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Abstract

Braiding of Majorana states demonstrates their non-Abelian exchange statistics. One
implementation of braiding requires control of the pairwise couplings between all Majorana
states in a trijunction device. In order to

::
To

:
have adiabaticity, a trijunction device

requires the desired pair coupling to be sufficently
::::::::::
sufficiently

:
large and the undesired

couplings to vanish. In this work, we design and simulate of a trijunction device in a two-
dimensional electron gas with a focus on the normal region that connects three Majorana
states. We use an optimisation approach to find the operational regime of the device in a
multi-dimensional voltage space. Using the optimization results, we simulate a braiding
experiment by adiabatically coupling different pairs of Majorana states without closing
the topological gap. We then evaluate the feasibility of braiding in a trijunction device for
different shapes and disorder strengths.

:::
See

:::::
also:

:::::::
Online

:::::::::::::
presentation

::::::::::
recording.

1 Introduction

A pair of well-separated Majorana states encodes
::::::
encode

:
the occupation of a single fermionic

state non-locally as two zero-energy states [1]. Under
:::
the

:
exchange of two Majorana

states, i.e. braiding, the
::::::::::::::::::::
states—braiding—the

:
protected ground state evolves via unitary

operations. The discrete nature of braiding allows to implement
::::::::::::::
implementation

:::
of

:
all

Clifford operations with very low error rates—a requirement for universal fault tolerant
:::::::::::::
fault-tolerant quantum computation [2]. This has brought a lot of attention to the field
in the past two decades with several proposals for experimental realization [3, 4] and
detection [5–7] of Majorana bound states. Therefore, there are several proposals for
braiding that include moving Majoranas around each other in semiconductor nanowire
networks [8, 9], long range

::::::::::
long-range

:
coupling of Majorana islands connected by quantum

dots [10–13], and networks of Josephson junctions connected by trijunctions [14,15].
Braiding in hybrid semiconductor-superconductor devices requires coupling all Majorana

states via control of the electrostatic potential. Two-dimensional electron gases (2DEGs) are
suitable for realising

::::::::
realizing trijunction devices because they combine different ingredients

such as electrostatic control and superconductivity [4] in a non-linear layout. 2DEGs are
an active field of research for topological physics with experiments focused on detecting
signatures of Majorana states in single nanowires [16–18], planar Josephson junctions [19,20],
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or in minimal realisations
:::::::::::
realizations

:
of the Kitaev chain [21,22]. Unambiguous detection

of Majoranas requires distinguishing them from non-Majorana physics producing similar
results [23,24]. The recently proposed topological gap protocol [7] establishes a first step
towards fully-automated

::::
fully

:::::::::::
automated

:
detection of Majorana states.

A braiding experiment poses additional requirements to the creation of spatially isolated
Majoranas. It requires measurement of the fermion parity of Majoranas belonging to the
same nanowire [25,26]. Furthermore, it also requires a trijunction—a switch that selectively
couples Majoranas from three different nanowires—which is the focus of our work. The
requirements for a braiding experiment are such that (i) the energy of the coupled pairs
needs to be larger than the thermal broadening, (ii) the ratio of the energies of coupled
pairs with the remaining Majoranas should be as large as possible to ensure adiabaticity,
and (iii) the gap between the zero-energy ground state and the coupled Majoranas does not
close while coupling different pairs. A trijunction device that satisfies these requirements
is suitable to perform braiding.
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Figure 1: A trijunction device. (a) Minimal illustration
::::
The

::::::::
braiding

:::::::::
protocol

::::
that

:::
we

:::::::::
consider

:::::
[15].

:::::
The

:::::
lines

::::::::
indicate

::::::::::
Majorana

::::::::::
couplings

:::::
that

:::
are

::::::
either

:::
on

::::::
(thick

:::::
lines)

:::
or

:::
off

::::::::
(dashed

:::::::
lines).

::::
(b)

::
A

::::::::::
schematic

:
of a trijunction device with

::::::::
showing three Majorana states

::::::
closest

:::
to

::::
the

:::::::::::
trijunction

::::::
region

:
(red, blue

:
,
:
and

yellow) and their pairwise couplings. (b
:
c) Illustration of our

:::::
Real

:::::
space

trijunction device deisgn
:::::
layout. The shape of the depletion gates (purple) is

parametrized by L, W , and θ. The potential induced by the gates is shown in
the background

::::
color

::::::
shows

::::
the

:::::::::
chemical

:::::::::
potential. Blue regions are depleted

and red regions are accumulated
:::
not. Scalebar

:::
The

::::::
scale

::::
bar is 100 nm in all

following
::::::::
200 nm.

:::
(d)

:::::
The

:::::::::
complete

::::::::::
simulated

:
deviceplots.

::::
The

:::::::::::
trijunction

::
is

::
in

:::
the

:::::::
middle

:
(c

::::::
purple

:::::::::::
rectangle),

:::::
with

:::
the

:::::::::::
nanowires

::::
(red

::::::
lines)

:::::::::
attached

:::
to

::
it.

:::
(e)

Heterostructure configuration.

In order to evaluate
:::
To

::::::::
evaluate

::::
the

:
feasibility of a braiding experiment, we design and

simulate a trijunction device as shown in Fig. 1. In order to
::
To

:
find the operational regime

of the device, we use an optimisation
::::::::::::
optimization

:
approach using an effective Hamiltonian

in the basis of decoupled Majorana states. Then, we illustrate the device operation by
simulating the braiding protocol from Ref. [15] where we switch the coupling between
different pairs of Majorana states while preserving the energy gap. We define quality
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metrics relevant for braiding and systematically compare the performance of different
trijunction device geometries. We highlight the geometries that are suitable for braiding
and investigate their resilience to increasing concentration of electrostatic disorder that is
unavoidable in this system [7].

