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We study the ground state properties of the S = 1
2
staggered Heisenberg-Γ honeycomb model

under a magnetic field based on analytical and numerical methods. Our calculations show that the
conventional zigzag and stripy phases are favored because of the staggered Heisenberg interaction
away from the pure Γ limit. In our classical analysis, we find that the field induces a series of
competing magnetic phases with relatively large unit cells in the region sandwiched between the two
magnetic phases with long-range ordering. In the quantum treatment, these large magnetic unit
cells are destabilized by strong quantum fluctuations that result in the stabilization of a gapless
quantum spin liquid behavior. In a honeycomb Γ magnet, we disclose an intermediate-field gapless
quantum spin liquid phase driven by a tilted field away from the out-of-plane direction only for a
narrow region between the low-field zigzag and high-field fully polarized phases.

I. INTRODUCTION

Searching for exotic states of matter, such as quantum
spin liquid (QSL), in which frustrations and quantum
fluctuations prohibit spin arrangements with long-range
order, has been a subject of extensive research in con-
densed matter physics [1, 2]. The QSL state possesses
special features such as entanglement between spins over
long distances and the absence of spontaneous symmetry
breaking in spin and crystal lattice degrees of freedom
[2]. The deconfined fractionalized spin excitations, i.e.,
spinons, provide strong evidence of the long-range entan-
glement pattern in QSL [3, 4]. Kitaev QSL is a topologi-
cal magnetic quantum state characterized by fractionaliz-
ing the spin excitations into itinerant Majorana fermions
coupled to a Z2 gauge field in Kitaev’s compass model
on a honeycomb lattice [5].

Recently, the search for realizing the Kitaev honey-
comb model with Ising-like nearest-neighbor anisotropic
Kitaev interactions was focused on 5d [6, 7] and 4d [8–
13] Mott insulators in which their Mott behavior arises
from the interplay between correlation and strong spin-
orbit coupling (SOC) [14]. At the forefront of the Mott
insulators with strong SOC are the perovskite-related Ir
oxides in which 5d orbitals are partially filled. Due to the
large atomic number and the extended nature of 5d ele-
ment, the Ir compounds feature strong SOCs and reduced
electron-electron interaction compared to those of their
3d-electron counterparts. SOC has been demonstrated
to be responsible for the Mott insulating behavior of the
5d-transition metal materials owing to the SOC splits the
sixfold degenerate Ir t2g states into a ground state quar-
tet with Jeff = 3/2 is fully filled and an excited doublet
Jeff = 1/2 forms a half-filled energy band. Therefore,
the bandwidth of this half-filled band is much narrower
than the original one in the absence of SOC. As a result,
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an intermediate interaction strength on the 5d Ir atom is
sufficient for opening an insulating Mott gap [15].

Significantly, the 4d spin-orbit Mott insulator α-RuCl3
has extensively emerged as a prime candidate material
for realizing Kitaev’s spin liquid state [8, 9, 16–20]. At
zero field, the local Jeff = 1/2 pseudospins in α-RuCl3
have coplanar configurations with long-range antiferro-
magnetic (AFM) zigzag order within the honeycomb lat-
tice below the transition temperature TN ≈ 7K [8, 9, 18].
This compound exhibits the zigzag order at sufficiently
low temperatures due to different magnetic interactions
of non-Kitaev terms, such as the conventional Heisenberg
interactions J and two types of off-diagonal exchange in-
teractions (Γ, Γ′) [9, 10, 18], to drive the candidate ma-
terial α-RuCl3 away from the QSL state. According to
ab initio studies, the off-diagonal Γ and Γ′ interactions
originated from SOC [21] and trigonal distortion [22–24],
respectively. It is worth noting that the symmetric off-
diagonal exchange interaction Γ plays a critical role in
determining the long-range AFM zigzag order for the Ki-
taev material at low temperatures [21, 25].

Intense theoretical research over the recent years has
focused on studying the general Kitaev-Heisenberg-Γ
model for describing the potential QSL in α-RuCl3 [26–
34]. In Refs. [20, 35], they indicated that the general
model with ferromagnetic (FM) K and AFM Γ of simi-
lar magnitude for α-RuCl3 could explain the appearance
of both the large magnetic anisotropy [8, 9, 20, 36, 37]
and the broad magnetic continuum excitation around
the zone center [10, 18]. Despite the zigzag order of
α-RuCl3 at low temperatures, several experimental re-
sults have revealed evidence for a field-induced QSL in
this compound with an in-plane critical magnetic field of
HC ≈ 7 T [8, 9, 17, 26, 36, 38–42]. This intermediate QSL
phase can be realized between the low- and high-field
phases only for a finite range of magnetic fields. However,
the precise nature of the intermediate phase [43, 44] and
either gapless or gapped [26, 39, 41, 45, 46] is unclear to
require further studies. In recent experimental observa-
tions [16, 18, 26], signatures of fractionalized excitations,
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in line with those found in the QSL ground state of the
Kiatev model, have emerged in Kitaev candidates, such
as α-RuCl3. Meanwhile, the half-integer thermal Hall
conductance in α-RuCl3 under the intermediate magnetic
field demonstrates the fractionalization of spins into itin-
erant Majorana fermions and Z2 fluxes [42, 47–49].

It has been predicted theoretically that the exchange
interactions in α-RuCl3 can be manipulated experimen-
tally via octahedral distortion and layer stacking. For
example, the off-diagonal anisotropic exchange coupling
Γ can become unusually large by applying compression
[50]. The strength of the Heisenberg interaction in α-
RuCl3 compared to the anisotropic exchange interac-
tions K and Γ can be made small enough using the
circularly-polarized light [51]. Meanwhile, leveraging co-
herent light-matter interaction with proper amplitude
and frequency is a promising new direction toward con-
trolling the Kitaev interaction [52, 53]. Hence, all the
spin interactions can be tuned in situ by these methods,
providing a route to have a honeycomb Γ magnet with
dominated Γ interaction [54].

