
Strengths

1.  An  interesting  qualitative  prediction  related  with  the  formation  of  position  dependent 

fluctuations of the order parameter after a quench.

2. Careful comparison of the initial transient behaviour to other approaches.· 

3. Careful studying of the effects of disorder

Weaknesses

1. The chosen model for the adiabatic time evolution of the electron occupation number with the  

fast-changing temperature seems unphysical.

2.  Many  of  the  quantities  in  the  numerics  have  been  left  undefined,  making  it  difficult  or 

impossible for others to repeat the findings (see report).

3. Use of dimensionless units is at some points confusing.

4. Manuscript does not provide information on the possible checks of how discretisation errors or  

finite-size effects affect the predictions.

5. Manuscript does not explicitly tell how the inhomogeneities are allowed to take place in the  

numerics in the clean case. In other words, how does the translation symmetry get spontaneously 

broken?

Report

This manuscript presents an interesting study of what happens in an ordinary two-dimensional 

superconductor when the temperature is suddenly brought from above the critical temperature to 

much below the critical temperature. Using a numerical solution of the Bogoliubov-de Gennes  

equation in a finite lattice, they show how the position averaged amplitude of the order parameter 

oscillates first in time, but after some initial transient the oscillations decay first in a power law 

and  later  exponentially.  Then  they  show  how  the  exponential  decay  of  the  oscillations  is 

accompanied by formation of position dependent fluctuations in the order parameter amplitude. 

They  also  argue  how  the  oscillations  and  the  power  law  decay  are  consistent  with  earlier 

treatments of the problems within the position independent BCS approach, but the exponential  

decay and the formation of position dependent irregularities are naturally beyond them. All this is 

studied both in the clean and in the disordered limit, showing how the predicted behavior for the  

clean and weakly disordered cases are quite similar, and in particular the formation of position 

dependent irregularities does not require disorder.

The results of this study are interesting and I can probably recommend publishing them in SciPost 

physics after the authors have considered by comments. Namely, the authors do not completely 

specify what is done in their model (see below). Moreover, the results should be checked against  

possible issues in discretization. I also suggest them to discuss the results from two points of  

views,  namely  fluctuations  in  two-dimensional  systems,  and  from  the  models  used  for  the 

amplitude (Higgs) mode fluctuations in superconductors.

Our response: 

We thank the referee for their time and effort in reviewing our manuscript and for the positive and 

constructive  report.  Some  of  the  referee’s  requested  changes  have  certainly  led  to  a  better 

manuscript. Below is a detailed response to the referee’s comments and questions: 



a) Model problems. There are some issues both in the assumptions and in the description of the  

employed model:

(i) Above Eq. (3), the authors state that the occupation number follows always adiabatically the  

time-dependent  temperature  within the fast  quench.  This  seems unphysical  to  me,  because in 

practice such adiabaticity requires very strong inelastic scattering (scattering rate exceeding the 

quench time scale, which on the other hand is comparable with the lattice energy scales). It seems 

to me that within this model the adiabatic quench is possible to reach only with the slow quench 

discussed in Appendix C.

Our response: 

We thank the referee for the comment. Yes, we agree with the referee the adiabatic quench is not 

realistic for a sufficiently fast quench. However, in this paper, we focus on the pattern formation in 

space which typically occurs long after the quench protocol stops so the choice of quench protocol 

is not that important.  

The paper results for different quench protocols (temperature and coupling constant quenches), 

and different quench speeds, indicate that the pattern formation in space is rather universal since, 

qualitatively at least, only depends on the lattice structure. 

In the updated version of the manuscript, we have rewritten the text below Eq. (5) to make this 

point clearer. 

(ii) The authors set the hopping constant t to unity, implying that all energies should be compared 

to t and time scales to hbar/t. Then, can the authors clarify if the tau_Q in Eq. (5) has a unit  

t^2/hbar, or is it perhaps rather related with T_c^2 as implied from the surrounding text.