2 Device layout
:::::
and

:::::::::::::
braiding

:::::::::::::
protocol

A braiding protocol [15, 27] requires time-dependent manipulation of the pair couplings
between three Majorana states shown in Fig. 1(a). The computational subspace—one
Majorana in the trijunction and three Majoranas in the far nanowires’ ends—is protected as
long as the number of zero-energy modes remains constant. In other words, the computation
is protected as long as two out of six Majorana states are always coupled. The full braiding
protocol requires coupling Majoranas from the same wire via a transmon [26] or flux
qubit [25], which is outside the scope of this work. It also requires to move

:::::::
moving

:
one

Majorana state between three different wires by coupling different pairs of Majoranas via
a trijunction. By combining these two procedures, it is possible to perform a braiding
experiment where two Majorana states exchange positions.

Detailed modelling
:::
We

::::::
adapt

::::
the

:::::::::
braiding

:::::::::
protocol

:::::
from

:::::
Ref.

::::::
[15]

::::
that

::::::::::
exchanges

::::::::::
Majoranas

:::
γ1:::::

and
:::
γ2:::

as
:::::::
shown

:::
in

:::::
Fig.

:::::
1(a).

::::::
The

:::::::::::
ingredients

:::::
that

::::
we

::::::::
require

:::
for

::::
the

::::::::
braiding

::::::::
protocol

::::
are

:

•
::::::::
coupling

:::::::::::
Majoranas

:::::::
within

:::
the

::::::
same

:::::::::
nanowire

::::
via

:::::::::
charging

:::::::
energy

::::::::
[25, 26],

:

•
::::::::
coupling

:::::
pairs

:::
of

:::::::::::
Majoranas

:::
via

::::
the

::::::::::::
trijunction,

•
::::::::
coupling

:::
all

::::::
three

::::::::::
Majoranas

:::
in

::::
the

:::::::::::
trijunction

::
as

:::
in

:::::
step

:
5
:::
of

::::
Fig.

::::::
1(a),

•
:
a
:::::
path

:::
in

::::::::::
parameter

::::::
space

:::::
that

::::::::::::
interpolates

:::::::::
between

::
a

:::::::
regime

:::::
with

::::
two

:::::::::::
Majoranas

:::::::
coupled

:::
to

::::
the

:::::::
regime

:::::
with

:::::
three

:::::::::::
Majoranas

::::::::
coupled

::::::::
without

:::::::
closing

::::
the

:::::::::::
topological

::::
gap,

:::::
that

:::
is,

:
a
::::::
path

::::
with

::
a
::::::
finite

::::
gap

:::::::
during

:::::
steps

:::
3,

::
4,

:::::
and

:
5
:::
of

::::
Fig.

::::::
1(a).

:

::::
Our

:::::
goal

::
is

:::
to

:::::::::
compute

::::
the

:::::::::
coupling

:::
of

:::::::::
different

:::::::::::
Majoranas

::::::::
required

:::
to

:::::::::::
implement

::::
the

::::::::
braiding

:::::::::
protocol

:::
of

::::
Fig.

::::::
1(a).

:::::::::
Because

::::
the

:::::::::
purpose

:::
of

::::
our

::::::
study

:::
is

::::
the

:::::::
design

::
of

::::
the

:::::::::::
trijunction,

:::
we

:::::::::::
exclusively

:::::::::
consider

::::
the

:::::
three

:::::::::::
Majoranas

:::::::
closest

:::
to

::::
the

:::::::::::
trijunction

::::::
which

:::::::
interact

::::
via

::::
the

:::::::::
potential

:::
in

::::
the

:::::::
middle

:::::::
region

::::::
shown

:::
in

:::::
Fig.

:::::
1(c).

:::::::::::
Therefore,

:::
we

:::
do

::::
not

::::::::
consider

::::
the

:::::::::
Coulomb

::::::::::
couplings

::::::::
between

::::
the

:::::::::::
Majoranas

::
in

::::
the

:::::::::::
nanowires

::::::
shown

:::
in

:::::
steps

:
1
:::::
and

::
7

::
in

:::::
Fig.

:::::
1(a).

:::::
For

::::
the

::::::
same

:::::::
reason,

::::
we

:::::
leave

:::
to

:::::::
future

:::::
work

::::
the

:::::::::
analysis

::
of

::::
the

:::::::::::
competition

:::::::::
between

::::::::::::::::::
Coulomb-mediated

::::::::::
Majorana

:::::::::
coupling

::::
and

::::
the

:::::::
direct

::::::::
coupling

:::
at

:::
the

::::::::::
trijunction

:::::
[28]

:
.
:::::::::::::
Furthermore,

::::::::
because

::::
the

:::::::
on/off

::::::
ratios

::
of

::::
the

::::::::::
couplings

:::
are

::::::::::
sufficient

::
to

:::::::::
determine

:::::::::
whether

::::::::
braiding

::::
can

:::
be

::::::::::
performed

:::::::::::::
adiabatically,

:::
we

:::
do

::::
not

::::::::
simulate

::::
the

:::::::
explicit

::::
time

::::::::::::
dependence

:::
of

:::::
gate

:::::::::
voltages.

