
Dear editor,

We would like to thank the referees for their reports, and we are pleased to see that they are overall positive
about our manuscript. The questions in the report mainly deal with the computational efficiency of the method,
its possible extensions, and the details of the structure factor. We have improved our manuscript to clarify these
points. Below, we discuss the points made in the report and the requested changes one by one. With these
changes, listed at the end of this document, we believe our manuscript is suitable for publication in SciPost
Physics.

Yours sincerely,

The authors

Report
“In this work, Schobert et al performed an interesting study on CDW systems for exploring anharmonic potential
energy surfaces accurately and efficiently using downfolded models to DFT and ab initio MD. They studied three
different downfolding strategies and considered four different systems (1H-TaS2, 1T-TiSe2, 1H-NbS2, and a
carbon chain) to find that the models are very beneficial reducing by a large factor the complexity of ab initio
MD electronic structure calculations. The work is very interesting and deserves publication as it indeed offers
a route for speeding up path integral simulations of quantum nuclear effects which are rather cumbersome to be
applied for extended systems.”

We thank the referee for their positive assessment of our work.

Requested changes
1. Typo

“Typo p.12: "for the case example of monolayer".”
We thank the referee for noticing the typo, and we corrected it accordingly.

2. Expensive DFT calculations: Quantify supercell size

“p.4 : "since DFT calculations with large supercells are prohibitively expensive" Maybe the authors could quantify
further the supercell size and explain why is needed in more detail.”

Our simulation of the structure factor in Fig. 9 involves an 18× 18 supercell which contains 103 atoms. In
Fig. 7, we show results up to a 40×40 supercell (5 ·103 atoms). On the other hand, in that benchmark, we were
able to do direct DFT calculations only up to approximately 9× 9 supercells (3 · 102 atoms). This difference in
scale is substantial, especially when one is interested in the regime close to a phase transition, where long-ranged
correlations are important. We have inserted a forward reference into the text on page 4 to clarify this point.

Generally speaking, simulations involving smaller systems often give rise to finite size effects that can sig-
nificantly influence the results. To illustrate these effects, we present the heat capacity from classical MD
simulations conducted on supercell sizes ranging from 6× 6 to 21× 21 (see Fig. 1 of this reply).

Upon observation, it becomes evident that despite achieving convergence in terms of simulation steps, the
curves exhibit a noticeable shift towards higher temperatures (higher TCL) solely due to the variation in system
size. Moreover, the shape of the peak becomes more pronounced with increasing system dimensions. While there
is only a rather broad peak in CV in the 6× 6 case, that peak markedly increases for the larger supercells and
develops towards a shape reminiscent of a jump discontinuity – indicative of a second-order phase transition –
for the 21× 21 system.

Therefore, finite size effects can induce not only quantitative alterations in simulation data but also quali-
tative changes.

3. Comparison of computational efficiency between all models

“Can the authors comment in more detail on the relative comparison of the models with respect to computational
efficiency?”

Also here we thank the referee for the remark to give information on the computational power of all three
models. Indeed we only stated the computational efficiency of the downfolded model III vs. DFT. As this model
is non-interacting, it is the fastest of all three models. Model I and II require self-consistency cycles in the
Hartree algorithm. Assuming a typical number of ∼ 10 cycles needed for convergence, the speedup should be on
the order of 104 rather than 105 for the example discussed with model I. We included a corresponding statement
in the manuscript.
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Figure 1: Heat capacity of monolayer 1H TaS2 obtained with classical MD simulations.

4. Questions related to the structure factor (Eq. 19)

(a-1) “Are the atomic scattering amplitudes missing from the equation of the structure factor?”

The referee is correct; the atomic scattering amplitudes are not included in the formula presented in our
manuscript. This omission is intentional, as our focus is solely on the movement of the tantalum atoms. In the
following, we address this question by deriving Eq. (19) from the manuscript:

The scattering amplitude is defined by (cf. Eq. (2.4) of Ref. [1])

Ψ(q) =
1

⟨f⟩
∑
ν

fνe
−iq·Rν , (1)

where fν are the atomic scattering amplitudes. The intensity is given by the absolute square of the amplitude

I(q) = |Ψ(q)|2 =
1

⟨f⟩2
∑
νµ

fνfµe
−iq·Rνeiq·Rµ . (2)

As it is known that the displacements of the tantalum atoms are most significant within the CDW, we evaluate
the intensity for this atomic species only. Thus, for identical atoms, the formula reduces to

I(q) =
∑
νµ

eiq·(Rµ−Rν). (3)

Normalizing the expression leads to the static structure factor [2, 3]

S(q) =
I(q)

N2
at

=
1

N2
at

∑
νµ

eiq·(Rµ−Rν) =
1

N2
at

∣∣∣∣∣
Nat∑
ν=1

e−iq·Rν

∣∣∣∣∣
2

. (4)

Thus, the formula for the structure factor has been streamlined to its minimal version, which is essentially a
simple Fourier transform of the atomic positions.

(a-2) “How is this relation related to diffuse scattering?”