Our response: 

We note, in case the referee got confused with the notation, that in Eq. (5), “t” stands for time, not  

the hopping constant. We define the hopping constant as t_{i,i+\delta} in Eq.(2). Therefore, the 

time t has unit of hbar/t_{ i,i+\delta}. The temperature T has units of t_{ i,i+\delta }/k_B, where  

k_B is the Boltzmann constant. 

Therefore, \tau_Q has units of t_{ i,i+\delta}^2 / (hbar *k_B). For numerical convenience, we set 

those constants as t_{ i,i+\delta}=1, \hbar=1 and k_B=1.

In the updated version of the paper, we make an explicit warning about this issue in order to avoid 

any confusion regarding the notation of time and the hopping constant. 



(iii) Fig. 1 contains the symbol Delta_0 (vertical and horizontal scales), which later in the text is  

defined as the zero-temperature Delta. It would be better to define it on the first use and also 

provide its value in terms of t for the chosen parameters (is it 0.83 t as specified below Eq. (6)).  

Then,  can  the  authors  explain  why  the  long-time  limit  of  Delta  is  so  much  below  Delta_0 

(according to Fig. 4 this Delta \approx 0.83 Delta_0, is this a coincidence?). According to the BCS 

mean field model, Delta(0.1 T_C) is almost the same as Delta_0, the deviation is perhaps one  

permille.

Our response: 

Thanks for the suggestion. In the updated version, we define it in Fig.1 as the referee suggests.

The  fact  that  in  Fig.4,  \Delta\approx  0.83  \Delta_0  is  just  a  coincidence  since  the  prefactor 

depends on the coupling constant. 

There is no reason to expect that the value of the order parameter for long times after the quench 

agrees with the static BCS prediction. For instance, in the weak coupling and long time limit, for 

the  quench  protocol  specified  in  Ref. 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.134514,  Delta(t=\infty)  \approx  0.5  \

Delta_0 due to the persistence of the incoherent collective motion of the Cooper pairs. Moreover, 

it is expected that during the time evolution after the quench, the temperature dependence of the  

steady  order  parameter  \Delta  is  quite  different  from the  BCS theory  prediction.  An explicit 

example  of  this  feature  is  shown  in  Fig.2  of 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.73.033614 . 

Moreover,  the  emergence  of  spatial  patterns  occurs  due  to  the  fact  that  superconductivity  is 

suppressed, which makes the averaged order parameter even smaller. 

(iv) The values of U and mu or at least Delta_0 (in units of t) should be provided in Fig. 1 as it  

depends on them.

Our response: 

Thanks for the suggestion. We improved the caption of Fig.1 in the updated manuscript.  The 

values of U, mu and Delta_0 are now provided in Fig.1.

(v) I did not find a statement about the boundary conditions employed in the numerics. They 

should be specified.

Our response: 

We thank the referee for pointing out this oversight. In all cases studied in the paper, we employ 

periodic boundary conditions. This is explicitly stated in Section II of the updated manuscript. 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.73.033614
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.134514


(vi) In the clean case, nothing depends on position initially. Therefore, a position independent  

Delta must be a solution of the dynamics. However, this solution may be unstable to position  

dependent fluctuations which seems to be the case based on the results. In other words, in order to 

get  a  position  dependence  in  the  numerics,  it  has  to  be  put  in  there  either  on  purpose  or  

accidentally. Can the authors please explain in the text how they did it.

Our response: 

In the clean limit, we didn’t put any inhomogeneity by hand in the initial state. The numerical  

error for the initial state is obtained from the solution of the BdG equations in the case of V=0 by  

full diagonalization. The numerical error for the calculation of the initial state is of the order of 

10^{-16}, which is the highest numerical accuracy that we could reach. If we look at the Fig.5(a) 

the variance of the initial state is of the order of 10^{-28}, which means that the initial state 

already has a very weak spatial dependence, due to the numerical error, which is unavoidable. The 

finite time step in Runge-Kutta integration will also induces instabilities that contribute to the seed 

for the inhomogeneities. This is the seed for the large spatial inhomogeneities that form at much 

longer  time  scales.  However,  these  spatial  patterns  that  emerge  from the  out  of  equilibrium 

dynamics do not depend qualitatively on the seed. In other words, the mentioned seed of position  

dependent fluctuations is just one way to make the spatially homogeneous solutions of the BdG 

equations unstable towards the formation of the large spatial patterns in the order parameter. 

