
Quantum circuit simulation of linear optics using fermion to qubit encoding

Seungbeom Chin+,1, 2, ⇤ Jaehee Kim+,3 and Joonsuk Huh4, 3, 5, †

1International Centre for Theory of Quantum Technologies (ICTQT),
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This work proposes a digital quantum simulation protocol for the linear scattering process of
bosons, which provides a simple extension to partially distinguishable boson cases. Our protocol
is achieved by combining the boson-fermion correspondence relation and fermion to qubit encoding
protocols. As a proof of concept, we designed quantum circuits for generating the Hong-Ou-Mandel
dip by varying particle distinguishability. The circuits were verified with the classical and quantum
simulations using the IBM Quantum and IonQ cloud services.

I. INTRODUCTION

Quantum simulation imitates an evolution of one
quantum system with another artificially organized
quantum system, i.e., quantum simulator [1]. Digital
quantum simulators with qubits can encode an arbi-
trary quantum system comprising various particles,
such as spins, fermions, and bosons, either exactly
or approximately, depending on the particle nature.
Qubits can be realized with several physical systems,
such as trapped ions [2, 3], nuclear magnetic reso-
nance [4, 5], superconducting circuits [6, 7], quan-
tum dots [8], and photons [9]. Therefore, we can
simulate any quantum system with digital quantum
simulators using proper qubit encoding protocols re-
gardless of the physical nature of the simulator.

Among various many-particle quantum systems,
bosonic systems are considered to have the sig-
nificant benefit from digital quantum simulations.
Knill, Laflamme and Milburn (KLM) showed that
the postselected linear optics is capable of univer-
sal quantum computing [10]. Also, boson sampling
proposed by Aaronson and Arkhipov [11] is a strong
candidate for demonstrating the computational su-
periority of quantum devices. The boson sampling
problem is believed to belong to classically hard sam-
pling problems.

Inspired by the computational power of nonin-
teracting bosonic systems, several boson to qubit
encoding (B2QE) protocols have been proposed to
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simulate bosonic problems with digital quantum
computers [12–18]. The majority of studies dis-
cretize bosonic creation and annihilation operators
directly using unary or binary qubit representa-
tions of the Fock states as qubit encoding protocols.
Ref. [15] presents a method for the digital quan-
tum simulation of linear and nonlinear optical el-
ements. Ref. [17] simulated the beam-splitting
and squeezing operators with IBM Quantum
based on the boson-qubit mapping developed
in Ref. [19]. The required resources, such as the
numbers of qubits and gates, vary according to the
encoding protocols. Ref. [18] compared the resource
e�ciency among encoding protocols.

In this paper, we propose an alternative many-
boson digital simulation method by combining the
boson-fermion correspondence analyzed by Shches-
novich [20] and fermion to qubit encoding (F2QE)
protocols [21, 22]. Specifically, our protocol trans-
forms bosonic states into fermionic states with inter-
nal degrees of freedom, which are then transformed
to qubit states via a F2QE procotol (JW transfor-
mation). With our simulation model, quantum cir-
cuits with M bundles of N qubits can simulate the
number-conserving scattering process of N bosons
in M modes. Our protocol is summarized in Fig. 1.
The most significant advantage of our protocol is
that it can simulate non-ideal partially distinguish-
able bosons, i.e., bosons with internal degrees of free-
doms, using a direct extension of qubit numbers.

As a proof of concept, we generate the Hong-Ou-
Mandel (HOM) dip [23] with our protocol. The
HOM e↵ect is important in optical quantum sys-
tems that provide the elementary resource for logic
gates in the linear optical quantum computing sys-
tems. The formal connection between the HOM ef-
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FIG. 1: Our protocol for digital simulation of
multi-boson systems. Using antisymmetrically
entangled fermions as e↵ective bosons, we can
design digital quantum circuit to simulate
multi-bosonic system via JW transformation.

fect and the qubit-based SWAP test was discussed in
Ref. [24]. To simulate HOM dip, we need a method
to add an internal degree of freedom to photons. It
is easily achieved in our case by increasing the qubit
number twice, which shows that our protocol is suit-
able for simulating partially distinguishable bosons.
We verified the validity of our circuit using the IBM
Quantum and IonQ cloud services.