::::::::
Finally,

:::::::::
detailed

::::::::::
modeling of Majorana nanowires is

outside the scope of our study. Therefore, we consider an idealised
::::::::
idealized

:
model of

topological nanowires.
We simulate clean nanowires of size WNW = 70 nm and LNW = 1.5 µm such that the

Majoranas are well-separated. The nanowires are parallel to a homogeneous magnetic field
, which

:::
An

::::::::
external

::::::::::
magnetic

::::
field

:::
is

:::::::
parallel

:::
to

::::
the

::::::::::
nanowires

:::::
and drives them into the

topological phasesimultaneously. We connect the nanowires to the trijunction formed in
the central normal region as shown in Fig. 1(b

:
c). We use one layer of depletion gates

shown in Fig. 1(b
:
c) to form the trijunction and a second layer for a global accumulation

gate to control the electron density. We parameterize the shape of the device using channel

3
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length L, channel width W ,
:
and the angle θ between the x-axis and the arms. We use the

materials from Ref. [29] for the substrate, dielectric
:
,
:
and gate electrodes.

We simulate the three dimensional
:::::::::::::::::
three-dimensional

:
device configuration shown in

Fig. 1(b-c
:::
c-e). We use the electrostatic solver of Ref. [30] to numerically solve the Poisson’s

equation
∇ · [ϵr(r)∇U(r)] = −ρ(r)

ϵ0
, (1)

where ρr is the charge density, ϵ0 is the vacuum permittivity and ϵr is the relative
permittivity. Because the 2DEG has a low electron density, we neglect the potential
induced by charges in the 2DEG. We express U as a linear combination of the potential
induced by each gate electrode

U(r) =
∑

i

ViUi(r) + U0(r), (2)

where U0(r) is the potential induced by dielectric impurities when V = 0, and Vi are
the elements of V = (VL, VR, VT , Vglobal). In order to

:::
To reduce the number of control

parameters, we apply the same voltages to the depletion gates closest to a channel shown
in Fig. 1(b

:
c).

We use the 2D Hamiltonian

H =
( 1

2m∗ (∂2
x + ∂2

y) − U(x, y)
)
σ0τz + α(∂xσy − ∂yσx)τz + Ezσyτ0 + ∆(x, y)σ0τx, (3)

where σi and τi are the Pauli matrices in the spin and particle-hole space, α is the spin
orbit

::::::::::
spin-orbit

:
coupling strength, Ez is the Zeeman field induced by the homogeneous

magnetic field, and m∗ is the effective mass in the semiconductor. Using the Kwant
software package [31], we discretize Eq. (3) over a 2D tight-binding square lattice with
lattice constant a = 10 nm

:::
a =10

:::
nm

:
as for typical devices [32]. The electrostatic potential

in the 2DEG, U(x, y, z = 0) = U(x, y), is defined relative to the Fermi level in the nanowires
which is set to the bottom of the lowest transverse band µ0 :

µ. The superconducting pairing
is absent in the normal region, and in the nanowires

:
,
:
it is ∆(x, y) = ∆0e

iϕj where ∆0
is the magnitude of

:::::::
induced

:
gap and ϕj is the phase in the j-th nanowire. We tune the

Hamiltonian to be in the topological phase for the lowest subband, i.e. Ez >
√
µ2

0 + ∆2.

The induced
::::::::::::::::
Ez >

√
µ2 + ∆2

0.
:::::
The

:::::::::::
topological

:
gap in the nanowires is ∆t. ::::

The
:::::::::::
parameters

::::
used

:::
in

::::
the

::::::::::::
Hamiltonian

::::
and

::::
the

:::::::::::::
electrostatic

::::::::::
simulation

::::
are

::::::
listed

::
in

::::::::::
Appendix

:::
A.

:

3 Device tuning

::
To

::::::::::
determine

::::::::::
couplings

::
of

::::::::::
individual

:::::::::::
Majoranas

:::::
from

:::
the

:::::::::::
low-energy

::::::::::
eigenvalue

::::::::::::::
decomposition

::
of

::::
the

::::::::::::::
Hamiltonian,

:::
we

::::::
need

:::
to

::::::::::
interpret

::::
the

::::::
wave

::::::::::
functions

:::
in

::::::
terms

:::
of

:::::::::::
Majoranas

:::::::::
belonging

:::
to

:::::::::
different

::::::
wires.

:::::
We

::::
do

::::
this

:::
by

:::::
first

::::::::::::
considering

::
a

::::::
point

:::
in

::::
the

::::::::::
parameter

:::::
space

:::::::
where

::::
the

:::::::::::
trijunction

::
is

:::::::::::::
disconnected

::::
and

::::
use

:::
it

:::
to

::::::
define

::::
the

:::::::::
reference

::::::::::
Majorana

:::::
wave

::::::::::
functions.

:
We numerically compute the six lowest energy modes |ϕi⟩ of the depleted

trijunction, which
:::
full

::::::
device

:::::::
shown

:::
in

::::
Fig.

:::::
1(d)

:::::
when

::::
the

::::::::
normal

::::::
region

::
is
::::::::::
depleted.

