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1 Punctual remarks
1. Introduction. The end of the second paragraph recalls that fracton dynam-

ics in curved geometry is consistent only on certain special backgrounds.
The end of the third paragraph seems to aim at a general description of
fracton hydro on generic curved background. The two things would clash.
Furthermore, in the paper only linear fluctuations about flat backgrounds
are studied. The end of the third paragraph seems thus to need revision.

⇒ While it is true that symmetric tensor gauge theories, where the field Aµν

is dynamical, are only consistent on certain backgrounds, this is not the
case when Aµν is not dynamical. For example, one can construct a scalar
field theory with local dipole symmetry that can consistently be coupled
to arbitrary Aristotelian backgrounds.
At the same time, we note that the problem of coupling symmetric tensor
gauge theories to arbitrary curved backgrounds is related to the fact that
the field strength associated with Aµν is not dipole invariant. In the con-
text of this paper we note that the presence of a Goldstone field due to
spontaneous breaking of dipole symmetry allows us to define a gauge-
invariant symmetric gauge field Aµν which has an associated dipole in-
variant field strength.
Regarding the point that we restricted the study of linearised fluctuations
to flat backgrounds, we have modified the sentence “The aim of this paper
is precisely to formulate different classes of fracton hydrodynamics in gen-
eric curved spacetimes and to identify the low energy spectra.” to “The
aim of this paper is precisely to formulate different classes of fracton hy-
drodynamics in generic curved spacetimes, and to identify the low energy
spectra on flat backgrounds.”

2. In the introduction and Subsection 2.4 it is stated that, imposing vanish-
ing U(1) curvature corresponds physically to the absence of elementary
dipoles. The statement is argued on the basis of a counting of degrees
of freedom and in line with a similar observation made in [JJ22]. I think
the statement is not correct. The identification of elementary dipoles is
ambiguous and related to improvement transformations of the currents,
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similarly to the spin current in the energy momentum for standard field
theory. The argument goes like this. The total dipole is

di =

∫
d3x (xiJ t − J ti) . (1)

The Ward identities are

∂µJ
µ = 0 ,

∂µJ
µa = Ja .

(2)

Consider the improvement

J̃µ = Jµ + ∂νχ
νµ ,

J̃µa = Jµa + χµa ,
(3)

with χµν = −χνµ. The improvement respects the Ward identities and
allows one to set

J̃ ta = 0 ,

J̃ [ia] = 0 .
(4)

In particular, the density of elementary dipoles is vanishing.

This seems to solve another issue. In Subsection 2.4, in order to work
with Aµν instead of the full Ãa

µ, a constraint on the U(1) curvature is
imposed. However, according to (2.32), such a constraint would not be
gauge invariant. Thereby, relaxing or imposing it should not change the
physical content of the theory. Instead, as stated in the last paragraph of
the subsection, depending on the enforcing of the constraint, the theory
would/would not contain elementary dipoles.

⇒ We thank the referee for these astute observations. The curvature con-
straint is gauge invariant since we assume that the torsion vanishes. We
have added a footnote to that effect. The point made about improvement
terms is very interesting and also works in curved space in the absence of
torsion. To be precise, the relevant part of a generic variation involving
Ãν

µ = Ãa
µe

ν
a instead of Aµν is

δS ⊃
∫

dd+1x e
[
−JµδBµ +Dµ

νδÃ
ν
µ

]
. (5)

The U(1) Ward identity is
∇µJ

µ = 0 , (6)

while the dipole shift Ward identity now reads

Jνhµ
ν −∇νD

νµ = 0 , (7)
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where
Dνµ = Dν

ρh
ρµ . (8)

Under the suggested improvements

J̃µ = Jµ +∇νχ
νµ ,

D̃µν = Dµν + χµρhν
ρ ,

(9)

the dipole Ward identity remains invariant, i.e.,

J̃νhµ
ν −∇νD̃

νµ = 0 , (10)

while the U(1) Ward identity turns into

∇µJ̃
µ =

1

2
[∇µ,∇ν ]χ

νµ = 0 , (11)

where the last equality relies on the absence of torsion so that, in partic-
ular, the relation

∇µX
µ = e−1∂µ(eX

µ) (12)

holds. In flat space, as the referee points out, the total dipole charge is
now

di =

∫
ddx

(
xiJ t −Dti

)
, (13)

where Dti is the flat space version of τµDµ
ν and captures the the“internal

dipole density”. We may, however, choose χµν above such that

D̃ti = 0 , D̃[ij] = 0 , (14)

which removes the internal dipole density. Imposing the curvature con-
straint corresponds to choosing the improvement above.