In this present paper, we study the ground state of the
staggered Heisenberg-Γ model [55] under both in-plane
and out-of-plane magnetic fields. However, this model
is not proposed to describe a special compound, but the
scientific model enables us to make predictions on the
possible existence of field-induced QSL phase in the hon-
eycomb Γ magnet. Based on the iterative minimization
method, we first try to find the classical ground state
phase diagram of the staggered Heisenberg-Γ model. The
classical phase diagram hosts exotic magnetic phases
with large unit cells close to the Γ-dominant region imply-
ing the existence of competition between the frustrated Γ
exchange interaction and the external field. These classi-
cal phase diagrams would provide valuable insights into
phases that suffer from finite-size effects in the quantum
limit. Then, we study the effects of quantum fluctuations
on the stability of the classical ground state using a theo-
retical method such as linear spin-wave theory (LSWT),
and the density renormalization group (DMRG) is a nu-
merical method. Based on the DMRG calculation, our
results reveal that the magnetic phases with relatively
large unit cells are unstable to a gapless QSL state under
strong spin fluctuations. Meanwhile, the spin excitations
in the QSL phase remain gapless even under an exter-
nal magnetic field. This result is independent of the field
direction.

This paper is structured as follows: In Sec. II, we de-
scribe the staggered Heisenberg-Γ model on a honeycomb
lattice under a uniform magnetic field, and its classi-
cal and semiclassical phase diagrams are presented in
Sec. III. We also discuss quantum ground state properties
in Sec. IV using the numerical results from the DMRG
method. Finally, in Sec. V, we summarize our main con-
clusions.

FIG. 1. (a) Schematic illustration of the honeycomb lattice
with the lattice basis vectors a1,2 = (±1/2,

√
3/2). Bond

directions γ ∈ {x, y, z} are labeled by different colors. The
three distinct nearest-neighbors on a honeycomb lattice links
are indicated by δx = 1

3
(−2a1 + a2), δy = 1

3
(a1 − 2a2), and

δz = 1
3
(a1 + a2). (b) The magnetic field angle θ is measured

from the out-of-plane [111] axis.

II. MODEL HAMILTONIAN

We study the staggered Heisenberg-Γ model with
bond-dependent interactions in the honeycomb Γ mag-
net is given by:

H = HSJ +HΓ +Hh,

HSJ = J
∑

⟨ij⟩||γ

ηγSi · Sj ,

HΓ = Γ
∑

⟨ij⟩||γ

(
Sα
i S

β
j + Sβ

i S
α
j

)
,

Hh = −
∑
i

h · Si.

(1)

where Sγ
i is the γ-component of the spin-1/2 operator at

site i, which γ ∈ {x, y, z} labels the type of the three
nearest-neighbor bonds ⟨ij⟩ on a honeycomb lattice, as
shown in Fig. 1(a). On the z-bonds, (α, β, γ) = (x, y, z)
and for the x- and y-bonds obtain with cyclic permu-
tation. Here, HSJ is the staggered Heisenberg exchange
interaction between the nearest-neighbor sites in which
ηγ = −1 for the bonds along the zigzag spin chains (x-
and y-bonds) and equals +1 for the bonds between the
zigzag spin chain (z-bonds). Depending on the sign J ,
the staggered Heisenberg model favors either the zigzag
magnetic state (J > 0) or the stripy magnetic state
(J < 0). Here, we consider an isotropic staggered Heisen-
berg interaction. While the spin-1/2 Heisenberg model
on honeycomb lattice with mixing FM and AF interac-
tions along zigzag and armchair directions, respectively,
may initially appear counterintuitive, recent theoretical
studies of two-dimensional magnetic systems, such as Cr-
trihalides, demonstrate that exchange interactions can
switch sign from FM to AFM coupling even with minimal
variations in bond distances and angles [56]. This finding
aligns with the Kanamori-Anderson-Goodenough rules,
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which highlight the critical role of bond angles at the
anion site mediating interactions between cations [57–
59]. Theoretical calculations on iron phosphorus trisul-
fide (FePS3) unveil a remarkable consequence of orbital
ordering. Despite inducing a subtle variation of only
0.1 angstrom in Fe-Fe distances, these lattice distortions
trigger a differentiation in exchange interactions. Conse-
quently, the ground state exhibits FM order along zigzag
chains and AFM order along armchair chains [60]. In ad-
dition,HΓ is the symmetric off-diagonal interaction to ex-
hibit a macroscopic ground state degeneracy in the clas-
sical limit, so-called classical spin liquid (CSL) [61, 62].
The last term in (1) illustrates a uniform external mag-
netic field that can be applied in various directions to the
honeycomb Γ magnet. Meanwhile, the couplings are pa-
rameterized as J = cosϕ and Γ = sinϕ with ϕ/π ∈ [0, 1].