This paper is organized as follows: Section II ex-
plains our digital boson simulation protocol. After
reviewing the boson-fermion transformation proto-
col, we show how to combine this transformation
with the JW transformation for the digital bosonic
simulation. In section III, we apply our model to the
HOM dip experiment. We simulate the two-photon
partial distinguishability with an eight-qubit-circuit.
Finally, section IV concludes our present work and
discusses its possible future extensions.

II. DIGITIZING BOSONIC SYSTEMS

In this section, we explain our B2QE protocol to
simulate many-boson systems with qubits. Our pro-
tocol consists of two steps: First, we express the
number-conserving bosonic systems with entangled
multi-fermions with an internal degree of freedom.
Second, we map the translated multi-fermionic sys-
tem to a qubit system using a well-known F2QE
protocol, the JW transformation [21].

A. E↵ective bosonic states of multi-fermions

We first explain how a specific form of entan-
gled multi-fermions can e↵ectively behave as multi-
bosons. In the second quantization language, the
bosonic creation and annihilation operators â

†
i
and

âi (i = 1, · · · ,M) obey the following commutation
relations:

[âi, â
†
j
] = �ij , [âi, âj ] = [â†

i
, â

†
j
] = 0, (1)

while the fermionic operators b̂†
i
and b̂i obey the anti-

commutation relations:

{b̂i, b̂†j} = �ij , {b̂i, b̂j} = {b̂†
i
, b̂

†
j
} = 0, (2)

where {Â, B̂} ⌘ ÂB̂ + B̂Â. The above relations
satisfy the Pauli exclusion principle for fermions,
which prohibits the superposition of two fermions
in the same state. Indeed, we see that b̂

†
i
b̂
†
i
|vaci =

�b̂
†
i
b̂
†
i
|vaci = 0 by Eq. (2), where |vaci is a vacuum

state. On the other hand, if the fermions have in-
ternal degrees of freedom, such as spin, fermionic
modes with di↵erent internal states can occupy the
same spatial mode. By denoting a K-dimensional
internal degree of freedom as µ (µ = 0, · · ·K � 1), a
fermionic operator with internal degrees of freedom
µ is defined as b̂

†µ
i

and b̂
µ

i
. The anticommutation

relations for the operators are as follows:

{b̂µ
i
, b̂

†⌫
j
} = �ij�

µ⌫
, {b̂µ

i
, b̂

⌫

j
} = {b̂†µ

i
, b̂

†⌫
j
} = 0. (3)

In such a case, the fermions can condensate in the
same spatial mode up to K. We aim to employ this
feature of multi-fermionic states for mimicking the
Bose-Einstein condensation (BEC) with the cuto↵
K. Fig. 2 explains the concept of fermionic conden-
sation.

On the other hand, for the fermionic condensa-
tion to operate like the BEC, we must properly con-
sider the fundamental di↵erences between bosons
and fermions, i.e., the exchange symmetry and an-
tisymmetry indicated in Eqs. (1) and (2). Shch-
esnovich [20] showed that the interchangeability of
entanglement and exchange symmetry can render
entangled multi-fermions symmetric under the ex-
change of spatial modes. Here, we introduce the ef-
fective bosonic state of multi-fermions with the con-
densation limit K in the second quantization lan-
guage, which o↵ers a more refined explanation than
of the first quantization language used in Ref. [20].