We have included this in the paper in Section 2.4 along with the state-
ment that imposing the curvature constraint corresponds to choosing an
improvement term that removes the density of elementary dipoles. In
addition, we have included a footnote with special thanks to you, the
anonymous referee.

3. Introduction, second paragraph of pag.4. It refers to the consistent defin-
ition of the chemical potential. This seems related to the statement below
(4.12) where it is said that the typical ordering of background gauge field
is O(1). Are these remarks just saying that, if we consider non-trivial
chemical potentials, we normally want them to enter at ideal order? The
word consistent in the intro seems to refer to something more that I am
possibly not getting. Some rephrasing would help.

⇒ All we mean here is that a gradient ordering must be specified for the fields
entering the hydrodynamic theory. To avoid confusion, we have removed
the word “consistent”.
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4. In Section 3.1 it would be helpful to say that one turns to Landau grand-
potential, otherwise (3.2) seems to clash with comments before it.

⇒ We have added this comment above (3.2).

5. The are some issues in the argument below (3.5). First, it would be helpful
to explain the relation m = 2∂P/∂u2, maybe connecting to (B.9) and
(B.10) (see next point). Then, the argument seems to need to be expressed
in a different order, first stating that ui is invariant and, from that, arguing
that m is invariant too. It also seems to lack the extra information coming
from the invariance of Jµ under dipole (2.39). Specifically, being ρ and
J i = ρui both invariant, then ui is invariant.

⇒ We have added some more explanatory text around Eq. (3.5). In partic-
ular, we now explicitly write the Gibbs–Duhem relation, which explains
the relation m = 2∂P/∂u2. We thank the referee for pointing out that the
order of the argument should be reversed; this has now been done. The
argument for the dipole invariance of ui relies on the fact that it is part
of a thermal vector defined in terms of a background Killing vector (in
the general case) which does not transform under dipole transformations.
However, another way to arrive at the same conclusion is to argue that
Jµ does not transform, as the referee suggests. We have included both
arguments in the text.

6. There seems to be a source of confusion in some adopted notations. In
Section 3.1, u represents the frame velocity, namely the spatial equival-
ent of a chemical potential. In Appendix B, the 4-vector containing the
chemical potential and the velocity components is instead indicated with
ξ, while u assumes a dual meaning according to (B.6) and (B.7).

⇒ In Appendix B, we treat both the relativistic and the Aristotelian super-
fluids, which have a broken U(1) symmetry. This implies the presence
of a Goldstone field ϕ, which allows us to construct the “superfluid velo-
city” ξµ = Aµ − ∂µϕ. This is very different from the actual velocity uµ,
which is part of the thermal vector kµ, which is a Killing vector of the
background. For Aristotelian fluids (both super and normal), where there
is no boost-invariance, physical quantities will explicitly depend on the
chosen frame, which is reflected in the presence of an additional chemical
potential u⃗2 for the kinetic mass density m. In other words, ξµ and uµ are
very different, and uµ only gives rise to an additional chemical potential
in the Aristotelian case.

7. Introduction. The description of quadratic dispersion relations is confus-
ing. First, the coefficient a entering a dispersion relation as ω = ak2 + . . .
is systematically referred to as “velocity” but it is not a speed at the dimen-
sional level. Secondly, the term magnon suggests physical aspects which
are not present here. Magnons are spin-waves whose quadratic behavior
is related to a lack of time-reversal symmetry. Here neither spin nor time
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reversal is concerned. As far as I am understanding “magnon-like” is used
just as a synonym of “quadratic” which would be preferable.

⇒ It is true that “magnon-like” just means quadratic and that “magnon ve-
locity” refers to the coefficient appearing with k2. This nomenclature has
(perhaps unfortunately) become standard in the literature so we have used
it here also. In any case, we have added footnote 4 to specify what we
meant by this terminology.