III. CLASSICAL AND SEMICLASSICAL STUDY

A. Iterative Minimization

In this section, the classical phase diagram of the stag-
gered Heisenberg-Γ model is mapped out in the presence
of an external magnetic field. The iterative minimiza-
tion method [63, 64] has been used for the calculations.
Here, we start with a random configuration of the spins
on a honeycomb lattice. Then in each step of the itera-
tive process, a spin is selected randomly, and its orienta-
tion is adjusted to minimize its energy. This process is
achieved by aligning the selected spin with the local field
produced by its neighbors while keeping its length unity.
For the staggered Heisenberg-Γ model, the local field in
the position of spin Si is given by:

Mi = (J
∑
j:⟨ij⟩

ηijS
x
j + Γ

∑
j:⟨ij⟩||y

Sz
j + Γ

∑
j:⟨ij⟩||z

Sy
j )x̂

+ (J
∑
j:⟨ij⟩

ηijS
y
j + Γ

∑
j:⟨ij⟩||z

Sx
j + Γ

∑
j:⟨ij⟩||x

Sz
j )ŷ

+ (J
∑
j:⟨ij⟩

ηijS
z
j + Γ

∑
j:⟨ij⟩||x

Sy
j + Γ

∑
j:⟨ij⟩||y

Sx
j )ẑ,

(2)

where sums are run over js that are the nearest neighbors
of the i site. Therefore, the model Hamiltonian in the
presence of an external magnetic field can be rewritten
in terms of Mi in the following form:

H =

Ns∑
i=1

(Mi − h) · Si (3)

where h is an external applied magnetic field. From the
above Hamiltonian (3), we conclude that the energy can
be minimized when we adjust spin Si as Si = −(Mi −
h)/|Mi − h|. The adjusting of spins is continued until
the method converges to some local energy minimum.

We start with a honeycomb lattice with two triangular
sub-lattices and with a shape of a parallelogram with

FIG. 2. (a) Classical phase diagram for the staggered
Heisenberg-Γ model under an external magnetic field in the
direction of [111] obtained from the iterative minimization
method. The phase diagram includes the canted zigzag,
canted mixed, canted NCP, CSL, 6-site, canted stripy, and
polarized phases. (b) Ground state energy per site, eg, and
its second derivative with respect to ϕ/π, χϕ = −d2eg/dϕ

2,
for a constant external field of h/S = 0.25. The four singular
behaviors in the second derivative represent phase transition
points. (c-e) Static spin structure factors of different phases
on the high symmetry lines of the FBZ. (f) The real-space
spin configuration of the 6-site magnetic ordering is denoted
on a finite segment of the honeycomb lattice.

periodic boundary conditions. The sizes of lattices were
8× 8, 10× 10, 12× 12, 16× 16, and 24× 24 sites each in
total consisting of Ns sites; i.e., Ns is 128, 200, 288, 512,
and 1152, respectively. Then, we run a large updating
loop for every value for the coupling constants, and on
each iteration of the loop, we pick Ns spins for updating.

The ground state of this system consists of some highly
complex spin configurations in some regions of its phase
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FIG. 3. The evolution of the zigzag magnetic ordering under
an external magnetic field in the direction of [111] projected
on the ac plane for given ϕ/π = 0.35 and some values of the
field strength: (a) h/S = 0, (b) h/S = 1.25, (c) h/S = 1.75,
(d) h/S = 2.5.

diagram. This makes it difficult for this method to find
the actual ground state of the system for some regions of
the coupling constants. Our calculations are frequently
stuck in some local minima in these regions. To solve this
problem, we applied a collective iterative method where
parallel iterative calculations are started from several dif-
ferent initial spin configurations, and the state with the
lowest energy is selected as the ground state in the end.

After finding the spin configuration of the ground
state, we plot the spin arrangements in real space and
look at the arrangements of the spin components. When
the spin configuration of the ground state is commensu-
rate with the lattice constant, there is a finite number of
spins with a spin structure that repeats through the lat-
tice. The spin structure, which repeats, is the magnetic
unit cell. For such situations, this method typically ends
with domains separated by domain walls. If we restart
the program with a random spin configuration close to
the proposed actual ground state, the code rapidly con-
verges to the actual ground state without any domain
wall.

To determine the ordering wave vector of the ground
state, we calculate the static spin structure factor, which
is the Fourier transform of the spin-spin correlation as
S(k) = N−1

∑
ij⟨Si · Sj⟩eik·(ri−rj). Therefore, this

method would be convenient for the description of both
commensurate and incommensurate structures. After

calculating the Fourier transforms, we plot the distribu-
tion of the Fourier magnitudes of the spin-spin correlation
along the high symmetry lines in the first Brillouin zone
(FBZ). This static spin structure factor can be viewed as
a fingerprint of different spin configurations. Typically,
we observe one or a few peaks in the high symmetry
line, which gives the ordering wave vector of the mag-
netic state.
Zero-field phase diagram of the staggered Heisenberg-Γ

model obtained from the iterative method coincides pre-
cisely with the Monte Carlo phase diagram in Ref. [55].
The classical phase diagram for the particular case with
h/S = 0 includes four distinct phases: (i) Commensu-
rate zigzag-type state for ϕ/π < 0.5, (ii) Mixed phase for
0.5 ⩽ ϕ/π ⩽ 0.65, where there exists a degeneracy be-
tween a AFM order and two twining zigzag (twining ZZ)
phases. Note that the twining ZZ phases differ from the
conventional zigzag-type phase due to their spin orienta-
tions (not shown) [55]. (iii) Noncollinear phase (NCP)
with incommensurate wave vector is stable within a nar-
row range of about 0.02 beyond the mixed phase. (iv)
Commensurate stripy-type state for 0.67 ⩽ ϕ/π ⩽ 1.
The classical phase diagram for the staggered

Heisenberg-Γ model under an external magnetic field in
the [111] direction obtained from the iterative minimiza-
tion method is shown in Fig. 2(a). Fig. 2(b) shows the
classical ground state energy per site, eg, and its sec-
ond derivative with respect to ϕ/π, χϕ = −d2eg/dϕ