Let us consider an N -fermionic state,

b̂
†µ1
i1

b̂
†µ2
i2

· · · b̂†µN
iN

|vaci, (4)

(i↵ = 1, 2, · · · ,M and µ↵ = 1, 2, · · · ,K for 1  ↵ 
N). This state is always antisymmetric under the
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FIG. 2: M -fermionic modes with K internal states.
Fermions can condensate in the same mode up to
K. If a fermion state is entangled in Eq. (5), we
can simulate BEC with the condensation cuto↵ K.

exchange of the total indices (µ, i). However, if K �
N , we can obtain a symmetric state under the spatial
modes i↵ by suitably superposing fermionic states as
follows:

1p
N !

b̂
†[µ1

i1
b̂
†µ2
i2

· · · b̂†µN ]
iN

|vaci (5)

(a square bracket [, ] on the upper indices means that
the indices are antisymmetrized. For the simplest

example, b̂†[µ1

i1
b̂
†µ2]
i2

⌘ b̂
†µ1
i1

b̂
†µ2
i2

� b̂
†µ2
i1

b̂
†µ1
i2

). Since the
following relation,

b̂
†[µ1

i1
· · · b̂†µ↵

i↵
· · · b̂†µ�

i�
· · · b̂†µN ]

iN
|vaci

= �b̂
†[µ1

i1
· · · b̂†µ�

i�
· · · b̂†µ↵

i↵
· · · b̂†µN ]

iN
|vaci

= b̂
†[µ1

i1
· · · b̂†µ↵

i�
· · · b̂†µ�

i↵
· · · b̂†µN ]

iN
|vaci, (6)

holds for any ↵ and � for 1  ↵  N and 1  �  N ,
we have

1p
N !

b̂
†[µ1

i1
b̂
†µ2
i2

· · · b̂†µN ]
iN

|vaci

=
1p
N !

b̂
†[µ1

{i1 b̂
†µ2
i2

· · · b̂†µN ]
iN} |vaci (7)

(a brace {, } on the lower indices on the right
hand side denotes that the indices are symmetrized.
For the simplest example, b̂

†µ1

{i1 b̂
†µ2

i2} ⌘ b̂
†µ1
i1

b̂
†µ2
i2

+

b̂
†µ1
i2

b̂
†µ2
i1

). Therefore, we can consider Eq (5) to be an

e↵ective N -boson state with the condensation limit
K.

As a simple example, when N = 2, Eq. (5) be-
comes

1p
2

�
b̂
†µ1
i1

b̂
†µ2
i2

� b̂
†µ2
i1

b̂
†µ1
i2

�
|vaci. (8)

By exchanging the mode indices i1 and i2, we have

1p
2

�
b̂
†µ1
i2

b̂
†µ2
i1

� b̂
†µ2
i2

b̂
†µ1
i1

�
|vaci

=
1p
2

�
� b̂

†µ2
i1

b̂
†µ1
i2

+ b̂
†µ1
i1

b̂
†µ2
i2

�
|vaci

=
1p
2

�
b̂
†µ1
i1

b̂
†µ2
i2

� b̂
†µ2
i1

b̂
†µ1
i2

�
|vaci., (9)

where the second line is obtained by changing the
order of fermionic operators.

Since the antisymmetrical entanglement of the
fermions is essential for e↵ective bosonic states to
behave like bosons, the exchange symmetry of the
state must be preserved under evolutions. In other
words, if we want to simulate the bosonic scattering
process with fermions, the transformation operators
of fermions must preserve the antisymmetrical en-
tanglement. We observe that some transformation
operators satisfy this restriction. We first consider a
bosonic operator T of the following form:

T = exp
⇥
it(

MX

j,k=1

�jkâ
†
j
âk)

⇤
, (10)

where t is the evolution time and �jk 2 C. We note
that

X

jk

�jkâ
†
j
âk (11)

behaves as the Hamiltonian of the given system by
setting �jk = �⇤

kj
. Then, the transformation of â†

i

under T is given by

T â
†
i
T

† =
X

j

exp(it�⇤)ij â
†
j

⌘
X

j

uij â
†
j
, (12)

where � is a Hermitian matrix whose elements are
�ij and

P
j
uiju

⇤
kj

= �ik. In the fermionic system,
the corresponding operator Tf is expressed as fol-
lows:

Tf = exp(it
X

µ

X

j,k

�jk b̂
†µ
j
b̂
µ

k
), (13)
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which gives

Tf b̂
†µ
i
T

†
f
=

X

j

uij b̂
†µ
j
. (14)

Then, the state Eq. (5) evolves via Tf as follows:

| if =
1p
N !

