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We would like to thank the referee for carefully reading our manuscript and providing de-

tailed and valuable comments. The version of the manuscript that we resubmit addresses

the aspects that the report brought to our consideration. Please find below the comments

from the referee and our answers.

1. Referee’s comment: Section 2.1. The cINN is the salient feature of your method, yet it

is barely introduced in this section. From reading the many references, it is possible to

understand what you mean in eq (1) and (2), notaly the conditional part of the INN, but

otherwise the paper cannot be understood alone. It is obvious that this paper builds up on

your previous work, and the very short description of cINNs is made to shorten an already

lengthy paper. However, for an average user that would not have read the references, this

part is very much unclear and would benefit from a few more paragraphs (describing how

the loss function is built from Bayes’ theorem, and how the "s" and "t" networks are used in

a coupling block for example). It does make a bit of redundancy for a reader that followed

your previous work, but will improve the “standalone” readability of the paper

Author response: We concur with the referee’s comments and suggestions regarding

the introduction and motivation for cINNs. Taking these into account, we have revised

the relevant discussion in the Sec. 2.1 of the updated manuscript. The revised ver-

sion aims to improve its standalone readability and motivate the application of cINNs

more pedagogically, emphasizing the connection between cINNs and Bayes theorem in

particular.

2. Referee’s comment: Section 2.2. The justification for the periodic spline is a bit lacking,

and the link with Sec 2.3 is absolutely not clear. Similarly, the choice of a uniform latent

distribution (instead of the usual Gaussian) is not justified, unless it has a link with the

periodicity, which emphasizes the need for more explanation.

Author response:

Certain phase space directions exhibit periodic behavior. Without the use of periodic

splines, such distributions are poorly reconstructed in the boundary regions, which we

referred to as “undesirable boundary effects” in the previous version of our manuscript.
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In the updated version, we have clarified this aspect in the begining of Sec. 2.2: “As

we will discuss in Sec. 2.3, some phase space directions are periodic and the spline

transformations lead to a poor reconstruction of the respective distributions in the

boundary regions”. We also indicate the periodic parameters in the parametrization

adopted for our analysis, as discussed in Sec. 2.3.

Regarding the uniform latent distributions used for periodic dimensions, we agree that

this discussion warrants further clarification. The uniform latent distribution is inher-

ently more suitable for the bounded observables encountered in our analysis. This

choice of distribution aligns with the periodic nature of the observables, making it

more efficient in mitigating the undesirable boundary effects. In the revised version of

the paper, we have underlined this reasoning explicitly in the third-last paragraph of

Sec. 2.2: “As a last detail, we factorize the base distribution q(z) (compare Eq. (3)) into

a Gaussian part for non-periodic and a uniform part for periodic dimensions. The latter

is a more natural choice for a bounded feature like an azimuthal angle. Effectively, this

amounts to a factor of one for each uniform dimension, ignoring constant terms to the

loss. Naturally, we still have to consider the Jacobian for all dimensions.” We hope

that these modifications address your concerns and provide a clearer understanding of

our methodology.

3. Referee’s comment: Section 2.3. Could you shortly elaborate on the calculations that

lead to 9 dof for a single top? This section seems out of context compared to the rest of the

paper. You list a set of variables that fully determine the system, yet afterwards only select

a few for your unfolding (even some like b4 that were not in the list). Unless you apply

a MMD lose to all these distributions? The MMD is also lacking some details (the reader

can follow the reference of course, but it makes the reading again a bit uneasy).

Author response: Let’s consider the leptonic decay mode of the top quark: t → (W →
ℓν)b where the top quark and W boson are off-shell, and b,ℓ and ν are on-shell and

massless. The top quark can be parametrized by four degrees of freedom (dof): in-

variant mass mt , transverse momentum pT,t , pseudorapidity ηt , and azimuthal angle

φt , in the jet coordinate system. Next, we boost into the rest frame of the top quark:

p̃t
t = (mt , 0), p̃t

W = (E
t
W , p⃗t

W ), and p̃t
b = (mt−E b

W ,−p⃗t
W ), where the superscript represent

the rest frame, and tilde represents the four-vectors. Due to the on-shell condition for

the b, we require only three dofs to determine the four-momentum of the W boson.

Next, we boost to the rest frame of the W boson, where only two more dofs are re-

quired to parametrize the four-momentum of the ℓ and ν, owing to the two on-shell

conditions for ν and ℓ.