2 for
given h/S = 0.25. The anomalies in the second deriva-
tive match very well with the phase transition points in
the phase diagram.
Details of the magnetic orders can be determined by

the real spin configuration and the developments in the
static spin structure factor. To clarify the evolution of
any magnetic ordering in the presence of a magnetic field,
we parameterize the spin Si at site i in terms of ϑi and
φi where are the spherical angles in the local reference
frame as defined in (5):

Si/S = sinϑi cosφiẽx + sinϑi sinφiẽy + cosϑiẽz, (4)

FIG. 4. Color map of the static spin structure factor S(k)
within the FBZ for the CSL phase averaged over 30 different
random runs for given ϕ/π = 0.5 and h/S = 0.51.
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FIG. 5. (a) Same as Fig. 2(a), but for the external magnetic
field in the direction of [001]. The phase diagram includes
the canted zigzag, CSL, canted mixed, canted NCP, canted
stripy, and polarized phases. (b) Ground state energy per
site, eg, and its second derivative with respect to ϕ/π, χϕ =
−d2eg/dϕ

2, for a constant external field of h/S = 0.35. The
three singular behaviors in the second derivative represent
phase transition points.

the (ẽx, ẽy, ẽz) basis are aligned along the crystallo-
graphic a,b, c directions, whose directions in the basis
of the spin axes are given by [112̄], [1̄10], and [111], re-
spectively [Fig. 1(b)]. For the field in the [111] direc-
tion, a canted spin state is defined with ϑi > 0, while we
have ϑi = 0 for the fully polarized state. Fig. 3 shows
canted magnetic moments in the zigzag state smoothly
connected to the high-field polarized state by increas-
ing the field. In the stability region associated with the
zigzag and stripy states, the structure factor peaks at the
M2 point for given h/S = 0 (not shown). Turning on the
field, the zero-field phases are canted towards the field di-
rection, and therefore a different peak appears at the Γ
point as expected [Fig. 2(d)]. By increasing the field,
even further, the anomaly at the M2 point decreases,
and the one Bragg peak at the Γ point simultaneously
increases. For a critical field at which the system goes
to the polarized phase, the structure factor would have
a single peak at the Γ point (not shown). Structure fac-
tors for the one associated with the canted mixed phase
with the triple degeneracy is indicated in Fig. 2(c), and
three points in the canted NCP, canted stripy, and canted

FIG. 6. (a) Same as Fig. 2(a), but for the external mag-
netic field in the direction of [112̄]. The phase diagram in-
cludes the canted zigzag, CSL, canted mixed, canted NCP,
canted stripy, and polarized phases. (b) Ground state energy
per site, eg, and its second derivative with respect to ϕ/π,
χϕ = −d2eg/dϕ

2, for a constant external field of h/S = 0.25.
The four singular behaviors in the second derivative represent
phase transition points.

zigzag phases are shown in Fig. 2(d) as well.

As shown in Fig. 2(a), beyond the canted-mixed and -
NCP phases before entering the high-field polarized state,
for a wide range of the field strengths, the model exhibits
an intermediate region including a CSL state, and a 6-
site order with six sublattices per unit cell [Fig. 2(f)].
For high fields before the polarized phase, there is a new
phase with a 6-site order for 0.46 < ϕ/π < 0.64. For this
phase, there are peaks in the structure factor S(k) near
K and K′ points [Fig. 2(e)]. The CSL phase, which ap-
pears at intermediate-field strengths, is characterized by
a macroscopically-degenerate ground state at the classi-
cal level. In Fig. 4, an average of the structure factor
over 30 different realizations of the CSL phase for given
ϕ/π = 0.5 and h/S = 0.51 is shown. The existence of the
CSL phase is verified by the lack of magnetic ordering,
with only the Γ point intensity (i.e., the magnetization).
The absence of any sharp peak in the rather featureless
structure factor of the intermediate phase is indicative of
the CSL phase. It is worth mentioning that for other field
directions along [001] and [112̄], in contrast, the canted
mixed phase is found to cover a remarkably larger param-
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FIG. 7. (a) Semiclassical ground state phase diagram for
the staggered Heisenberg-Γ model under an external mag-
netic field in the direction of [111] obtained from the LSWT.
The phase diagram includes the polarized magnetic phase at
the higher fields, and the canted zigzag, spiral, and canted
stripy phases in the lower fields. The obtained magnon spec-
tra, along high symmetry lines in the FBZ (see inset), in go-
ing from the polarized phase to its neighbor phases: (b) the
canted zigzag phase, (c) the spiral phase, and (d) the canted
stripy phase.

eter region until the critical field at which the system goes
to the polarized phase. In addition to, an intermediate
CSL phase emerges between the canted zigzag and po-
larized phases close to the Γ-dominant region, as shown
in Figs. 5 and 6.

B. Instability of the polarized state from spin-wave
theory

As shown in the classical phase diagrams of the stag-
gered Heisenberg-Γ model [Figs. 2, 5, and 6] all the spins
are aligned along the applied field direction in the ultra-
high-fields limit, which is called a polarized phase. To get
further insight into the effects of quantum fluctuations on
the fully polarized phase, we use the LSWT within the
semiclassical approximation. The spin-wave theory is a
convenient approach to describe quantum fluctuations in
the ordered states [65]. The quantum fluctuations mod-
ify the phase boundaries in the classical phase diagrams.
The shift of the phase boundaries between classical states
due to quantum effects can be quantitatively computed
using the spin-wave theory.