::::
The

::::::::::
eigenstates

:::::
|ϕi⟩ :

are linear combinations of decoupled Majorana states |γi⟩. In order to
:::
We

:
obtain a basis of individual Majorana states , we use |γi⟩ = Ŵ |ϕi⟩,:where Ŵ is the

matrix that simultaneously approximately diagonalizes the projected position operators
P̂x = ⟨ϕi| X̂ |ϕj⟩ and P̂y = ⟨ϕi| Ŷ |ϕj⟩. The Majoranas in the maximally localized basis are
:::::
After

::::::::::::::::
Wannierization,

:::
we

:::
fix

::::
the

::::::
phase

:::
of

::::
|γi⟩ ::

so
:::::
that

:::::::::::::
P|γi⟩ = |γi⟩,:::::::

making
:::::

|γi⟩ :::::
their

::::
own

4
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Figure 2: Representation of coupled Majoranas in the basis of localized states.
(a) Densities of 3 decoupled Majorana states

::::
|γi⟩. (b) Wavefunction

::::
wave

::::::::
function

:
of coupled Majoranas

:::
|ψi⟩. (c) Decomposition of

:::
the

:
coupled

wavefunction
:::::
wave

::::::::
function

:
into decoupled states

:::::
using

::::
the

:::::
SVD.

::::::::::::
particle-hole

:::::::::
partners.

::::
To

::::::::::
determine

:::
the

:::::::::
effective

:::::::::::
trijunction

:::::::::::::
Hamiltonian,

:::
we

::::::::
project

:::
out

:::
the

::::::::::
decoupled

::::::::::
Majorana

:::::::
states

::
at

::::
the

::::
far

:::::
ends

:::
of

:::
the

::::::
wires

::::
and

::::::
keep

::::
only

::::
the

::::::::::
Majorana

:::::
states

::::::
that

::::
are

:::::::
closest

:::
to

::::
the

:::::::
middle

::::::::
region,

:::
as

:
shown in Fig. 2(a). For an arbitrary

voltage configuration, the three Majorana states close to the junction interact, while the
three far Majoranas remain decoupled. Our goal is to design a device that separately
couples multiple pairs of Majorana states by tuning the gate voltages.We use the overlap
between the coupled and decoupled Majoranas Sij = ⟨ψi|γj⟩ to heuristically determine
the coupling between

::::::
When

:::
the

::::::
three

:::::::::::
Majoranas

:::
are

:::::::::
strongly

::::::::
coupled

::
as

:::
in

::::
Fig.

::::::
2(b),

:::
the

::::::::::
eigenstates

:::::
|ψj⟩

::::
are

::::
not

::::::
linear

:::::::::::::
combinations

:::
of

::::::::::
decoupled

::::::::::
Majorana

:::::::
states.

::::::::::
However,

:::
the

:::::
three

:::::::::::
eigenstates

:::::::
closest

::
to

::::
the

:::::::::::
trijunction

:::::
form

::
a

::::::::::::
particle-hole

:::::::::::
symmetric

:::::::::
subspace

::::::
where

:::
any

::::::::::
fermionic

:::::
state

::::
can

::::
be

:::::::::
expressed

:::
as

::
a
::::::
linear

:::::::::::::
combination

::
of

::::
the

::::::::::
individual

::::::::::
Majorana

:::::
states

:::::
|γi⟩ ::

as
:::
in

::::
Fig.

:::::
2(c).

:

:::
We

::::::::::
interpret

::::
the

::::
low

::::::::
energy

:::::::::::
eigenstates

::::::::::
localized

:::
in

::::
the

:::::::::::
trijunction

:::::
|ψi⟩:::

as
::::::
linear

:::::::::::::
combinations

::
of

:
Majoranas originating from different arms . We

::
by

:::::::::::
computing

::::
the

:::::::
overlap

::::::
matrix

::::::::::::::
Sij = ⟨γi|ψj⟩.

::::
We

:::::
then

:
apply a singular value decomposition

::::::
(SVD), S = UDV †,

where U and V †
:
V

:
are unitary and D is positive diagonal. The approximate trans-

formation is the unitary part of the SVDdecomposition, i.e.
:
,
:
S′ = UV †. This trans-

formation approximates
:::::::::::
corresponds

:::
to

:::::::::
choosing

:
the coupled Majorana wavefunction in

Fig. 2 (b) as a linear combination of decoupled Majorana wavefunctions
::::
wave

::::::::::
functions

::
as

::::::::::::::::::
|γ′

j⟩ = ∑
jk S

′
jk|ψk⟩

::
as

:
shown in Fig. 2 (c

:::
b-c). The low-energy effective Hamiltonian is

Heff = S′diag(E0, E−E
:::1, 0,

:
E21)S′† = i

∑
i ̸=j

Γij |i⟩⟨j|, (4)

where Γij ::::::::::
Γij = −Γji:is the coupling between Majoranas γi and γj , and Ek are the three

lowest eigenvalues of the exact Hamiltonian. When coupling a single pair of Majorana
states, the effective coupling always corresponds to the first non-zero eigenvalue, i.e.
Γij = E2::

γ′
i:::::

and
:::
γ′

j ,
::::
and

::::
E1::

is
::::
the

:::::::
energy

:::
of

::::
the

:::::
first

:::::::
excited

::::::
state

::
of

::::
the

::::::::
system.

:::::::
When

::::
only

::::
two

:::::::::::
Majoranas

::::
are

::::::::
coupled,

::::::
their

::::::::
effective

:::::::::
coupling

::::::::::
|Γij | = E1, however, when there

are multiple pairs of coupled Majoranas,
:::
the

:
interpretation of the effective couplings

:::
Γij:is

ambiguous.