Regarding the selection of observables to parametrize the t t̄ system in the unfolding
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model (Eq. 7), we choose observables that would most effectively capture the rele-

vant new physics phenomena, which in this case is the CP-structure in the Higgs-top

interaction. Therefore, we go beyond the basic ones typically used in cartesian or jet

coordinate system. For example, we include variables like θCS and ∆Φℓd in the param-

eterization, since they are particularly sensitive to the CP-structure. We choose the 18

observables in Eq. 7 in such a way that it is always possible to fully determine the four-

momentum of the t t̄ system. It also must be noted that alternative parametrizations

are also viable.

We would like to clarify that the phase space parametrization chosen to represent the t t̄

system in Eq. 7 does not include b4. Despite not being included in the list of variables,

the generated parton-level distribution for b4 matches very well with the parton truth

distribution, which displays the ability of our unfolding model to fully reconstruct the

t t̄ phase space at the parton truth-level. We also do not use MMD in our analysis. We

elaborate on this choice in the first paragraph of Sec. 2.3 in the updated version of our

manuscript.

4. Referee’s comment: Overall, the section 2 does not allow for easy reproducibility of the

method, considering it is one of the acceptance criteria of the journal. This concerns the

technical aspects of the cINN (see comments 1 and 2), but also of the training itself.

Author response: As discussed earlier in our answers to referee comments 1, 2, and

3, we have performed a thorough revision of the discussion in Section 2 to improve

the readability and structure of the cINN considered in the analysis. These detailed

descriptions will enable the reproducibility of our method.

Regarding the training, we documented our loss function (Eq. (3)) as well as hyperpa-

rameters and the used gradient descent algorithm. These should suffice to reproduce

our results. Furthermore, note that we use standard methods, which are further doc-

umented in our references.

Overall, the only non-standard method that we use is the periodic splines, which we

introduced in section 2.2. Therefore, we are confident that reproducibility is ensured.

5. Referee’s comment: Section 3 intro (SMEFT). The rest of the paper being entirely about

α, this discussion about SMEFT seems unnecessary. Only the last sentence could justify

you can have a CP-observable of dim-4 (thereby motivating the whole use of the method

on ttH), but it is not really obvious from the phrasing.

Author response: The discussion on SMEFT was included to illustrate the connection

between the {κt ,α} parametrization, predominantly focused in the paper, and the con-

ventionally utilized dimension-6 SMEFT framework. We realize that the phrasing in
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Section 3 might not have made this connection immediately apparent. We have revised

the wording at the beginning of Sec. 3 to explicitly highlight this connection: “In this

paper, we predominantly focus on the {κt ,α} parametrization in Eq. (12), which can

be linked to the standard SMEFT framework used for general LHC analyses at mass

dimension six."

6. Referee’s comment: Section 3.2. Could you elaborate on the fact that background events

can be included later in the analysis? Unless mistaken, all the plots are about signal events

that are unfolded. How does this compare when the backgrounds are dominant, does it

matter, and how does it affect the sensitivity ?

Author response: The referee is correct in noting that presented results are from

unfolding signal events only. Our focus on signal events was mainly to demonstrate

the promising potential of the cINN-based unfolding method in reconstructing the full

parton-level phase-space where new physics effects are maximal.

The inclusion of backgrounds in our analysis is the crucial next step that would impact

the sensitivity of our model. We acknowledge that this is an important aspect, and we

aim to address it in future work. In Sec. 3.2, we discuss the use of a separate classifier

to distinguish the signal from the background. This would allow the unfolding model

to maintain its focus on the correct reconstruction of the new physics effects in the

signal events at the parton-level, while the background effects can be tackled by the

classifier. This would be an important extension of this paper, and we plan to explore

these aspects in future work, which we specifically mentioned in the new draft in the

first paragraph of Sec. 3.2: “For our simple study, we will sketch how we can avoid

modeling this step, in principle. A more thorough investigation of how the inclusion

of background affects our method, will be left to future work.”

7. Referee’s comment: Section 3.3 (Jet combinatorics). You talk about variable number of

jets, but nowhere in the text do you explain how you deal with this. Is it the same method

as Ref. [60]? If so, this would be worth explaining a bit more, especially considering

combinatorics are a major issue in most data analyses.