X

k1,··· ,kN

u
k1

{j1 · · ·u
kN

jN}b̂
†[µ1

k1
· · · b̂†µN ]

kN
|vaci

=
1p
N !

X

k1,··· ,kN

u
{k1

{j1 · · ·ukN}
jN} b̂

†[µ1

{k1
· · · b̂†µN ]

kN} |vaci.

(15)

The second line of the above equation shows that the
transformed state is a linear combination of e↵ective
multi-boson states, which itself is an e↵ective multi-
boson state. In a more general form, we see that
any number-conserving Hamiltonian looks like H =P

jk
�jkâ

†
j
âk + c.c..

Finally, we check whether the measurement of the
state Eq. (5) that evolves with Eq. (10) is e↵ectively
bosonic, i.e., the scattering probability is propor-
tional to the absolute square of the transformation
matrix permanent. Suppose first that we postselect
terms without bunching, irrespective of what the in-
ternal states of the particles are. Without loss of
generality, we can assume the boson number distri-
bution vector as follows:

~n = (1, 1, · · · , 1| {z }
N

, 0, · · · , 0)| {z }
M�N

. (M � N) (16)

Then, the scattering probability
is given with a projector E =P

µ1···µN
(b̂†µ1

1 ) · · · b̂†µN

N
|vacihvac|b̂µN

N
· · · b̂µ1

1 as
follows:

P =Tr(E⇢f )

=
X

µ1,··· ,µN

hvac|b̂µN

N
· · · b̂µ1

1 | ih |f b̂†µ1
1 · · · b̂†µN

N
|vaci.

(17)

Using the relation,

b̂
µ1
i1

· · · b̂µN
iN

b̂
†[⌫1

k1
· · · b̂†⌫N ]

kN
|vaci

= �
{k1

i1
· · · �kN}

iN
�
[⌫1
µ1

· · · �⌫N ]
µN

|vaci, (18)

we have

P ⇠ |perm(u)|2, (19)

where u is an N⇥N matrix whose entries are uij and
perm(u) denotes the permanent of u, as expected
for a bosonic systems with T [11, 25]. If the posts-
elected states permit bunching, the probability be-
comes proportional to the permanent of the subma-
trix of u as expected [26–29].

B. Simulating multi-boson systems with qubits

Since a fermionic state of the form indicated in
Eq. (5) can simulate a linear scattering of bosons, we
conclude that digital quantum computers can also
simulate the same system using the JW transforma-
tion. Before explaining how we actually organize
quantum circuits and algorithms for such a simula-
tion, we first review the JW transformation, which
maps fermions to qubits [21].

In the JW transformation, qubit states |0i and
|1i correspond to the empty and occupied states of
fermions for a given mode, i.e., the following isomor-
phism should hold:

N qubit state |~ni = |n1, · · · , nN i (nj = 0, 1)

⇠= N fermionic state (b̂†1)
n1 · · · (b̂†1)nN |vaci.

(20)

The left and right hand side denotes an N -qubit
state and an N -fermionic state, respectively, and ⇠=
represents that the two sides are in a correspondence
relationship with each other. For this relationship
to hold, there must be operators acting on the N -
qubit system that play the roles of creation and an-
nihilation operators. Indeed, we can construct such
operators by combining the Pauli operators Xj , Yj

and Zj (j = 1, · · ·L), i.e., b̂
†
j
(X,Y, Z) ⇠= b̂

†
j
and

b̂j(X,Y, Z) ⇠= b̂j .

We can see that |~ni and b
†
j
(X,Y, Z) must satisfy

the following conditions:

• If nj = 0, then b̂j |~ni = 0

• If nj = 1, then b̂j |~ni = (�1)s
j
~n+1|n1, · · · , nj �

1, · · · , nLi where s
j

~n
⌘

P
j�1
k=1 nk. Note that

(�1)s
j
~n+1 comes from the anticommutation

property of the creation-annihilation opera-
tors.