4
::::::::::::::::
Optimizing

::::::::::::
pairwise

:::::::::::::::
couplings

5
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Figure 3: Spectra of a trijunction with optimally coupled right-top
::::::
R− T

:
pair of

Majoranas (colored lines) with respect to (a) global accumulation gate and (b)
superconducting phase difference. Optimal

::::
The

::::::::
optimal

:
point

::
is

:
indicated by the

purple dashed lines. The wavefunctions
::::
wave

::::::::::
functions (c) and the potential (d)

at the optimal point. Two dimensional
::::::::::::::::
Two-dimensional

:
scans as a function of

the voltages for the top
::
T and right

::
R depletion gates of the desired coupling (e)

and the ratio of desired over undesired coupling (f). The optimal point is shown
as a purple cross inside of the scan. The operation range is shown as a red line
with the corresponding values inside

::::
area

::::::::
enclosed

:::
by

:
the colorbar

:::
red

::::
line

:::::
that

:::::::
satisfies

:::::::::::::::::
δ+ ≤ 0.85 × δmax

+ :::::
and

:::::::::::
δ+/δ− > 50.

In order to find the operational regime of the device, we
::::::::
Initially,

::::
we

::::::::
consider

::::::
steps

::
2,

:::
3,

::
5,

::::
and

::
6

::
of

::::
Fig.

:::::
1(a)

::::::
where

::
a
::::::
single

::::
pair

:::
of

:::::::::::
Majoranas

::
is

::::::::::
connected

:::
via

::::
the

:::::::::::
trijunction.

::::
We

use an optimisation approach to find the optimal couplings as a function of gate voltages
and phase differences. For the coupling of the i-th and j-th Majorana states, we define the
desired and undesired couplings as

δ+ = |Γij |, δ− = |Γik| + |Γjk|, (5)

6
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where k is the remaining Majorana state. The goal of our device is to maximize the energy
of the coupled Majorana pair while keeping the couplings to the remaining Majorana state
exponentially small. Therefore, we use

::::::
define

:
a loss function

::::
that

:::::::::::
maximizes

::::
the

:::::::
desired

::::::::
coupling

::::
and

:::::::::::
minimizes

:::
the

::::::::::
undesired

::::::::::
coupling:

:

Cpair = −δ+ + log(δ2
− + ϵ). (6)

Here, δ± is in units of ∆t. We use ϵ = 10−3 to regularize the divergence of the logarithm.
To remove

:::
the

:
local minima of the loss function and improve the convergence, we

penalize the regions in the gate voltage space where either
:::
the regions under the gate are

not depleted or the channels are fully depleted. We achieve this by adding the following
soft-threshold terms to the loss function:

S(U(r)) = A

 ∑
{racc}

U(racc)Θ[U(racc)] +
∑

{rdep}
(U(rdep) − u0)Θ[−U(rdep)]

 . (7)

Here Θ(x) is there heavy-side
:::
the

::::::::::
Heaviside

:
function. We choose {racc} and {rdep} to be

in the accumulated channel and in the depleted regions, respectively. We choose the scale
factor A = 102, and use a threshold u0 ∼ 1 − 2meV. The total loss function is

L = Cpair + S. (8)

Minimizing this loss function for all Majorana pairs separately yields the voltage
configuration

::::::::::::::
configurations where two Majorana states are optimally coupled. The results

for the right-top
:::::
R–T pair are shown in Fig 3. At the optimal point, the depletion gates

form a channel between the right and top
::
R

::::
and

::
T

:
Majorana states while disconnecting the

left
:
L

:
Majorana as shown in Fig. 3(c-d). Once the channel is formed by the depletion gates,

the coupling is controlled by tuning the accumulation gate voltage Vglobal as shown in Fig.
3(a). The phase difference between the top and right superconducting arms modulates the
coupling ΓLR as shown in Fig. 3(d).

While the optimal point reaches the maximum coupling for a given pair, device operation
depends on the stability of the coupling with respect to variations in gate voltages. In
order to find the operational range of the device, we perform a two-dimensional scan of the
gate voltages of the depletion arms corresponding to the coupled Majoranas while keeping
the extra arm depleted and the global gate at the optimal point. Figures 3 (e-f) shows
the operational regime of the device around the optimal point based on desired coupling
magnitude and the ratio between the desired and undesired couplings, respectively. The
operational regime of the device has a desired coupling comparable to the topological
gap, and is exponentially larger than the undesired coupling. The area that satisfies both
criteria corresponds to the operational range.

5
::::::::::::::::
Optimizing

::::::::
triple

:::::::::::::
coupling

6 Braiding of Majorana states

We consider the braiding protocol from Ref. [15] that exchanges Majoranas γL and γR as
shown in Fig. 4 (a). The ingredients that we require for the braiding protocol are

• coupling Majoranas within the same nanowire via charging energy [25,26],

• coupling pairs of Majoranas via the trijunction as described in Sec. 3,

7
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Figure 4:
::::::::::
Exchange

::
of

::::
two

:::::::::::
Majoranas

:::
by

:::::::::::::
adiabatically

::::::::
coupling

:::::::::
different

:::::
pairs

:::
of

:::::::::::
Majoranas.

::::::
(Top)

::::::::::
Majorana

:::::
wave

::::::::::
functions

::
at

::::
the

::::::::
optimal

:::::::
points

::::::
where

::::
one

:::
or

:::
two

::::::
pairs

::
of

:::::::::::
Majoranas

::::
are

::::::::
coupled.

::::::::::
(Bottom)

:::::
The

:::::::::
spectrum

:::
of

::::
the

:::::::::::
trijunction

:::::
along

::::
the

:::::::
voltage

::::::
path

::::
that

::::::::::::
interpolates

:::::::::
between

:::
the

::::::::
optimal

::::::::
points.

