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We would like to thank the referee for carefully reading our manuscript and providing de-

tailed and valuable comments. The version of the manuscript that we resubmit addresses

the aspects that the report brought to our consideration. Please find below the comments

from the referee and our answers.

1. Referee’s comment: Unfolding has been extensively used in HEP analyses and there are

many (non NN-based) unfolding algorithms available, including iterative method, singu-

lar value decomposition, bin-by-bin correlation etc. Many of these methods already exist

in a popular analysis code such as Root. Why does one needs cINN (or NN)? What would

be advantages of using NN over existing unfolding methods? Is it clear that conventional

unfolding methods might miss anything important that NN might capture? There are

some comparison studies such as https://arxiv.org/pdf/2104.03036.pdf but

it should be straightforward for authors to make a quick comparison for Top Yukawa CP

phase.

Author response: Machine learning (ML) and neural network (NN) based unfold-

ing techniques, like our cINN approach, offer several key advantages over classical

unfolding methods. These include the potential to unfold the full phase space in a

bin-independent fashion rather than being limited to single observables. To be pre-

cise, our cINN-based unfolding method allows for the unfolding of single events and

does not require prior reconstruction of target observables. The main reason for using

ML unfolding for CP-observables lies in the last point. Classical methods necessitate

the prior reconstruction of CP-sensitive observables before unfolding can occur. Conse-

quently, the improved sensitivity to CP-violation is unattainable in classical unfolding

techniques. This is because classical unfolding is still dependent of the inherent sensi-

tivity reached by prior classical reconstruction.

To further clarify this point, we added the following comments to page 3: “Machine

Learning provides generally unbinned techniques and allows for a simultaneous recon-

struction of the full phase-space, hence removing the need for a prior reconstruction

of any targeted observable [58]. Probabilistic techniques specifically can render the
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unfolding algorithm valid event by event, resulting in its viability even for low-statistic

measurements [60].”.

2. Referee’s comment: There are already several suggestions on using ML for unfolding.

Especially the following references advertise multi-dimensional unfolding as authors study

in their paper:

• https://arxiv.org/pdf/1911.09107.pdf

• https://arxiv.org/pdf/2203.16722.pdf.

I understand that authors are focusing more on physics side (CP phase) and authors simply

could have used conventional unfolding methods or existing ML-based unfolding. Are there

particular reasons why cINN might be more suitable than these for CP phase study?

Author response: We used the cINN here as an example of an existing ML unfolding

technique (introduced in [1]). The main advantage of the cINN is that it allows for

the unfolding of single events, such that it is already accurate for low event statistics.

In a real application, this is an advantage over other ML-approaches (and classical

approaches) together with the proposed iterative improvement [2].

3. Referee’s comment: I might have missed discussion but do authors perform unfolding

with unbinned data or histograms? It seems that authors are doing unbinned analysis

from the following sentence in conclusion “Modern machine learning makes it possible to

unfold high-dimensional distributions, covering all correlations without binning.” It may

be good to make this clear in earlier sections, if not mentioned.

Author response: We perform unbinned unfolding which is inherent to the cINN

method. For more details, please see the answers to questions 1 and 2.

4. Referee’s comment: I see PDF information for event generation but what scale is chosen?

Author response: We choose the dynamic factorization scale µF that comes default in

MadGraph, where µF is determined by the transverse mass µF = mT =
Æ

E2 − p2
z of

the kT clustered 2→ 2 event topology. In scenarios with multiple Feynman diagrams

contributing to the process, the 2→ 2 clustering may proceed in different ways leading

to different values of mT . In such cases, the transverse mass of the diagram with the

highest weight is typically used to set the scale [3, 4]. Analogously, the renormalization

scale µR is defined by the transverse mass leading to the choice µR = µF . We have

included the following comments on Page 4 to clarify this further:

‘We use MadGraph5_aMC@NLO [3] with NNPDF2.3QED [5] to generate signal events

at leading order with
p

s = 14 TeV, considering the default dynamic factorization and

renormalization scales. The process to determine the factorization scale µF involves kT

2

https://arxiv.org/pdf/1911.09107.pdf
https://arxiv.org/pdf/2203.16722.pdf


clustering the events into a 2→ 2 topology. µF is then defined based on the transverse

mass of the clustered system. The renormalization scale µR is set equal to µF .’