Here, we analyze the transition from the polarized
phase in the high-field to low-field phases in terms of
magnon excitations. Note that the magnetic phase tran-
sition is characterized by the closing of the low-energy
magnon gap in the wave vector of the FBZ at some criti-
cal field hc. The spin configuration of the low-field phases
is determined by the wave vector in which the magnon
gap closes. This results a Bragg peak in the static struc-
ture factor with this special wave vector.
To understand the magnetic phases in the lower fields,

we take the high-field phase as a reference state. All
spins in the fully polarized state are ferromagnetically
aligned in the external magnetic field direction. There-
fore, we have to rotate the original cubic axes basis
(ex, ey, ez) into the local bases (ẽx, ẽy, ẽz) such that the
spin-quantization axis is aligned along the external field
direction (ẽz||h). The unit vectors within the new refer-
ence frame (ẽx, ẽy, ẽz) are given by:

ẽx =
(ez × h)× h

|(ez × h)× h|
, ẽy =

ez × h

|ez × h|
, ẽz =

h

|h|
. (5)

Then, we express the spin Hamiltonian (1) in the new

spin-S̃ coordinate system. To access the magnon exci-
tation spectrum, we now rewrite the new spin operators
in terms of bosonic modes using the linearized Holstein-
Primakoff transformations, which for the FM case are
given by:

S̃i,A =
√
2Sai, S̃z

i,A = S − a†iai,

S̃i,B =
√
2Sb†i , S̃z

i,B = S − b†i bi
(6)

where ai/bi (a
†
i/b

†
i ) stand for the annihilation (creation)

operators of the A/B sublattices magnons of the hon-
eycomb lattice. After the Fourier representation of the
Holstein-Primakoff bosonic operators, we can obtain the
LSWT Hamiltonian in momentum space as follows:

HLSW = S
∑
k

{
Λ0(a

†
kak + b†kbk)

+ Akakb
†
k + A∗

ka
†
kbk + Bkakb−k + B∗

ka
†
kb

†
−k

}
.

(7)

in which Λ0 = (J − 2Γ + h/S) for h||[111] and Λ0 =
(J + Γ + h/S) for h||[112̄], while for h||[001] is given by
Λ0 = (J + h/S). Meanwhile,
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Ak =


−(J + Γ

3 )
(
eik·δx + eik·δy

)
+ (J − Γ

3 )e
ik·δz , for h ∥ [111],

−(J − Γ
3 )
(
eik·δx + eik·δy

)
+ (J − Γ

6 )e
ik·δz , for h ∥ [112̄],

−J
(
eik·δx + eik·δy − eik·δz

)
, for h ∥ [001],

(8)

and

Bk =


Γ
(
(− 1

3 − i√
3
)eik·δx + (− 1

3 + i√
3
)eik·δy + 2

3e
ik·δz

)
, for h ∥ [111],

Γ
(
( 13 − i√

6
)eik·δx + ( 13 + i√

6
)eik·δy + 5

6e
ik·δz

)
, for h ∥ [112̄],

Γei(k·δz+
π
2 ), for h ∥ [001].

(9)

where δγ indicates the vector that connects an arbitrary
site on a honeycomb lattice to its three nearest neighbors
[Fig. 1(a)]. Here, we drop the constant terms because
they do not affect the magnon excitation spectrum.

The analog with a transition to the traditional Bose-
Einstein condensation (BEC) state that corresponds to a
spontaneous breaking of the continuous U(1) symmetry
that preserves the number of bosons, a spontaneous tran-
sition to a BEC state can be realized in quantum mag-
nets with the SO(2) spin rotational symmetry [66, 67].
In magnetic systems, the longitudinal magnetization par-
allel to the magnetic field maps into the boson density.
Therefore, the boson number conversation corresponds to
the continuous symmetry of global spin rotations along
the field direction (uniaxial symmetry). In the h → ∞
limit, the rotational symmetry around the direction of
the magnetic field (SO(2)) approximately restores. As a
result, the physical picture of the magnon-BEC works in
the presence of an external magnetic field. It is impor-
tant to mention that the boson density, which plays the
role of a chemical potential of magnons, can be tuned via
the magnetic field strength leading to the formation of a
BEC. It is worth mentioning that the magnon-BEC pic-
ture is suitable for understanding some central features
containing the spectrum of excitations, the nature of the
field-induced ordered state right below the critical field,
the dynamical properties near the BEC quantum critical
points to separate the polarized state in the high-field to
low-field phases.

To consider the magnon-BEC of the fully-polarized
phase for the high-fields to its neighbor phases by de-
creasing the field magnetic, we obtain the magnon spec-
tra by diagonalization of the quadratic Hamiltonian (7)
via a standard Bogoliubov transformation [68]. The
magnon spectrum of the high-field phase in the ab-
sence of Goldstone modes is fully gapped (∼ hS) (not
shown). Above all zero-field classical phases within large
h/S ≫ |J | and |Γ|, the minimum of the magnon spec-
trum is located at the Γ point of FBZ. Now, we can
investigate the transition to a uniform canting energet-
ically favorable which is often revealed by a gap-closing
phenomenon at certain wave vectors within the FBZ.