In view of that, the referee may then ask whether our results are ultimately a numerical artifact due 

to  the small  numerical  error.  The answer to  that  is  a  resounding no.  While  in  our  numerical  

simulation the seed of spatial inhomogeneities is due to a finite numerical accuracy in experiments  

are a consequence of the combined effect of thermal and quantum fluctuations and the presence of 

imperfections or impurities in the sample. 

Figure R1. The dynamic of the clean system V=0. The initial state is completely random, which is  

not the self-consistent solution of the BdG equations. The system size is N = 48x48. The other 

parameters are the same with the paper. The coupling constant U=-3, the chemical potential \mu=-

0.34.

We also did a check in a smaller system N=48x48 with completely random initial state, but still 

with no disorder V=0. The dynamic evolution is slightly different, but final equilibrium state is 

still  qualitatively  similar.  See  Figure  R1 above,  even though we obtain  a  curved strip  which 

depends on the initial state at a much earlier time, but it gradually becomes the straight strips at 



long time evolution due to the underlying lattice structure. Indeed, the weak inhomogeneity or 

randomness in the initial state plays an important role in the dynamic system. However, in the 

clean limit system, the final equilibrium pattern should be qualitatively similar.

We have added an expanded explanation in the updated version.

(vii) In Sec. V, the authors claim that the length scale of irregularities is longer than the coherence  

length, but they do not tell how they define the coherence length, nor its precise value in their  

model.

Our response: 

The  referee  is  right,  following  the  procedure  of  Ref. 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064512 to  extract  the  coherence 

length \xi_D from the fitting the intrinsic superconducting response \Delta D_s(q_y), we find that \

xi_D \approx 1 in units of the lattice spacing. We have added this precise value to the updated 

manuscript in the last line of page 14. 

(viii) The authors seem to claim that in all of their model, the phase of the order parameter remains 

essentially fixed. I find it surprising because a 2D system at a finite temperature should exhibit  

quite large phase fluctuations.

Our response: 

Yes, we agree with the referee that in a 2D system at finite temperature, there should be large  

phase fluctuations. However, we are using a mean field model, which in fact do not consider the 

phase fluctuations, namely, the phase is fixed. Since we consider only the limit of weak or no  

disorder and the temperature is typically much lower than the critical temperature in the static 

limit, the phase fluctuation should play a less important role. Indeed, there is recent experimental 

evidence   https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c01288 supporting  that  this  mean 

field BdG model, even without considering the phase of the order parameter, provides a valid 

description of the spatial inhomogeneities of a realistic weakly disordered superconductor. Going 

beyond this mean-field limit, by for instance including amplitude and phase fluctuations in the  

random phase approximation keeping the same system size, is technically challenging as it would 

require  large  computing resources  both  in  RAM memory (well  above 1T)  and CPU (several 

hundreds of latest generation cores for sensible computation times) which is beyond our current 

capabilities. Another option is to simulate directly the attractive Hubbard model but, even with 

state of the art computing resources, the maximum sample size would be too small to reach any 

solid conclusion.  In the updated manuscript, we briefly mention these technical difficulties in the 

introduction of the model section. 

https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c01288
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064512


b) Possible issues in discretization

(i) The authors tell that 200x200 lattice is the largest that can be efficiently simulated. However, it 

would be important to understand the effect of discretization (or finite size effects) on the results. 

In particular, can the irregularities come from discretization? To check this, perhaps they could 

show what happens in a slightly smaller lattice (say, 150x150 sites): does the size scale of the 

irregularities change? If yes, can one argue what might happen in the thermodynamic limit?

