added
below Eq. (24) an explanation and the exact relation that connects the
spin variables to the conjugate ones. In more detail, we mention that
there is no unique choice for a set of conjugate variables since a change
of coordinates under a symplectic transformation, leads you to another
set of conjugate variables, but we focus on the pairs of φi, zi, which are
the two out of the three cylindrical coordinates: the azimuthal angle and
the cartesian coordinate along the z-axis. Moreover, we present the typi-
cal Poisson brackets that conjugate variables like φi, zi satisfy, just above
Eq. (25) and the relation between the classical spin variables Sx

i , S
y
i , S

z
i

and φi, zi at Eq. (25).

• Small typo below Eq. (25): ”The transfer operator is just the Per-
ron–Frobenius of ...”

We corrected the missing word ”operator”, just below Eq. (28).

• Conservation of total angular momentum typically follows from rotational
symmetry, and it might be useful to discuss this symmetry in the main
text. Right now it is mentioned below Eq. (B.6) that ”This is not sur-
prising, since as we can see from (B.3),(B.6) the transfer operator is just
a composition of rotations, which preserve the total angular momentum.”
It would be useful to include such a discussion in the main text.

We thank the reviewer for his suggestion and we think that a discus-
sion about rotational symmetry in the main text makes the manuscript
more complete and coherent. In particular, we added on the paragraph
below Eq. (28) (”Rotations preserve [. . . ] linear superposition of rota-
tions”), some extra discussion, where we mention that indeed the transfer
matrix F , being somewhat a composition of rotations, commutes with the
total angular momentum J2 but not with arbitrary rotations. Moreover,
the local gate PΦα,β,γ

includes a non linear rotation which, is the Ising
gate. Because of this non linearity as we prove in Appendix E, PΦα,β,γ

is
not block diagonal in the eigenvalues of J2 and thus it does not commute
with neither J2 nor arbitrary rotations. To conclude, the transfer matrix
preserves the total angular momentum but the model in general does not
demonstrate rotational symmetry.

We proceed with the list of changes made according to the reports from the
reviewers. We also include the changes we made to the manuscript outside the
framework of the reviewing process.
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4 List of changes

• In throughout the text we replaced ”Perron–Frobenius” with ”Frobenius-
Perron” and ”SWAP” with ”Swap”.

• p.1 Abstract: We replaced “Remarkably, for these models, the rotational
symmetry . . . ” with “Remarkably, expressing these models in the form of
a composition of rotations . . . ”

• p.1 Abstract: We replaced Montecarlo with Monte Carlo

• Introduction ,p.2, second paragraph: We added an additional reference,
the reference [19]
”[19] R. Suzuki, K. Mitarai and K. Fujii, Computational power of one- and
two-dimensional dual-unitary quantum circuits, Quantum 6, 631 (2022),
doi:10.22331/q-2022-01-24-631.”

• at the end of section 2: We added a reference, the reference [28]
”[28] E. Ott, Chaos in Dynamical Systems, pp. 251–258, Cambridge Uni-
versity Press, 2 edn., doi:10.1017/CBO9780511803260 (2002).”

• Section 3.1, at the caption of Fig.2 : We added the following text ” with the
”curly” edges indicating the periodic boundary conditions of the model.”
at the caption of Fig. 2.

• Section 3.2, the second half of the first paragraph, above Eq. (15): We
added the following:

”The dual picture allows for diagrams like the one in Fig 2, to be in-
terpreted in the space direction too from left to right, with the exchange
of Φ → Φ̃ or even from the right to the left where the dual map is de-
fined as in Fig. 3 but, with the exchange of the legs of Φ along the other
diagonal. However, these diagrams are just graphical representations of
integrals over the phase space MN and the passing to the dual picture is
a change of integration variables, which leads to a factor coming from the
Jacobian of the transformation. In order for both pictures to be equiva-
lent under this change of variables and not carry these type of Jacobian
factors, one should impose that this Jacobian is 1 for both of the left to
right and right to left directions in space and thus, the local gate should
satisfy the following conditions:∣∣∣det(∂Φ1(X⃗1, X⃗2)