For field h∥ [111]: The semiclassical ground state of the
staggered Heisenberg-Γ model under an external mag-
netic field in the direction of [111] is shown in Fig. 7(a).
At the high-field limit, there is a FM phase along the
field polarization direction. With decreasing the field
strength, we find that for ϕ/π ∈ [0, 0.46], the magnon gap
vanishes at wave vector q = M2 of the FBZ [Fig. 7(b)].
The gap-closing at q = M2 illustrates that the system
makes a continuous phase transition from the polarized
state to the canted zigzag phase in which the system ex-
hibits a long-range magnetic order. On further decreas-
ing the field strength, the soft modes for the magnon
branch will result in imaginary spectra, well known as

FIG. 8. (a) Same as Fig. 7(a), but for the external mag-
netic field in the direction of [001]. The phase diagram in-
cludes the polarized magnetic phase at the higher fields and
the canted-zigzag and -stripy phases in the lower fields. The
obtained magnon spectra, along high symmetry lines in the
FBZ (see inset), in going from the polarized phase to its neigh-
bor phases: (b) the canted zigzag phase, and (c) the canted
stripy phase.
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FIG. 9. (a) Same as Fig. 7(a), but for the external magnetic
field in the direction of [112̄]. The phase diagram includes the
polarized magnetic phase at the higher fields and the canted
zigzag, spiral, AFM, and canted stripy phases in the lower
fields. The obtained magnon spectra, along high symmetry
lines in the FBZ (see inset), in going from the polarized phase
to its neighbor phases: (b) the canted zigzag phase, (c) the
canted stripy phase, (d) the spiral phase, and (d) the AFM
phase.

magnon instability, allowing us to identify that the fully
polarized phase is unstable. For the intermediate values
of ϕ/π ∈ [0.46, 0.66], we find that the magnon gap sup-
pression occurs at an incommensurate wave vector along
the K′ −M2 in the FBZ [Fig. 7(c)]. This magnetic phase
with an incommensurate wave vector is called a spiral
state. For ϕ/π > 0.66, the magnons condense at the M2

point corresponding to the ordering vector of the canted
stripy phase [Fig. 7(d)].

It is worth mentioning that close to the quantum phase
transition, the magnetic correlation length diverges as
ξ ∼ |h − hc|−ν with ν = 1/z [69, 70]. Here, z and
ν are dynamic- and critical-exponent, respectively. As
shown in Figs. 7(b-d), the dynamic critical exponent is
z = 1 because the magnon spectra exhibit a linear form
at the critical fields where the magnon gap closes at cer-
tain wave vectors within the FBZ [70].

For field h∥[001]: For the external magnetic field in
the direction of [001], the semiclassical phase diagram in-
cludes the polarized magnetic phase at the higher fields

and also the canted-zigzag and -stripy phases in the
lower fields, as illustrated in Fig. 8(a). Condensation
of magnons at the M2 point with a linear dispersion re-
sults in the canted zigzag phase for ϕ/π < 0.5 [Fig. 8(b)].
As a result, the correlation length critical exponent of
the canted zigzag phase is ν = 1 which may be the
z = 1 3D Ising universality class [70]. The canted stripy
phase is stable ϕ/π > 0.5, for which condensation of
magnons occurs at the M2 point with a quadratic dis-
persion [Fig. 8(c)]. Therefore, the critical exponent of
the canted stripy phase is ν = 1/2, similar to the con-
ventional magnon Bose-Einstein condensation [67].
For field h||[112̄]: Here, we investigate the semiclassi-

cal phase diagram of the staggered Heisenberg-Γ model
for the external magnetic field in the [112̄] direction. For
this case, the model exhibits a rich phase diagram in-
cluding the fully polarized phase at the higher fields and
the canted zigzag, spiral, AFM, and canted stripy phases
in the lower fields [Fig. 9(a)]. The canted-zigzag and -
stripy orders, with the gap closing at the q = M2 point,
are stable for ϕ/π ∈ [0, 0.28] and ϕ/π ∈ [0.65, 1], re-
spectively. In addition, the critical exponent for both
of them is ν = 1/2 due to the magnon spectra in the
vicinity of the M2 point has a quadratic form [Figs. 9(b-
c)]. The intermediate phase with the spiral order forms
for ϕ/π ∈ [0.28, 0.52] is described by an incommensurate
wave vector along the K−Γ of the FBZ [Fig. 9(d)]. For
ϕ/π > 0.52, we find that the system transitions from the
spiral phase to the AFM order with q = Γ, which re-
mains stable up to ϕ/π = 0.65. For these intermediate
phases, the magnon spectra have a linear form [Figs. 9(d-
e)], then the correlation length critical exponent is ν = 1.
The discrepancy between the phase diagrams of the stag-
gered Heisenberg-Γ model in the presence of the in-plane
and out-of-plane fields can be related to a key role played
by the symmetric off-diagonal Γ interaction [21, 32, 71].

IV. QUANTUM SPIN-1/2 GROUND STATE

Here, we study (1) with spin-1/2 constituents within
the context of quantum simulation. The ground state of
the staggered Heisenberg-Γ model at zero field [i.e., (1)
with h = 0] in the range of 0 ≤ ϕ/π ≤ 1 has recently
been considered by Luo et al [55]. Their results signal
the emergence of a gapless QSL state in the range of
0.5 ≲ ϕ/π ≲ 0.66. In addition, for small values of ϕ/π,
the zigzag ordering is stable up to ϕ/π ≃ 0.5 and ϕ/π ≳
0.66, and the system transitions from the gapless QSL
state to the stripy phase.