Author response: The method is generally similar, with some distinctions. For ex-

ample, we do not use the number of jets as an additional input, as done in Ref. [60].
Rather, we consider an input vector of fixed length to parametrize the detector-level in-

formation, which includes the four-momentum of up to six light jets, where the missing

jets are zero-padded. The network generates the kinematics for the two hard-scattered

light jets at the parton level among other candidates, unfolding the detector-level in-

formation containing up to six light jets. This explanation has been added to Sec. 3.3
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(Results - Jet combinatorics) of the updated version: ‘We train one network on SM

events without ISR and one network on events with up to six light-flavored jets. In

the latter case, we ensure that the input vector to the network has a fixed length by

zero-padding the missing jets. We note that our approach to tackle a variable number

of jets differs from that in Ref. [60] where the numbers of jets is incorporated as an

observable in the training dataset.’

8. Referee’s comment: Section 3.3 (Model dependence). Outside the iterative method, how

could this bias be dealt with in an analysis? As a systematic uncertainty? Does the fact

that the cINN does not extrapolate to non-zero values of α when trained on SM mean that

for each α that experimentalists want to try, a new cINN must be trained? Would this not

be a major shortcoming?

Author response: If one wants to just detect deviations from the SM, it is enough to

train the cINN once on SM data. Here, one could use simulated data to check which

deviation from α = 0 would lead to a significant deviation from the SM in a realistic

scenario. If this deviation is not detected by the experiment, this places a bound on α

without the need to train the cINN more than once. This bound would be conservative

due to the bias towards the SM.

We added a discussion on this in the Sec. 3.3 of the new draft: “Naturally, any re-

maining effects of such a bias would lead to a systematic uncertainty on α, which, as

mentioned above, is likely to be reducible by the iterative method proposed in Ref. [62].
Luckily the bias here will always be towards α = 0, such that deviations from the SM

will always infer new physics. Conversely, checking which value of α in our data leads

to new physics in simulation, allows us to place a bound on α for data. Any model bias

only affects how conservative this bound will be.”

In theory the mentioned issue could only become a serious shortcoming, if one wants

to go further and place a bound on a previously detected non-SM α value. However,

one would have to see if an iterative approach, as mentioned in the paper (see Ref. [1])
is not sufficient to remove the bias in so far as to make it negligible.

Note that some inherent model dependence is always present due to missing informa-

tion on detector level. This is the case for any kind of unfolding technique, including

all classical methods, since they are either fitted to SM data or based on Bayes theo-

rem with an SM prior. Hence, part of the model dependence cannot be framed as a

shortcoming of our specific method.

9. Referee’s comment: Section 4. The assertion that the iterative method could remove the

model bias is a bit strong. It is likely, but given that it has not been attempted here, better
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be a bit more conservative.

Author response: We agree with the referee’s comments and have revised the text

in Section 3 to clarify it: “On the other hand, this bias is significantly larger than

the uncertainty band, which suggests that there might be potential for reducing the

model dependence through the iterative method proposed in Ref. [62].” Likewise, we

have also updated the discussion in Section 4 to clarify it further: “For the former, we

have found that there exists a small but significant model dependence, which could

be potentially reduced through Bayesian iterative improvement, though this would

require a further detailed analysis beyond the scope of the current paper”.

10. Referee’s comment: General comment. This method looks very promising and would

be worth applying to either CMS or ATLAS analyses. Your paper is of course a proof of

concept, so it does not address much the challenges met during a real life analysis (exp

and th uncertainties, jet energy corrections, possibly datadriven methods, combinatorics,

particles outside acceptance, etc), which you can of course not be blamed for. Still, when

novel methods like this one are presented in a paper, it is always on a somewhat idealized

scenario and for the case that works well (though granted, you consider complications like

jet combinatorics with ISR). By experience, "no plan survives first contact with data", and

there is always more complication when using novel methods in a real life data analysis.

It would therefore be interesting to know your opinion or experience with the challenges

such analyses could face that you did not have, when applied to data. It may probably

fall outside your scope of the paper, you could therefore disregard this comment, but some

considerations specifically targeted at experimentalists that would want to use your tech-

nique could potentially enrich your paper and make it more easily advertisable to that

audience.

Author response: We agree with the referee’s comments that, being a proof of concept,

it does not fully explore the various challenges encountered in real-life data analysis.

A detailed investigation of these challenges is beyond the scope of the present analysis,

however, we recognize the importance of addressing them for applications to real data.

We plan to explore these challenges more comprehensively in future work to improve

the applicability and usage of our method to a broader audience.

We have fully addressed all the referee comments, and we hope that with these clarifications

and associated changes made to the manuscript, the paper can be accepted for publication

in SciPost.
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