The formula Eq. (4) includes Bragg and all orders of thermal diffuse scattering contributions. The atomic po-
sitions can be written as deviations from the average lattice positions: Rν = ⟨Rν⟩+uν . The Bragg contribution
is determined with respect to the average positions only (cf. Eq. (2.22) of Ref. [1]),

SBG(q) =
1

N2
at

∣∣∣∣∣
Nat∑
ν=1

e−iq·⟨Rν⟩

∣∣∣∣∣
2

. (5)

Consequently, the diffuse scattering intensity is given by SD(q) = S(q)−SBG(q). It is crucial to carefully define
the average atomic positions, which should be considered in the static limit concerning the real-time propagation
of a trajectory: ⟨Rν⟩ = lim

t→∞
⟨Rν(t)⟩. While replica-exchange MD simulations efficiently sample the phase space,

it is important to note that they do not represent a real-time propagation of MD trajectories. Frequent replica
exchanges can result in ambiguities regarding average positions, particularly affecting the Bragg signal.
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Figure 2: Separation of the total structure factor into Bragg and diffuse scattering contributions. The classical
curves (light blue) originate from single NVT simulations at different temperatures, whereas the quantum
mechanical curves (blue) result from the replica-exchange PIMD simulations.

In Fig. 2, we depict the Bragg signal obtained from replica-exchange PIMD simulations within a time
interval where only a few replica-exchange events have occurred. The corresponding average lattice positions
characterize the CDW in the low-temperature scenario, leading to a pronounced Bragg signal. As the system
undergoes a phase transition, the Bragg signal vanishes, and the total structure factor becomes dominated by
diffuse scattering contributions.

In the case of classical REMD, our data did not provide a sufficiently extended interval with only a few
replica exchanges. Instead, we illustrate the same separation by employing individual canonical ensemble
(NVT) simulations at specific temperatures. NVT simulations are known for conducting real-time propagations,
resulting in well-defined average lattice positions. The light blue curves in Fig. 2 exhibit a qualitatively similar
behavior to the quantum mechanical case. Yet, the separation of Bragg and diffusive contributions requires a
very careful convergence analysis and will require additional simulations, which are in principle possible but
beyond the scope of the present work.

(b) “How many scattering wavevectors are used for the sampling? To me it looks to be a coarse grid.”

We have access to a grid of 18×18 = 324 scattering wavevectors q, which are commensurate with the chosen
supercell.

(c) “How many configurations are needed to obtain a converged average?”

We simulated both classical and path integral MD for at least 400 picoseconds. With a time step of
4 femtoseconds and printing every 20th step only, we end up with at least 5000 different configurations. As can
be seen in Fig. 9, this leads to small error bars overall.

(d) “What is the nature of CDW peaks? Is it quasi-elastic or inelastic?”

In our manuscript, we evaluate the static structure factor, which is the frequency integrated version of the
dynamic structure factor (cf. Eq. (4) of Ref. [4])

S(q) = h̄

∫ +∞

−∞
S(q, ω)dω. (6)

For elastic scattering, one would need to evaluate the dynamic structure factor at S(q, ω = 0), which is not
the same as S(q). Thus, in order to distinguish between quasi-elastic and inelastic peaks, one would need the
dynamic structure factor.

Extracting the dynamic structure factor would require additional simulations in the NVT ensemble for the
classical MD part. While the speed-up gained from downfolding facilitates such calculations, we leave the
simulations of the dynamic structure factor (including all convergence checks) for future work.

(e) “Can the authors comment whether this term includes contributions to diffuse scattering both from coupled
and independent lattice vibrations (one-phonon and multiphonon scattering)?”
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Looking again at the scattering amplitude, we can expand the exponential factor of the displacements (cf.
Eq. (2.20) of Ref. [1])

Ψ(q) =
1

⟨f⟩
∑
ν

fνe
−iq·Rν =

1

⟨f⟩
∑
ν

fνe
−iq·R0

ν [1 + iq · uν + . . . ], (7)

where the first term of the expansion (1) corresponds to the Bragg signal, the second term (iq ·uν) to first-order
diffuse scattering and the higher order terms (. . .) belong to higher-order diffuse scattering. Since we are not
truncating the displacements in any way, we have access to all orders of diffuse scattering.

5. Double definition of N

“Is there a double definition of N? Does it represent the number of k-points and number of atoms? I think it’s
better for the authors to make sure that no definitions with the same symbol appear in the text.”

The referee is right and we agree that there should not be two definitions of the same symbol. We changed
the definition of the number of atoms in the revised manuscript.

6. Cite newest EPW paper

“Let me also suggest a new paper for the EPW code: https://doi.org/10.1038/s41524-023-01107-3”
We thank the referee for pointing us to the latest EPW paper and cited it in the manuscript accordingly.