∂X⃗2

)∣∣∣ = ∣∣∣det(∂Φ2(X⃗1, X⃗2)

∂X⃗1

)∣∣∣ = 1 ,∀X⃗1, X⃗2 ∈ M×M (15)

where Φ1,2 are the single site outputs of the local gate defined as(
Φ1(X⃗1, X⃗2),Φ

2(X⃗1, X⃗2)
)

= Φ(X⃗1, X⃗2). We provide an explicit proof
of (15) in Appendix A. In addition, by definition the dual map is an
involution and so the dual of the dual picture should be the original one
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with Φ. In order to, assure that the change from the original picture in the
time direction to the the dual one and vice versa is equivalent, then (15)
should respectively hold for the dual map. We actually, prove in Appendix
A, that the condition (15) for Φ is enough for this to be true.”

• Section 3.2, above Eq. (16): We added the following part
”that also satisfies (15). We stress . . . ”
and ”We stress that Eq. (15) is actually crucial and follows naturally in
dual simplectic circuits which are obtained through a limiting procedure of
dual-unitary quantum circuits with a finite a discrete local hilbert space.
In fact, there has already been some research on dual symplectic circuits
where Eq. (15) does not hold; in particular, in integrable circuits with non-
abelian symmetries, it has been demonstrated [15] that 2-point dynamical
correlations follow Kardar–Parisi–Zhang (KPZ) universality and are not
restricted to the edges of the light cone, in contrast with what we prove
here for dual-simplectic circuits where Eq. (15) holds”

• Section 4, above Eq. (22): We added Table 1, which includes a table with
all the different levels of ergodicity that our model can demonstrate. In
particular, we refer to the following table:

• Section 4, below Eq. (22): We replaced the symbol for the axis α with n.

• Section 4, above Eq. (28) we added the figure Fig. ‘1 as Fig. 5 along with
the caption:
”The Lyapunov spectrum λi of the Ising Swap model, for two different
coupling constants α = 0.4, 1, angles β =

√
2π, γ =

√
3π/2 and for system

size N = 200. It was created for t = 800 and a sample size of Nsample =
104 initial states drawn from the uniform measure. The black circles
represent the Lyapunov spectrum at every 10 exponents, at time t = 700,
showing an excellent time convergence for λi. The spectrum is symmetric
with respect to the horizontal axis, as expected for a symplectic system
and has a positive maximal Lyapunov exponent, indicating chaoticity for
Φα,β,γ .”

• Section 4,below the Eq. (24) of the manuscript: We added the following:
” The spin variables as we can see from (24), are not the pairs q, p of con-
jugate variables that we expect in symplectic dynamics. In general, there
is not a unique choice of conjugate variables, since a symplectic transfor-
mation maps you from a set of conjugate variables to another. However,
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here we choose the pairs φi, zi with zi being the cartesian coordinate along
the z-axis and φi the azimuthal angle of the i-th site and so they satisfy:

{φi, zj} = δij , {φi, φj} = {zi, zj} = 0 (25)

The spin variables are just vectors of the unit sphere meaning that they
are related to φi, zi as:

Sx
i =

√
1− z2i cos(φi) , Sy

i =
√

1− z2i sin(φi) , Sz
i = zi (26)

and one can easily check that (26) satisfies the SO(3) Poisson bracket (24).
”

• Section 4, just above Eq. (27) : We replaced ”It is easy to verify that
the space-time dual of the gate (21), as defined in Fig. 3, has a similar
form”with
”We explicitly demonstrate in Appendix C that, (22) satisfies (15), allow-
ing us for equivalent interpretations of the diagrams in both the time and
space direction. Following the same method as employed in Appendix A,
one finds that, the space-time dual of our model is defined as:”

• Section 4 , above Eq. (28) paragraph on the top: We added the reference
[34]
”[34] H.-D. Meyer, Theory of the liapunov exponents of hamiltonian sys-
tems and a numer- ical study on the transition from regular to irregular
classical motion, The Journal of Chemical Physics 84(6), 3147 (1986),
doi:10.1063/1.450296.”