It can easily be verified that

b̂j(X,Y, Z) ⌘ (⌦j�1
k=1Zk)⌦ �

�
j
,

b̂
†
j
(X,Y, Z) ⌘ (⌦j�1

k=1Zk)⌦ �
+
j

(21)

(�+ ⌘ |1ih0| and �
� ⌘ |0ih1|) satisfy the above con-

ditions. One can also check that Eq. (21) satisfies
the anticommutation relations, i.e., {b̂j , b̂†k} = �jk

and {b̂†
j
, b̂

†
k
} = {b̂j , b̂k} = 0. The state transfor-

mation of Eq. (20) and operator transformations in
Eq. (21) define the JW transformation for the digital
simulation of fermionic systems.
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FIG. 3: NM qubits that can simulate N bosons in
M modes. Each bundle of N qubits behaves as a
mode that can contain up to N bosons. Using M

bundles of N qubits, we can simulate N -boson
scattering process in M modes.

By combining the JW transformation and the re-
sults of Section IIA, we can see that N bosons in
M modes can be simulated with NM qubits (see
Fig. 3). To impose this correspondence, consider an
MN -qubit state

|(n1
1, · · · , nN

1 ), (n1
2, · · · , nN

2 ), · · · ,(n1
M
, · · · , nN

M
)i
(22)

where n
µ

i
= 0, 1 and each bracket (n1

i
, n

2
i
, · · · , nN

i
)

denotes the state of a bundle of N qubits.

If nµ

i
= 1, then it is considered in the fermion pic-

ture that a fermion exists in the ith mode with inter-
nal state j. Any state of this kind can be generated
from |vaci ⇠= | 00 · · · 0| {z }

N⇥M

i with the creation operators

as follows:

b̂
†1
1 = �

+
,

b̂
†2
1 = Z ⌦ �

+
,

...

b̂
†N
1 = Z ⌦ · · ·⌦ Z| {z }

N�1

⌦�
+
,

...

b̂
†N
M

= Z ⌦ · · ·⌦ Z| {z }
NM�1

⌦�
+
. (23)

Now we can express an e↵ective multi-boson state
described in Eq. (5), which is entangled as antisym-
metric under the internal states in the qubit space.
As an example, consider the case with N bosons
when all bosons from 1 to N are in di↵erent modes

with respect to each other. Using Eq. (7), such

a state can be expressed as 1p
N !

b̂
†[1
1 · · · b̂†N ]

N
|vaci.

By defining �i = (0, · · · , 0,
ith
1 , 0, · · · , 0| {z }
N

) and �0 =

(0, 0, · · · , 0| {z }
N

), the state can be expressed in the NM

qubit space as follows:

1p
N !

X

⇢2SN

sgn(⇢)|�⇢(1),�⇢(2), · · · ,�⇢(N),�0, · · · ,�0i,

(24)

where SN is the permutation group On the other
hand, if all the bosons are in the same mode, e.g.,
the first mode, the state can be written as follows:

1p
N !

b̂
†[1
1 · · · b̂†N ]

1 |vaci = b̂
†1
1 · · · b̂†N1 |vaci

⇠= |(1, 1, · · · , 1| {z }
N

),�0, · · · ,�0i.

(25)

For the case with N = 2 and M = 3, Eq. (24)
takes the following form:

1p
2

⇣
|�1,�2,�0i � |�2,�1,�0i

⌘

=
1p
2

�
|10, 01, 00i � |01, 10, 00i

�
, (26)

which corresponds to the bosonic state â
†
1â

†
2|vaci,

while Eq. (25) becomes |11, 00, 00i, which corre-
sponds to the bosonic state 1p

2
(â†1)

2|vaci.
Since Eqs. (22) and (23) represent a mapping from

bosonic systems to qubits, we can digitally simulate
multi-boson systems with the following process:

1. Preparation of the initial state: We first need
to prepare the initial states of the form shown
in Eq. (7), which can be achieved by adopt-
ing one of the known antisymmtrization algo-
rithms, e.g., those in Refs. [30, 31]. On the
other hand, we can find optimal algorithms for
the states with small N case-by-case.