5. Referee’s comment: It seems that the (red) error bar in the right panel of Fig. 7 comes

from statistical uncertainty. Wouldn’t there be some systematic uncertainties coming from

NN and from unfolding procedure? Is it obvious that such systematic uncertainties are

much smaller than statistical uncertainty and therefore negligible?

Author response: The referee correctly pointed out that there may be additional

sources of systematic uncertainty. One of the main sources of systematic uncertainties

in our analysis is missing information at the detector level, due to which, the network

is unable to recover the true parton level information fully. Secondly, as pointed out

by the referee, imperfections in the NN architecture, training, unfolding procedures,

and loss functions also contribute to the overall systematic uncertainty. This typically

happens since the specific choice of cINN architecture and loss function does not guar-

antee convergence to the true global minimum. In practice, the training attains a local

minimum, which can be somewhat different from the true global minimum. Thirdly,

model-dependency related errors can also add-on to the systematic uncertainty.

We would like to note that we do not anticipate these systematic uncertainties to be

smaller than the statistical uncertainty. However, the main focus of our analysis is to

understand whether the cumulative impact of these systematic uncertainties on the

true sensitivity is less than the impact of systematic errors in the classical reconstruc-

tion. In this sense, we do not ignore or dismiss these errors, but rather treat them in our

analysis. We investigate whether the cINN based unfolding method provides a more

accurate representation of the underlying new physics despite these systematic uncer-

tainties when compared to the classical reconstruction technique. It is observed that the

cINN approach is able to more closely approximate the parton-level phase space, while

taking into account the NN-based systematic uncertainties as well as model-related

errors, which illustrates its potential advantage.

We added a discussion on this to the new draft in Sec. 3.3 (third-last paragraph): “Here

we can see that both approaches suffer from systematic uncertainties. In the classical

approach these uncertainties predominantly originate in simplifying assumptions about

reconstructed objects. The cINN approach gathers uncertainties mostly from model

dependence and additionally from imperfections in the neural network architecture,

training and loss function. Note that missing information on reco-level is also a source

of systematic uncertainty for both approaches.

As mentioned earlier, and as can be seen in the left panel of Fig. 7, generative unfold-
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ing leads to a major improvement over classical reconstruction in terms of systematic

bias. If this improvement actually leads to an improved sensitivity, it is encoded in

the difference between the two unfolded kinematic distributions, shown in solid lines.

To quantify this, we calculate the reduced χ2 values for θCS, ∆ηtℓ th
, b4, and ∆Φtℓ th

between the SM and α = π/4 hypotheses, using the Poisson errors of the bin counts.

The reduced χ2 values are computed with ∼120k events and 64 bins, for three scenar-

ios: parton-level truth (blue), classical reconstruction from Ref. [29] (green), and the

cINN-based generative model trained on SM events (red). A higher χ2 value indicates

a greater sensitivity to new physics.”

6. Referee’s comment: It is quite interesting to notice that classical reconstruction methods

and cINN method are comparable for θCS and b4. Do we know why?

Author response:

While the bottleneck for the cINN method is model dependence, such that the qual-

ity of the reconstruction can be generally expected to be somewhat consistent across

observables, for the classical reconstruction it is not so clear. We would expect that

better detector-level proxies lead to better sensitivity, but we cannot conclude that a

bad reconstruction necessarily means bad sensitivity. This is meant in the sense that

we might accidentally create a sensitive observable from a bad proxy.

In the case that our consistency expectation for the cINN observables is roughly correct,

the comparable sensitivities for θCS and b4 could be explained by the classical recon-

struction having accidentally better sensitivity here than for the other two observables.

The consistency of the cINN and the accidentally/surprisingly good sensitivity of θCS

and b4 is mentioned in the paper.

We have fully addressed all the referee comments, and we hope that with these clarifications

and associated changes made to the manuscript, the paper can be accepted for publication

in SciPost.
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