8. Introduction, fig.1. Why does not the pinning translate into a gap for a
mode? This is the customary sense of the word “pinning” in condensed
matter. Pinned charge-density-waves, for example, have a gapped sliding
mode.

⇒ We used the word “pinning” in analogy with condensed matter systems,
but the origin of the pinning we consider is different than in typical setups.
In particular, in the context of charge density waves, crystals, etc, pinning
arises due to explicit symmetry breaking while in the context of s-wave
fracton superfluids no symmetry is explicitly broken. Nevertheless one can
still write a kind of “mass term” that involves a combination of Goldstone
fields. In any case we should not expect the same phenomenology. We
have added footnote 10 with this explanation.

9. The derivation of (2.38) is not explained clearly. It seems that (A.3) is
used without saying and possibly also the Ward identities (2.41) derived
only later.

⇒ We have rewritten the relevant paragraph slightly so it is clear that those
equations were used.

10. The derivation of (B.5) is not easy to follow. First, the same symbol ξ is
used for the superfluid velocity and for the vector generating a generic dif-
feomorphism. (B.5) is a consequence of the last of (B.4) and its variation,
δδKϕ = 0 (this could be said to help the reader). However, the meaning
of δ in (B.5) is different from that just used in (B.1), in fact one is using
δ in the sense of δϕ = £ξϕ+ σ, comprehending both a diffeo and a gauge
transformation.

This said, I find it not clear how (3.9) could descend from (3.8) as sug-
gested by the text between them. The last of (3.9) is analogous to (B.5)
which needed the last of (B.4), absent in (3.8).

The second of (3.9) is got from δδKBµ = 0 using the second of (3.8) and
the last of (3.9). It could be useful to explain more explicitly how to get
(3.9).
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⇒ We have added some additional explanatory text around (B.5), and we
have changed the name of the infinitesimal diffeomorphism from ξ to ζ to
avoid confusion with the superfluid velocity ξµ.

We have also added additional text around (3.9) (which is now (3.10)) to
explain how it is derived.

11. Subsection B.1.1. In (B.6) the parameter T0 is introduced, but then is
considered only T0 = 1 without saying. Eq. (B.7) is actually the definition
giving rise to the third of (B.6), the phrasing between (B.6) and (B.7) is
confusing.

⇒ The constant “global” temperature T0 that features in the definition of T
is not set to one in that section, but it does not feature explicitly in the
other expressions. However, it implicitly appears in all instances of T .

From the perspective of the hydrostatic partition function, the name of
the game is to construct all gauge-invariant scalars, and ξ2 is one of those.
Another is µ = uµAµ + TσK , while a third is given by uµξµ. However,
this is the same as µ in equilibrium.

12. Plugging (B.9) into (B.14) and differenciating, there is a problem with the
sign of the term in dξ2. Does this propagate to (B.13)?

⇒ Well spotted! The sign in the expression for the first law is a typo and
does not affect the other equations (cf., pp. 2–3 of this paper by Jensen
et. al.)

13. In (5.10) there seems to be a typo, θ has not been introduced before. It
is probably a ϕ and, using an expression analogous to that given below
(B.7), it justifies the statement µp = uµBµ given just afterwards. Some
more in-line explanation would be useful.

⇒ This is indeed a typo. We have added a sentence that says that the
identification µp = uµBµ is a result of the equilibrium condition on ϕ.

14. The constraint on charge mobility due to dipole symmetry is valid only
when a charge is isolated and, in particular, when it cannot exchange
dipoles with a background or a dipole condensate. Why then should the p-
wave fracton superfluid feature a sort of no-flow theorem like that emerging
from (4.17)? Relatedly, since both the p- and s-wave fracton superfluids
are on the same footing as far as the dipole symmetry and its breaking
are concerned, why should there be such a qualitative phenomenological
difference about the possibility to flow? I believe these points need to be
discussed more in the paper.

⇒ We emphasise that (4.17) is not related to the no-flow theorem that we
discuss in §3.1. Rather, it is a consequence of the gradient ordering that
we impose and implies that the p-wave superfluid has fluid velocity that
is O(∂) and hence it can flow but slowly. The same choice of gradient
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ordering can be made for s-wave superfluids, which we discuss in Appendix
C, but as we also argue throughout the paper we think that this choice of
gradient ordering for the s-wave superfluids is not the most appropriate
one. The reason why gradient orderings can be different in the two phases
is simply because the field content in the two phases is different.