:

• coupling all three Majoranas in the trijunction,

• a path that connects from two to three coupled Majorana states without closing the
topological gap.

In order to couple all three Majorana states, at least two pairs of Majoranas must be
coupled. Because the device without disorder is symmetric around the x axis, we couple
the left-top and right-top pairs

::::::
choose

:::
to

:::::::
couple

::::
the

::::::
L− T

::::
and

:::::::
R− T

:::::
pairs

:::
of

::::::::::
Majoranas

simultaneously, and constrain the voltages to be symmetric, i.e. VL = VR. Furthermore,
since finding the optimal path in voltage space is hard, we choose the path that linearly
interpolates between the points where two and

:::::
point

:::::::
where

:::
two

::::::::::
Majorana

::::::
states

::::
are

:::::::
coupled

::::
and

:::
the

::::::
point

::::::
where

:
all Majorana states are coupled. Depending

:
,
::::::::::::::
corresponding

:::
to

:::::
steps

::
3,

::
4,

:::::
and

::
5

::
of

:::::
Fig.

::::::
1(a).

:::
In

::::::
order

:::
to

::::
find

::
a
::::::::::::::

triple-coupled
:::::::

point,
::::
the

::::
loss

:::::::::
function

:::::
must

:::::::::
maximize

:::
at

:::::
least

::::
two

::::::::::
couplings

::::::::::::::::
simultaneously.

::::::::::::::
Furthermore,

::::::::::
depending

:
on the choice

of the triple coupled point, the gap along this path
::::
the

:::::
path

:::::::::::::
interpolating

::::::::
between

::::
the

::::::::
pairwise

:::::::::
coupling

::::
and

::::
the

:::::
triple

::::::
point

:
may close. In the trijunction that we have studied,

we find that the following loss function finds a triple coupled point connected by a gapped
path to the pair

::
of

:
coupled points:

Ctriple = −(|ΓLT | + |ΓRT |) + |ΓLR|. (9)

The gap reaches a minimum ≲ 0.1 × ∆t ::::::::::
≈ 0.1 × ∆t:along the braiding path. As before, we

add a soft-threshold term to ensure that all channels are formed. We obtain the optimal
coupling by minimizing the loss function as in Eq. (9)

::::
plus

::::
the

::::::::::::::
corresponding

:::::::::::::
soft-threshold

::
to

::::::::::
accelerate

::::::::::::
convergence. The resulting spectrum of the trijunction is

:::
has

::
a
::::::

finite
::::
gap

8
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::::::
during

::::
the

:::::::
entire

:::::::
voltage

::::::
path

:::
as

:
shown in Fig. 4(c). The wavevunctions .

::::::
The

:::::
wave

:::::::::
functions at the optimal points are shown in

:::
the

:::::::
upper

::::
row

::
of

:
Fig. 4(b).

6
::::::::::::::
Geometry

::::::::::::::::::
dependence

Figure 5: Exchange of two Majoranas by adiabatically coupling different pairs of
Majoranas. (a) Scheme

::::::::
Analysis

:
of

:::::::
quality

::::::::
metrics

:::
for

:
the full braiding protocol

described in Ref. [15]. Thick lines indicate coupled Majoranas via the
:::::
worst

::::::::::
performing

:::::
pair

:::
for

:::::::::
different

:
trijunction

::::::::::
geometries

:::::
with

::::::::
θ = 15◦ (purple

:::
left) or

nanowire
:::
and

:::::::::::::
W = 130 nm

:
(black

:::::
right). Dashed thin lines represent decoupled

Majoranas. Horizontal arrows indicate
:::
The

::::::::::
operation

::::::
range

:::
for

:::::
each

::::::::::
geometry

::
is

::::::
shown

::::::
inside

:::::
each

:::::::
square

::::
and

::::::::
colored

:::::
with

:::
δ+:::

at the order of operations
::::::::
optimal

:::::
point. Vertical arrows indicate the correspondence between the steps of

::::
The

:::::::::::
background

::
is
::::::::
colored

:::::
with

::::::
δ+/δ−:::

at
:
the braiding protocol

:::::::
optimal

::::::
point.

:::::
The

::::::::::
optimality

:::::::
criteria

::::::
from

::::
Eqs.

:
(10) and

:
(11)

:
is

::::::::::
indicated

:::
by

::
a

:::
red

::::
line

:::
in

:
the

results of our simulation, i
::::::::::
respective

:::::
color

::::
bar. e

::::
The

:::::::::::
geometries

:::::
that

:::
do

::::
not

::::::
satisfy

::::::
these

:::::::
criteria

:::::
have

:::::::::::
increasing

:::::::::::::
transparency. Majorana wavefunctions (b)

and spectrum of
::::
The

::::::::
squares

:::::
fully

:::::::
covered

:::
in

:::::::
purple

:::
are

:
the trijunction (c) along

:::::
cases

:::::
when

:
the voltage path

::::::::::::
optimization

::::::::::
algorithm

::::
did

::::
not

::::
find

::
a

::::::::
solution.