To investigate the quantum phase diagram of (1), we
use the DMRG method which is one of the most power-
ful techniques for computing the ground state of strongly
correlated quantum many-body systems [72, 73]. To this
end, we perform quantum simulation on both hexag-
onal clusters and a series of finite cylinders based on
the matrix product states via the open-source ALPS li-
brary [74]. Here, we use a C3-symmetric hexagonal clus-
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FIG. 10. The top row illustrates the classical phase transitions of the staggered Heisenberg-Γ model as the parameter ϕ/π
changes from 0 to 1, with model parameters defined as J = cosϕ, Γ = sinϕ. This behavior is shown for three magnetic field
orientations at a fixed strength (h = 0.2): (a) parallel to the [111] direction, (b) parallel to the [001] direction, and (c) parallel to
the [112̄] direction. The bottom row presents the corresponding quantum ground state phase diagrams obtained using DMRG
on a 2 × 4 × 4 cylinder for the same three magnetic field directions, (d) h||[111], (e) h||[001], and (f) h||[112̄]. The dash-dotted
line in panels (d-f) demarcates the boundary of the polarized phase. This line corresponds to the critical field, hc(ϕ), where
the magnon gap closes.

ter with N = 24 sites under full periodic boundary con-
ditions, as shown in Fig. 1(a). In addition, we consider
the honeycomb cylinders of 2 × L × W , where L and
W are the number of unit cells along the two primi-
tive vector directions. We will provide numerical evi-
dence for the excitation gaps, the static spin structure
factor, and the susceptibilities χh = −d2eg/dh

2, where
eg = Eg/N is the ground state energy density, through
the DMRG simulation. Then, we investigate the im-
portance of finite size effects by employing the DMRG
method on both C3-symmetric hexagonal clusters with
N = 18, 24, 32, and 54 under full periodic conditions and
also finite cylinders with cluster sizes of N = 2 × 4 × n
(n = 3, 4, 5, and 6). In addition, the truncation error is
decreased to 10−5J or smaller by keeping 1000 density
matrix eigenstates in the renormalization procedure and
performing 10 sweeps.

In the following, we will focus on the effect of an ex-
ternal magnetic field on the quantum phase diagram of
the staggered Heisenberg-Γ model [55]. Our results show
that the external magnetic field influences the zero-field
quantum phase diagram. Quantum phase diagrams in
the ϕ/π−h plane for the various field directions h||[111],
h||[001], and h||[112̄], which were obtained through the
numerical DMRGmethod, indicated in Figs. 10(d-f). For
a tiny field, all spins in the stripy- or zigzag-ordering
are canted toward the field. With increasing the field
strength, a continuous phase transition occurs from the
canted-zigzag and -stripy phases to the fully polarized
phase in a critical field. Close to the Γ limit (ϕ/π ∼ 1/2)
for given h = 0, there exists a phase transition from the
zigzag phase to the gapless QSL phase [55]. It is worth
mentioning that the unique aspect of the quantum phase
diagrams in Figs. 10(d-f) is the stability of the QSL phase
in a magnetic field with a finite extent at low fields. As is
clear, the stability region of the QSL phase in Fig. 10(d)
with field along the h||[111] direction is approximately
twice that of the other two directions, i.e., h||[001] and
h||[112̄] [Figs. 10(e-f)]. As the magnetic field is tilted
away from the [111] direction, the stability region of QSL

begins to reduce in the ϕ/π − h plane. This discrepancy
can be attributed to the off-diagonal Γ exchange inter-
action [21, 32, 71]. Here, we consider the dependence of
the finite size effects on the phase boundary between two
phases of different orderings in Figs. 10(d-f). Our results
indicate that the peaks of susceptibilities become nar-
rower and sharper with the increase in the system size,
and the peak locations shift slightly. DMRG calculations
unveil that classical magnetic phases with large unit cells,
such as CSL, canted NCP, and canted mixed, become un-
stable towards a QSL state in the presence of strong spin
fluctuations, as illustrated in Fig. 10. While the stan-
dard spin wave theory successfully captures quantum ef-
fects within the ordered states, it fails to describe the
shifts of the phase boundaries by quantum fluctuations
[see Figs. 10(d-f)].

To elucidate the nature of the QSL phase in the pres-
ence of the uniform magnetic field, we study the first few
lowest excitation gaps ∆ν = Eν−Eg with ν = 1−13 as a
function of ϕ/π in the staggered Heisenberg-Γ model un-
der a [112̄] magnetic field, for given h = 0.1 [Fig. 11(a)].
For both the canted zigzag order and the canted stripy
order, the first excitation gap ∆1 becomes vanishingly
tiny. Therefore, this result illustrates that these magnetic
phases are indeed doubly degenerate. As is apparent,
the excitation gaps ∆ν with ν ⩾ 2 survive for both the
zigzag order (ϕ/π = 0.2) and the stripy order (ϕ/π = 0.8)
[Fig. 11(b)]. With increasing ϕ/π across ϕ/π = 0.49,
the second excitation gap ∆2 of the canted zigzag phase
gradually reduces to vanishingly small and the system
undergoes a quantum phase transition from the canted
zigzag phase to the QSL sate [Fig. 11(a)]. Beyond the
canted zigzag phase, it unveils a unique feature: Excita-
tion gaps are small in a large interval and the low-energy
spectrum is very dense. Our results illustrate the signa-
tures of a gapless region [50, 75, 76]. Independent of the
magnetic field strength, the excitation gap is still highly
dense in the QSL phase (not shown). As can be seen
from Fig. 11(b), the excitation gaps at ϕ/π = 0.54 of the
QSL region continuously enhance without an abrupt rise.
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FIG. 11. (a) The first thirteen excitation gaps ∆ν (ν = 1−13)
of the staggered-Heisenberg Γ model under a [112̄] magnetic
field at h = 0.1 were obtained using DMRG on a 24-site
hexagonal cluster. (b) The first thirteen energy gaps ∆ν

(ν = 1−13) for the canted zigzag phase (ϕ/π = 0.2), the ΓSL
state (ϕ/π = 0.54), and the canted stripy phase (ϕ/π = 0.8).
The size dependence of the two lowest excitation gaps ∆1

and ∆2 at ϕ/π = 0.54 and h = 0.1 on both (c) C3-symmetric
hexagonal clusters with N = 18, 24, 32, and 54 and (d) a series
of finite cylinders with N = 2×4×n (n = 3, 4, 5, and 6) sites.