15. Why does (5.1) feature a minus sign with respect to an analogous equation
in (B.1)?

⇒ This is a choice. Appendix B was written to conform to the conventions
usually adopted in the literature on superfluids. We have added a footnote
about this in Appendix B.

16. The comparison of the term proportional to the scalar Goldstone variation
between (5.25) and (B.18) seems problematic. In (5.25) there appear a
calligraphic kappa, while in (B.18) there is a normal K.

⇒ We are unsure which comparison the referee refers to here. We do not
compare the two expressions in the paper. They are the adiabaticity equa-
tions for two separate hydrodynamical systems. The reason why (B.18)
has a different sign is related to how K is defined in (B.11), which has the
opposite sign compared to (5.3).

17. The steps at pag.29 seem to me correct, however I have found it hard to
follow them. Maybe some effort to streamline would be useful.

⇒ The calculations on page 29 show how our results relate to those of
Głódkowski, Benítez and Surówka, and in particular show that the con-
stitutive relations they find are exactly those of the flat-space p-wave frac-
ton superfluid that we develop. We are not sure which parts are particu-
larly confusing: to us, the section accomplishes its aim in that it demon-
strates the equivalence of the constitutive relations. Nevertheless we tried
to improve it by adding various comments and details. If the referee is
unsatisfied with parts of it, we would be grateful if the referee could point
out the particular parts of it that appear to be confusing.

18. The identification pj = −nΨj in (4.45) is commented at pag.30 but it
appears to be confusing. Momentum as a physical quantity should be
gauge invariant, a Goldstone field is not gauge invariant.

⇒ Indeed this is one of the main differences between fracton theories and
other theories, namely the fracton algebra implies that momentum trans-
forms with dipole transformations as pointed out in various papers, in-
cluding Ref. [23]. This is also clearly visible from the second variation
of the action, which states that both the energy current and the spatial
stresses in (2.48) must transform under dipole transformations. By defin-
ing momentum as usual pµ = τµT

µ
λh

λ
µ ∼ T 0

i we clearly see that it must
transform under dipole transformations. This explains, for instance, the
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identification provided in (4.45). We note, however, that for p-wave su-
perfluids there is a definition of spatial stresses that allows for a notion of
dipole-invariant momemtum, namely that given by (4.8).

19. (5.21) is analogous to (B.13). What is the analog of (B.12), which one
should use to get to (5.21)?

⇒ The hydrostatic superfluid equations of motion in (5.21) are obtained by
varying the “ideal” order pressure P defined in (5.17). The responses are
defined in (5.18). To more clearly showcase the origin of the expressions
in (5.21), we have included the variation through which they are defined.
We hope this makes their derivation sufficiently clear to the referee.

20. Well-defined gradient expansion and UV/IR mixing. The parts within Sec-
tions 5.2, 5.4 and Section 6 that are concerned with the gradient expansion
are confusing. Apparently, having Aµν ∼ O(∂) gives the hydrodynamic
series a structure of double expansion in both the wave-number k and Aµν .
From the comments given in the manuscript, it is not clear whether one is
free of considering different regimes like Aµν ≪ k or Aµν ≫ k, or if one is
obliged to consider Aµν ∼ k. Above (5.17), it is stated that higher order
scalars built from Aµν can affect lower orders in wavenumbers. This would
relate to Aµν ≫ k and has the downside of making the hydro expansion
completely unpredictive. This is in line also with the comments given
above (5.33) where, including higher powers of ξ, can modify the lower
order coefficients in k in the dispersion relations. In the page change from
47 to 48, however, it is said that the gradient expansion followed in the
main text reconciles the gradient expansion with that in wave-number,
therefore Aµν ∼ k. Contrasting with the subsequent sentences where it is
said that higher derivative terms also affect lowers orders in k. All in all,
it is not clear whether one could just take an expansion in orders of ∂.