Our response:

Yes, we calculated different system size and obtained similar patterns. However, we think it is not 

necessary to present all system sizes in the manuscript. Here we attach the results with the system 

size 120x120. The other parameters are the same with the paper. We obtain similar patterns in the 

long time evolution. As we have stated in the paper, our results points to a pattern formation that  

do not depend much on the details of the quench dynamics or the system size. 

Figure R2. The dynamic of a smaller system. Except the system size is N = 120x120, the other  

parameters are the same with the paper. The coupling constant U=-3, the chemical potential \mu=-

0.34.

(ii) The stripes in Figs. 7 and 8 are either horizontal or vertical. There are two possible reasons for  

this: they either orient along the lattice directions or along the edge directions, because the two are  

the same in the simulation. Which one is it? This should be possible to test  by changing the 

relative directions of the edges with respect to the lattice directions (resulting into an irregular 

edge, but perhaps it does not matter).

Our response: 

Thanks for raising this interesting issue. The referee intuition is indeed right.  We have checked 

two different lattice structures and found that the stripes depend on it. In the updated manuscript,  

see Appendix B, we added new results for triangular lattice and obtain different stripes. We also  

studied  its  structure  factor,  which  is  a  hexagonal  pattern.  The  manuscript  has  been  modified 

accordingly



c) Physical arguments: could the authors please discuss these

(i) We know from Mermin-Wagner theorem and Berezinskii-Kosterlitz-Thouless physics that in 

2D there are no long-range correlations for the phase of the order parameter in superconductors. It 

is then unclear if there should be a related effect on the amplitude. However, it seems likely that 

the dimensionality matters for the fluctuations quite much. Can the authors at least emphasize that  

their results hold for two-dimensional systems, and perhaps speculate what might happen in three 

dimensions.

Our response: 

The  referee  raises  a  valid  point:  there  is  no  long-range  order  in  two  dimensions  at  finite 

temperature so, at least for sufficiently high temperature, fluctuations will be important. Since we 

are studying a mean field model, we are not able to consider the phase or amplitude fluctuations 

directly in our formalism. We note that if the temperature of the equilibrium state is sufficiently  

low we do not expect that our findings will not be affected much by BKT physics. Regarding the 

Mermin-Wagner theorem, it is well known that in typical experimental situations is in most cases 

avoided because the strict two dimensional limit required for its application is hard to reach for  

instance because of the coupling to a substrate. Therefore, at least for temperatures well below the  

BKT critical temperature, experimental observations are closer to the mean-field prediction which 

validates the use of the mean field limit in two dimensions.    

Indeed, we expect that, in general, phase and amplitude fluctuations in two dimensions, which are 

more relevant than in higher dimensions,  do not cause significant effects to the observed patterns. 

Indirect evidence of this is the fact that the quench dynamics starting with a random initial  which 

can roughly simulate the complete absence of long range order, see Figure R1, leads to a similar 

spatial pattern for sufficiently long times. Moreover, our results in the weak disordered case also 

suggests that spatial inhomogeneities,  similar to those caused by fluctuations, do not alter the 

emergence of spatial pattern for sufficiently long times.  In fact, our results in the disordered case,  

especially when V=0.5, also support that this pattern against the effects of fluctuation and weak 

disorder.  See Figure 8,  when V=0.5, at  earlier time t_2, disorder initially create some pattern 

structure that particularly depend on the disorder distribution or the initial state. But at long time 

evolution, it  will  gradually develop into a more ordered pattern structure that  depends on the 

underlying lattice structure, see Figure 7.

Regarding what  might  happen in three dimensions,  in  this  case,  the mean-field limit  that  we 

employ is robust to BKT effects and the Mermin-Wagner theorem does not apply.  Therefore, we 

expect that qualitatively similar patterns will also be observed in 3D. Results depicted in Figure  

R3 for the quench dynamics of a 3D superconducting system confirm this prediction. We observe 

similar oscillations in time in the early stages of the dynamics and the latter generation of spatial  

patterns so that the equilibrium state is spatially inhomogeneities. Our expectation is that for larger 

3D systems, we would still obtain similar patterns that depend also on the lattice structure. 