This successive increase of the excitation gap may give
evidence for the absence of a macroscopically-degenerate
ground state.

To consider the extrapolations of the two lowest excita-
tion gaps (∆ν , ν = 1, 2) of the QSL region as a function
of the system sizes, we have performed large-scale DMRG
calculations on both hexagonal and cylinder clusters as
presented in Figs. 11(c) and (d), respectively. With the
increase in the system size (N), the excitation gaps begin
to quickly decrease on both distinct cluster geometries.
Similar to the case of the zero-field limit [55], we predict
that the lowest gap should be vanishingly small in the

FIG. 12. (a) Color map of the static magnetic structure
factor S(k) within the FBZ of the staggered-Heisenberg Γ
model under a [112̄] magnetic field at ϕ/π = 0.46 obtained
using DMRG on a 2×4×4 cylinder within the canted zigzag,
ΓSL, and polarized phases. (b) The magnetization −deg/dh
(dashed line) and magnetic susceptibility −d2eg/dh

2 (solid

line) as a function h of the θ = 90
◦

tilted field, for given
ϕ/π = 0.46.

thermodynamic limit due to the overall downward trend
in the two lowest excitation gaps. Further, the vanishing
lowest excitation gap in a large enough system size indi-
cates that the QSL phase of the staggered Heisenberg-Γ
model under the [112̄] magnetic field is still a gapless
state called a ΓSL phase. It is worth mentioning that
we cannot find any signature from the possible existence
of a field-induced gapped QSL phase by switching the
magnetic field from the in-plane [112̄] axis towards the
out-of-plane [111] axis.
A comparison of the DMRG phase diagrams of the

staggered Heisenberg-Γ model on a honeycomb lattice
under a uniform magnetic field shows that a small region
of an intermediate-field ΓSL state near the pure Γ limit
(ϕ/π = 1/2) emerges when the external magnetic field
has the in-plane components of the field [Fig. 10]. To
investigate in detail the intermediate-field ΓSL phase for
the honeycomb Γ magnet with the in-plane field h||[112̄],
we illustrate the magnetization m = −deg/dh, magnetic
susceptibility χh = −d2eg/dh

2, and static spin structure
factor as a function of h, for given ϕ/π = 0.46 in Fig. 12.
As is apparent, the phase transitions are signaled by two
singular behaviors in χh and the spin configuration of the
different phases on either side of these anomalies points
are characterized by the Bragg peaks in S(k). Close to
h ≈ 0.15, the system undergoes a continuous phase tran-
sition from the canted zigzag phase with a Bragg peak
only at the M point to the ΓSL phase without any peak
in the reciprocal space. With an increase in h up to
h = 0.18, the phase changes from the ΓSL state to a fully
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polarized phase in which the static spin structure factor
has a finite value only at the Γ point. Similar to the Ki-
taev materials that an intermediate QSL phase emerges
between the low-field and high-field phases owing to dif-
ferent magnetic interactions of non-Kitaev terms, here
we find the intermediate-field ΓSL sitting between the
canted zigzag phase and the fully polarized order depends
crucially on the presence of the staggered Heisenberg ex-
change interaction [Figs. 10(e-f)]. The main result of
an emerging intermediate-field ΓSL disappears at large
staggered Heisenberg interaction. It leaves a single di-
rect transition from the canted zigzag phase to the fully
polarized state. Thus, with the magnetic field tilted away
from the out-of-plane [111] direction, the ΓSL in the hon-
eycomb Γ magnet is confined to a narrow range of low
fields near the pure Γ limit.

V. CONCLUSIONS

Here, we presented a theoretical study of the interplay
of magnetic field and staggered Heisenberg exchange in-
teraction in a honeycomb Γ magnet. At the classical
level, complicated intermediate phases with large mag-
netic unit cells, which are sandwiched between canted-
zigzag and -stripy phases, are enlarged for moderate mag-
netic fields before entering the high-field polarized state.
Within the DMRG method, our findings indicate that
the quantum fluctuations destabilize these intermediate
phases in favor of the ΓSL state. Uniquely, this model
gives the ΓSL state in a rather large extent region medi-

ated by the delicate interplay between staggered Heisen-
berg and symmetric off-diagonal exchange interactions
with the assistance of an external magnetic field.
As the magnetic field is tilted away from the out-of-

plane [111] direction, our numerical data show that an in-
termediate gapless ΓSL state emerges between the zigzag
and fully polarized phases as h increases [Figs. 10(b-
c)]. Note that this intermediate-field ΓSL state is stable
within a narrow region close to the pure Γ limit. While
this intermediate ΓSL state disappears for tilting angle
θ = 0

◦
, leaving a single direct transition from the canted

zigzag phase to the polarized state [Figs. 10(a)].
As a final remark, we add that it is possible that the

ΓSL phase survives to a much larger region and drives
into a long-sought-gapped QSL state in the presence of
off-diagonal Γ′ coupling or the inclusion of a staggered
magnetic field [76, 77]. In addition, experimental re-
cent observations have established that a small pressure
leads the suppression of magnetic order and the emer-
gence of a magnetically disordered state in α-RuCl3 [78–
81]. These features support the case for a QSL phase
arising from pressure-increased spatially anisotropic in-
teractions. Thus, the staggered Heisenberg-Γ model on
the honeycomb lattice by varying the anisotropy of the
interactions may help to discuss the stability of the mag-
netically disordered state. These questions are left for
future study.
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