Note that at the end of pag.47 the gradient expansion done for the s-
wave with the same scaling hypothesis as the p-wave is discarted precisely
because of possible “mixing effects” among the orders, when indicating
that the higher-derivative term related to m affects the IR-regime.

⇒ This was an interesting comment and it took us some time to understand
a bit further the structure of linear modes. We begin by noting that the
gauge invariant Aµν indeed includes the background gauge field Aµν and
hence the gradient scheme Aµν ∼ Aµν ∼ O(1) requires us to only couple
the fluid to Aµν perturbatively. In other words, imposing this gradient
scheme implies that s-wave flows must have small dipole superfluid velo-
cities which in the context of the couplings we considered is equivalent
to expanding in small dipole superfluid density. Admittedly, we do not
think that this was extremely clear in the earlier draft so we added some
comments below equation (5.8) while above (5.17) we introduced a book-
keeping parameter ε to control the strength of the couplings to Aµν .
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Going back to the referee’s question, we are free to choose the relative
strength of ε with respect to the momentum k and consider all possible
regimes ε ≪ k, ε ∼ k and ε ≫ k as long as ε is treated perturbatively. In
the earlier draft we had considered ε ≫ k, as the referee pointed out, but
because the couplings must be treated perturbatively we show that this
regime is equivalent to ε ∼ k. We have restructured Section 5.4 with the
various mode calculations and expansions in ε as well as given a summary
of the structure of modes at the end of Section 5.4. In that summary
we also compare these linear modes with the modes obtained using the
alternative gradient scheme. We argue in that summary that while one
scheme appears to show signatures of UV/IR mixing, the other does not at
least for the corrections and the equilibrium states that we considered. In
line with Section 5.4 we adapted the discussion of the gradient schemes in
Section 6 which we hope will not cause further misunderstandings. We feel
that this analysis of the gradient and momentum expansion is currently
as exhaustive as it can be without increasing significantly the scope of the
paper.

2 Curiosities
1. In the paper, only fractonic symmetries associated to multipolar symmet-

ries are considered, what about subsystem symmetries?

⇒ We find this an interesting direction and it should be possible to gauge sub-
system symmetries and obtain a curved spacetime geometry as in Section
2 of our paper. If this can be done consistently, one could aim at devel-
oping hydrodynamic theories for subsystem symmetries. We have added
a comment on this at the end of Section 6 along with a few references.

2. The mass/pinning of the Goldstone in the s-wave fracton superfluid is
very interesting. What is the relation of such pinning to the Goldstone
counting problem and/or inverse Higgs constraints?

⇒ We haven’t investigated this in detail and we do not have, at this point,
anything non-trivial to say except that there must be a relation with
inverse Higgs constraints since in the U(1) regime of s-wave superfluids
we find the condition Ψµ = hν

µ(Bν + ∂νϕ) which appears to be similar to
typical inverse Higgs constraints. We have added footnote 20 as well as a
new reference.

3 Typos

1. The indices of the Ãe combinations in (2.30) are wrong.

⇒ We thank the referee for pointing out this typo; this has now been fixed.

9



2. Last paragraph of 2.4, the removed components are d(d − 1)/2 and not
d(d+ 1)/2.

⇒ We disagree with this comment. The U(1) curvature is an antisymmetric
tensor in (d + 1) spacetime dimensions (and not d dimensions), and so
enforces d(d+ 1)/2 conditions.

3. First sentence of Subsection 2.6, “which” → “in which”.

⇒ We thank the referee for pointing out this typo; this has now been fixed.

4. Between (5.14) and (5.15), “thos” → “those”.

⇒ We thank the referee for pointing out this typo, this has now been fixed.

5. Just before (4.27), “must a” → “must be a”.

⇒ We thank the referee for pointing out this typo, this has now been fixed.

6. Before (4.47), the transformation fs → −fs is referred to as a “shift”, but
it is not.

⇒ We thank the referee for pointing out this typo. “Shift” has now been
replaced with “redefinition”.

7. Text between (5.18) and (5.19). “second variation (5.3)” → “second vari-
ation of (5.3)”.

⇒ We thank the referee for pointing out this typo, this has now been fixed.

8. Below (5.21), “as the for p-wave” → “as the one for p-wave”.

⇒ We thank the referee for pointing out this typo, this has now been fixed.
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