Figure  R3.  The  dynamic  of  a  3D  system with  size  N=16x16x16.  The  first  plot  is  the  time 

dependent  of  the  spatial  averaged  order  parameter,  and  the  other  three  plots  below  is  the 

corresponding spatial dependent order parameter at three representative time. We are simulating 

the sudden coupling quench. The initial coupling constant U_i = -2, and final coupling constant 

U_f = -5. \Delta_f \approx 1.73 is the BCS solution of the system with U_f = -5. The chemical 

potential  \mu=0.  For  convenience,  we  plot  the  order  parameter  of  each  site  \Delta(r_i)  as  a  

function of the label of the 3D sites.



(ii)  Time-dependent  fluctuations  of  the  amplitude  of  the  superconducting  order  parameter  is 

closely  linked with  the  dynamics  of  the  amplitude or  the  Higgs  mode.  It  behaves  somewhat 

similarly to what has been discussed in here as it exhibits oscillations and a power-law decay of 

the order parameter (see, e.g., Eq. (1) in Moor, Volkov, Efetov, PRL 118, 047001 (2017)). Such 

models typically mostly consider the zero momentum Higgs mode. To my understanding, the 

results in the present manuscript imply that also the finite-momentum Higgs mode gets excited (as 

it describes the inhomogeneous state) and even stabilized.

Our response: 

We believe, but we cannot demonstrate, that the referee intuition that the finite-momentum Higgs 

mode will get excited as a result of the quenched dynamics is correct. However, we would like to  

stress that the Higgs mode is an amplitude fluctuation whose study requires to go beyond the mean 

field approach that we employ in the paper. As we have commented previously, the study of the  

Higgs mode would require to compute corrections to the mean-field limit using for instance the 

random phase approximation or a direct calculation using the Hubbard model both of which are 

numerically demanding and beyond the scope of the paper.  

In parallel, as mentioned earlier, we would like to stress that these fluctuations, that we do not  

consider,  provide  a  source  for  the  seed of  the  spatial  inhomogeneities  that  in  our  mean-field 

formalism are due to the finite accuracy of the numerical results.

d) Small issues in the paper:

(i) Fig. 4 has the text "increases with disorder". Replace with "increases with increasing disorder"

Our response: 

Thanks. We have fixed the typo in the updated version.

(ii) On page 9, the authors state "... as a function of time in the clean limit and in the absence of 

weak disorder". They probably mean "... in the presence of weak disorder".

Our response: 

Yes,  we  mean  “… in  the  presence  of  weak  disorder”.  We  have  fixed  the  typo  in  the  latest 

manuscript.

(iii)  Videos  on  Ref.  41  would  require  axis  labels  and  some  explanation  of  what  the  plotted 

quantities are. Perhaps you could include them in a single site along with a README text. Editors  

of SciPost might comment on the best way of storing them for long-term use.

Our response: 

We have written a README text to explain the videos. We are also happy to follow the SciPost 

editors suggestion about storing the videos for long term use.  



Requested changes

1. Define all employed quantities on their first use, and explain how the numerics is done (in 

particular, how it allows for spontaneous translation symmetry breaking)

Our response:

We thank the referee for this suggestion. We have substantially enlarged the introduction of the 

model and the details of the dynamic simulation so that with the provided information our results  

can be fully reproducible. 

2. Check results against discretisation and lattice orientation

Our response:

We checked explicitly that a smaller system size (N=120x120, N=40x40 and N=100x100) leads to  

similar results so lattice discretization is not a problem. Moreover, we added the results for a 

triangular lattice system in the updated manuscript to demonstrate that the pattern formation does 

depend on the lattice structure.

3. Discuss results related to the BKT model and Higgs modes

Our response: 

We  have  added  discussions  related  to  the  BKT model,  and  the  quantum fluctuations,  which 

include the amplitude fluctuations (Higgs modes), in page 18.