• Section 4 , above Eq. (28) : We added the following text:
”Later, in (33) we provide analytical results for the auto-correlation of the
z-components at the integrable points, when they do not decay to zero.
In general, every scalar that depends on the sum of the z-components
along the aforementioned bipartitions will be conserved. At the integrable
points of our parameter space, trajectories in phase space are bounded on
invariant tori and the Lyapunov spectrum vanishes [34], whereas away
from those points, chaotic behaviour is expected to arise. In Fig. 5 we
present some examples of the Lyapunov spectrum at chaotic points of our
Ising Swap model, where it demonstrates a positive maximal Lyapunov
exponent and thus sensitivity to initial conditions, which is a characteristic
property of chaotic systems.”

• Section 4, just below Eq. (28): We replaced ”The transfer operator is just
the Perron–Frobenius of . . . ” with ”The transfer operator is the Frobenius-
Perron operator of. . . ”

• Section 4, paragraph below Eq. (28): We added the text:
”Rotations preserve the total angular momentum and since, F according
to (28) is a composition of rotations it shares the same property, as proven
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in Appendix D. More explicitly, we denote as Ji, i = x, y, z the generators
of single site rotations and J2 =

∑
i Ji as the angular-momentum-squared

which satisfies [J2, Ji] = 0,∀i and thus, commutes with every rotation op-
eration. Then, indeed F commutes with the angular momentum and thus
has block diagonal form in its eigenvalues, as we demonstrate in Appendix
D. However, this is not a consequence of an underlying rotational symme-
try but rather of the specific form of the local gate PΦα,β,γ

. Indeed, the
Ising swap gate in PΦα,β,γ

involves a non-linear rotation, i.e. a rotation
whose angle depends on the z component of the neighbouring. Because of
this non-linearity, it is not block diagonal with respect the eigenvalues of
J2 as we prove in Appendix E. Nonetheless, in going from the local gate
PΦα,β,γ

to the transfer operator F , the neighbouring site is, by definition
Fig. 4, in the equilibrium state, so that its z component can be integrated
over, thus leading to the operator Q(α), which is a linear superposition of
rotations”

• Section 4, paragraph above Eq. (29): We replaced ”We choose the coordi-
nates z, φ being respectively the z cartesian component and the azimuthal
angle.” with ”We choose the conjugate variables z, φ for the parametriza-
tion of S2.” We also replaced ”As we rigorously prove in Appendix B,
the transfer operator F . . . ” with ”As we already mentioned, the transfer
operator F . . . ”

• Section Conclusion: We replaced

”It is important to mention that our method is valid not only for dual-
symplectic systems. Specifically, it is easy to check that any local gate Φ
which is volume preserving that also has a volume-preserving dual map
Φ̃, satisfy (15) and thus exhibit the same diagrammatic behaviour. ”

with
”We would like to stress, that our method is valid not only for dual-
symplectic systems, as it is easy to check that any local gate Φ which is
volume preserving and which also has a volume-preserving dual map Φ̃
and satisfies (15), satisfies also (16) and exhibits the same diagrammatic
behaviour.”

• Section appendices: We arranged the appendices in the same order as they
appear in the main text.

• Section appendices: We added two more appendices A,C under the re-
spective titles: ”Dual picture and change of variables”, ”Diagrammatic
equivalence’s conditions for Φα,β,γ”

• Appendix E, Eq. (E.5),Eq. (E.6),Eq. (E.7): We changed T (.) to PT (.) and
Φα,β,γ to PΦα,β,γ
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• We added to Acknowledgement: ”We acknowledge fruitful discussions
with B. Bertini and Ž. Krajnik which, in particular, helped us to un-
derstand the role of the Jacobian when transforming between the time
and space directions.”
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