7 Geometry dependence

In order to evaluate the adiabaticity of the braiding protocol, we compute the desired
coupling, δ+, and the ratio between desired and undesired couplings, δ+/δ−, at the optimal
point. Because the topological gap is small, we require the Majorana couplings to be

9
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comparable to it:
δ+ ≳ 0.3 × ∆t. (10)

As a minimum requirement for adiabaticity, the desired coupling should be larger than the
undesired coupling:

δ+ ≳ 50 × δ−. (11)

::::
The

:::::
large

:::::
ratio

:::::::::
between

:::::::
desired

::::
and

:::::::::
undesired

::::::::::
couplings

:::::::
ensures

:::::
that

:::::
there

::::::
exists

::
a

::::
time

:::::
scale

::
τ

::::::
where

::::
the

:::::::
device

:::::::::
operates

:::::
such

:::::
that

:::::::::::::::
δ− < ℏ/τ < δ+.

::::::::::::::
Furthermore,

::::
the

:::::::::
coupling

::
δ+::::::

must
:::
be

:::::::
larger

:::::
than

::::
the

::::::::
thermal

::::::::::::
broadening.

::
In order to quantify the tunability of

a device , we define its operational range
::::::::::::
characterize

:::
the

:::::::::::
robustness

:::
of

:::::::
device

:::::::::
operation

::::
with

::::::::
respect

:::
to

::::::::::
variations

:::
in

:::
the

:::::
gate

:::::::::
voltages

:::
we

:::::::
define

::::
the

:::::::::::
operational

::::::
range

:::
A

::
of

::::
the

::::::
device

:
as the area A in the voltage space where δ+ ≳ 0.85 × δmax, with δmax the maximum

coupling in the scan as shown in Fig.
::::
that

::::::::
satisfies

:::::
both

:::::
Eqs.

:
(10)

::::
and

:
(11)

:
.
:::
In

:::::
Fig. 3(e-f)

::
we

::::::
show

::::
the

::::::::::::
operational

:::::::
regime

:::
of

::::
the

:::::::
device

:::::::
around

::::
the

::::::::
optimal

::::::
point

::::
for

::::
the

:::::::
desired

::::::::
coupling

::::
and

::::
the

::::::
ratio

::::::::
between

::::
the

:::::::
desired

:::::
and

::::::::::
undesired

::::::::::
couplings,

::::::::::::
respectively.

:::::::
While

:::
the

::::::::::
numerical

:::::::
values

:::
of

::::
the

:::::::::::
thresholds

:::::
that

:::
we

::::
use

::::
are

::::::::::
somewhat

::::::::::
arbitrary,

::::::
they

:::::
leave

::::::::
sufficient

::::::
room

::::
for

:::::::::
adiabatic

:::::::::
braiding

::::::
while

::::
not

:::::::::::
introducing

:::::::::::
additional

:::::::::::
limitations

:::
to

:::
the

:::::::
device’s

:::::::::::::
performance.

In order to determine which geometries are suitable for braiding, we compute the
quality metrics δ+/∆t, δ+/δ−, and A for different L, W , and θ. We evaluate the quality
metrics for the worst performing

:::::::::::::::::
worst-performing

:
pair. We summarize the results in

Fig. 5 and indicate the geometries that meet the thresholds in
::
of

:
Eqs. and

::::::
(10,11). We

find that
:::
the

:::::::
quality

:::
of

::
a

:::::::::::
trijunction

::::::::
depends

:::
on

::::
the

:::::::
length

::::::
scales

:::
of

::::
the

:::::::
normal

::::::::
region.

::::::::
Because

::::::::::
Majorana

:::::::::
couplings

::::::
decay

:::::
with

:::::::::
distance,

:
small trijunctions have a systematically

larger operational voltage rangeas well as larger couplings. For larger trijunctions, it is
possible to find a geometry suitable for braiding, but it requires fine-tuning .

:::
In

:::::
very

:::::
small

::::::::::::
trijunctions,

::::::::
however,

::
it
:::::::::
becomes

::::::::::
impossible

:::
to

::::::::
suppress

::::::::::
unwanted

::::::::::
couplings.

::::::::::::::
Furthermore,

:::::
there

::
is

:::
an

::::::::
optimal

:::::::
aspect

::::::
ratio

::::::::
between

:::::::
length

::
L

:::::
and

::::::
width

:
W

::::
that

:::::::::::
guarantees

:::::::
control

::::
over

::::
the

::::::::::
individual

:::::::::
channels

:::::::
formed

:::
in

::::
the

:::::::::::
trijunction

:::::
arms. The angle θ does not affect

the qualitative behaviour
::::::::
behavior

:
of the trijunction.

Analysis of quality metrics for the worst performing pair for different trijunction
geometries with θ = 15◦ (a) and W = 130 nm (b). The operation range for each geometry
as identified in Fig. 3 (e) is shown inside each square and colored with δ+ at the optimal
point. The background is colored with δ+/δ− at the optimal point. The optimality criteria
from Eqs. and is indicated by a red line in the respective colorbar. The geometries that do
not satify this criteria have increasing transparency The squares fully covered in purple
are the cases when the optimization algorithm did not find a solution.

7 Electrostatic disorder

We compare the susceptibility to electrostatic disorder of larger and smaller geometries.
For that

:
,
:
we select two geometries and analyze their performance in the presence of

disorder. We simulate disorder in the dielectric between the depletion gate layer and
2DEG by randomly positioned positive charges. Figure 6 shows that devices with an
impurity concentration of ∼ 1e10 cm−2

::::::::::::
∼ 1010 cm−2

:
are not degraded by disorder. On

the other hand, a small concentration of electrostatic disorder ∼ 1e11 cm−2
::::::::::::
∼ 1011 cm−2,

which is achieved in state-of-the-art Majorana devices
::::::::
reported

:::
to

:::
be

:::::::::
achieved

::
in

:::::
Ref. [7],

significantly reduces the performance of a trijunction. While smaller geometries performs
::::::::
perform better, we expect that they are more susceptible to fabrication imperfections,
therefore posing a tradeoff between two challenges.
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Figure 6: Impact of disorder on δ+ (a) and δ+/δ− (b). We show two example
disordered realisations

:::::::::::
realizations

:
(c) for ρ = 1e10 cm−2

::::::::::::::
ρ = 1010 cm−2. We

considered 10 disorder realizations for each impurity density. The error bars
correspond to the standard deviation.