7. Improve models II and III by using anharmonic force constants and non-perturbative electron-
phonon couplings

“Can the authors comment if anharmonic temperature-dependent lattice constants CDFT can be used in Models
II and III? Will it be more appropriate? More, will it be more beneficial and more consistent if the deformation
potential is computed with nonperturbative supercell calculations to electron-phonon coupling (see for example:
https://doi.org/10.1088/1367-2630/aaf53f)? I am simply sharing thoughts here.”

The generic form of the downfolded model does contain anharmonic terms in the nuclear Hamiltonian,
Eq. (6), and also higher order couplings, Eq. (7), which one could indeed attempt to derive from non-perturbative
supercell calculations as the reviewer suggests. Inclusion of these kinds of higher-order terms to the downfolded
models (with appropriate unscreening) would indeed be a promising direction to be worth exploring in future
research. It might facilitate the downfolding approach to enter a regime of larger much distortions than based
on the approximations involved in Eq. (8) and Eq. (9).

A corresponding remark has been added to the concluding section of our paper.

8. Data availability

“Will the first-principles calculations (inputs and outputs) uploaded to a database or the Python codes on open-
source platforms?”

We welcome the trend toward increasing open-source data availability and express our gratitude for this
recommendation. The Python codes are incorporated within the open-source software package elphmod, which
we have cited in the manuscript and is available on GitHub. We have made all data and further source code
available on Zenodo and added a corresponding Data Availability Statement.

9. Expand the work with temperature dependent electronic structure

“I think the work has some more space to be expanded for example in the calculation of other thermal averages
related to the electronic structure.”

We agree with the reviewer that our work opens several directions for extensions towards the study of
additional phenomena and observables. These include the “thermal averages of the electronic properties” like
the effective band structure in the presence of moving atoms but also the extraction of dynamic correlation
functions involving the nuclear degrees of freedom. Since the purpose of this study was to introduce and
benchmark the method of downfolded lattice models, we prefer to outline the aforementioned directions for
extension and future directions as outlook in the concluding section of our paper.

List of changes
• Change in Funding information: AS and TW further acknowledge funding and support from the European

Commission via the Graphene Flagship Core Project 3 (grant agreement ID: 881603).
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• Change in Sec. 2.1.2: In the following, we will explain and demonstrate the downfolding according to
models I–III along the case example case of monolayer 1H-TaS2.

• Change in Sec. 4: As a demonstration of this enhancement, we perform the downfolding-based MD for
the case example case of monolayer 1H-TaS2 in Section 4.2.

• Change in Sec. 2: However, since DFT calculations with large supercells are can become prohibitively
expensive (cf. Fig. 7 for benchmark calculations later in this work). As a consequence, DFT simulations
of phase transitions governed by inhomogeneity effects are often very challenging. It is, thus, desirable to
obtain energies and forces in a cheaper way, while remaining close to the quantum mechanical accuracy
of ab initio simulations.

• Change in Sec. 4.1: While DFT relies on the self-consistent solution of the Kohn-Sham system, model III
only needs a single matrix diagonalization to solve the Schrödinger equation, thus making it the fastest
of all three models. Model I and II on the other hand, incorporate the Coulomb interaction through a
self-consistent Hartree algorithm. Assuming a typical number of ∼ 10 cycles needed for convergence the
speedup should be on the order of 104 rather than 105. Most importantly, through downfolding, the matrix
in model III of all downfolded models only covers the low-energy subspace of the electronic structure, as
opposed to DFT, whose matrix accounts for low- and high energy bands.

• Added footnote in Sec. 4.2: . . . using a similar amount of CPU hours 1. The actual simulated times are
430 ps and 930 ps for the path integral (classical) REMD.

• Change in Sec. 4.2: Defining the static structure factor

• Change in Eq. (19):

S(q) =
1

N2
atN

∣∣∣∣∣∣
NatN∑
l=1

e−iq·Rl

∣∣∣∣∣∣
2

(8)

• Change in Sec. 4.2: The static structure factor is the frequency integrated version of the dynamic struc-
ture factor S(q) = h̄

∫ +∞
−∞ S(q, ω)dω. Furthermore, it contains both Bragg and all orders of thermal diffuse

scattering contributions.

• Change in the Conclusions: Despite this enormous speedup and an complexity reduction, we demonstrated
a quantitative recovery of DFT potential energy surfaces in downfolded models II and III.

• Change in the Conclusions: Furthermore, anharmonic force constants and non-perturbative electron-
phonon couplings [96] can be incorporated into the downfolded models to expand the accuracy to even
larger lattice distortions.

• Change in the Conclusions: Beyond potential energy surfaces, the downfolded models can also be used to
study the effective electronic structure in the presence of atomic dynamics.

• Added Data Availability Statement after the Conclusions: The source code and data associated with this
work are available on Zenodo [98].

• Change in Appendix B: Combining Eqs. (34), Inserting Eqs. (36) and (37) into Eq. (33) yields ∆CIII
ij . . .

• Change in Appendix C: For the transformation of the electronic energies and electron-phonon couplings
to the Wannier basis, we use Wannier90 [100] and the EPW code [101,102 -103].

• Change in References: Where available, arXiv versions have been linked.
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