8 Summary

In this work, we developed a numerical procedure to design a braiding protocol using a
trijunction device—one of the ingredients for a topologically protected quantum computer—
by using three dimensional

:::::::::::::::::
three-dimensional

:
electrostatic and quantum simulations. We

used an optimization approach to find the voltage configurations where all different pairs
of Majorana states are strongly coupled. Consequently, we discovered that a range of
trijunction device geometries can be used as switches that selectively couple and decouple
different Majorana states. We confirmed that trijunctions are suitable for braiding by
simulating the braiding protocol from Ref. [15] without closing the gap between the ground
state and the coupled Majorana states. The operation of the device is limited by the
gap size, which decreases to ≲ 0.1 × ∆t along the braiding protocol. We observe that
state-of-the-art levels of disorder render this trijunction design inoperable because the
narrow channels cannot be formed. Therefore, we expect that cleaner materials [33] or a
different design would be required to resolve this problem.

The methods developed in our study are applicable to other realisations
:::::
apply

:::
to

:::::
other

:::::::::::
realizations

:
of Majorana states such as the minimal Kitaev chain [21,34]. Similarly, the

optimization method that we developed is transferable to other semiconducting devices
such as spin qubits [35] or

::::::
hybrid

:::::::
devices

:::::
such

:::
as

:
planar Josephson junctions [32]. The

operational regime of these devices usually lies in a region of a multidimensional space that
maximises

::::::::::
maximizes

:
certain quantities such as the wavefunction

:::::
wave

::::::::
function

:
overlap [35]

or the energy gap [32]. Our work demonstrates that combining electrostatic simulations,
effective Hamiltonians, and optimization routines is a powerful tool in designing and
operating semiconductor devices.
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A
:::::::::::::::
Simulation

::::::::::
details

::::
The

::::::
values

:::::
used

:::
in

::::
Eq.(3)

:::
are

::::::::::::
t = ℏ2/2m∗

::::::
where

:::::::::::::::::
m∗ = 0.023 ×me:::::

and
:::
me::

is
::::
the

::::::::
electron

:::::
mass,

::::
the

:::::
bare

:::::::::::::::::
superconducting

::::
gap

::
is
:::::::::::::::

∆0 = 0.5 meV,
::::
the

::::::::::
spin-orbit

:::::::::::
interaction

:::::
α =3 ×

10−11
:::::
eV m,

::::
the

::::::::
Zeeman

::::
field

:::::
that

::::::
drives

::::
the

:::::::::
nanowires

:::
in

:::
the

:::::::::::
topological

::::::
phase

::
is

::::::::::::::
EZ = 1.0 meV,

::::
and

:::
the

::::::::::
nanowire

:::::::::
chemical

:::::::::
potential

:::
at

::::
the

::::::::
bottom

::
of

::::
the

:::::::
lowest

:::::
band

::
is
::::::::::::::::
µ = 2.396 meV.

::::
The

:::::::::::
topological

::::
gap

::
is

::::::::::::::::
∆t = 0.325 meV.

::::
The

::::::::::
coherence

:::::::
length

::
in

:::
the

::::::::::
nanowires

::
is
:::::::::::::
ξsc ≈ 80.2 nm

::::
and

:::
the

::::::::::::
localization

:::::::
length

::
of

::::
the

:::::::::::
Majoranas

::
is

::::::::::::::::::::
ξMZM ≈ 487.474 nm.

::::::::::
Similarly,

:::
in

::::::
Table

::
1

::
we

::::::
detail

::::
the

:::::::::::
parameters

:::::
used

:::
to

:::
set

:::
up

::::
the

:::::::::::::::::
three-dimensional

:::::::::::::
electrostatic

::::::::::
simulation

::::
and

:::::
solve

::::
Eq.(1)

:
.
:

::::::
Layer

::::::::::
Thickness [

:::
nm]

::::::::
Relative

::::::::::::
permittivity

:

:::::::::
Substrate

:
50 16

::::::
2DEG

:
20 15

:::::::::
Dielectric

:
30 9.1

Table 1:
::::::::::
Parameters

:::::
used

:::
in

::::
the

::::::::::::
electrostatic

::::::::::::
simulations.

:::::
The

:::::::::::::::
heterostructure

:::::
layers

::::
are

:::::::
shown

::
in

:::::::::
Fig.1(e)

::::
and

:::::
their

::::::::::::::
corresponding

:::::::::::
thicknesses

:::::
and

:::::::
relative

:::::::::
dielectric

:::::::::::::
permittivities

:::::
with

::::::::
respect

::
to

::::
the

::::::::
vacuum

:::::::::::::
permittivity

::
ϵ0::::

are
::::::::
detailed

:::::
here.

::::
The

:::::::::
metallic

:::::
gates

:::::
have

::::::::
infinite

::::::::::::
permittivity

::::
and

::
a
:::::::::
thickness

:::
of

:::::::
30nm.
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