2. Evolution: The unitary operations can be exe-
cuted by substituting Eq. (23) into the Hamil-
tonian operator of Eq. (11).

3. Measurement: While the order of the excited
states is unimportant, the number of excited
states in each bundle is crucial because it de-
termines the distributions of boson numbers.
For example, if N = 3, (100), (010), and (001),
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in all cases a mode has one particle with dif-
ferent internal state. Nevertherless, we only
record that one of three qubit states in the
bundle is excited. Eq. (17) represents such a
measurement process.

III. APPLICATION: HONG-OU-MANDEL
DIP

In this section, we use our protocol to simulate the
HOM e↵ect for N = 2 [23]. We first simulate ideal
photon case (with no internal degree of freedom),
which is then generalized to non-ideal photons with
a two-dimensional internal degree of freedom. This
generalization shows our protocol can simulate non-
ideal bosons simply with a direct extension of qubit
numbers.

A. HOM experiment with ideal photons

Since two qubits can represent a bosonic mode
with a maximal photon number of two, our protocol
needs four qubits here.

Preparation.— Using the notations given before
Eq. (24), we prepare the following initial state | ii:

| ii =
1p
2

�
|�1,�2i � |�2,�1i

�

=
1p
2

�
|10, 01i � |01, 10i

�
. (27)

Evolution.— For the case of HOM scattering, we
set

t =
⇡

4
, � =

✓
0 1
1 0

◆
, (28)

in Eq. (10) which produces the following transfor-
mation operator TH :

T
H ⌘ exp[

i⇡

4
(â†1â2 + â

†
2â1)]. (29)

In the fermion system, TH is given as follows:

T
H

f
= exp[

i⇡

4
(b̂†11 b̂

1
2 + b̂

†1
2 b̂

1
1 + b̂

†2
1 b̂

2
2 + b̂

†2
2 b̂

2
1)]

= exp[
i⇡

4
(b̂†11 b̂

1
2 + b̂

†1
2 b̂

1
1)] exp[

i⇡

4
(b̂†21 b̂

2
2 + b̂

†2
2 b̂

2
1)].

(30)

Using the JW transformation, we obtain

b̂
†1
1 b̂

1
2 + b̂

†1
2 b̂

1
1 =

1

2
(X ⌦ Z ⌦X + Y ⌦ Z ⌦ Y )⌦ I,

b̂
†2
1 b̂

2
2 + b̂

†2
2 b̂

2
1 =

1

2
I⌦ (X ⌦ Z ⌦X + Y ⌦ Z ⌦ Y )

(31)

in the qubit system. Since X⌦Z⌦X and Y ⌦Z⌦Y

commute, TH can be further decomposed follows:

TH

= exp[
i⇡

8
(X ⌦ Z ⌦X ⌦ I)] exp[ i⇡

8
(Y ⌦ Z ⌦ Y ⌦ I)]

⇥ exp[
i⇡

8
(I⌦X ⌦ Z ⌦X)] exp[

i⇡

8
(I⌦ Y ⌦ Z ⌦ Y )].

(32)

Note that we have not used the Trotter decomposi-
tion, because all the terms in the exponential terms
commute with each other. This is true for the gen-
eral linear optical transformations [15].

Measurement.— The final state transformed by
Eq. (29) is given by

| if =
ip
2

�
|11, 00i+ |00, 11i

�
. (33)

The interpretation of the above state is that two
bosons always bunch, i.e., the HOM e↵ect occurs.

The full circuit for the HOM digital simulation
is shown in Fig. 4. According to Eq. (33), the
ideal outcome probabilities of states |11, 00i
and |00, 11i are 50% each, which shows the
photon-bunching e↵ect of indistinguishable
photons. The ideal result can be confirmed
via classical simulations of Fig. 4 using, for
example, Qiskit’s qasm simulator. We used
ibm brisbane of IBM Quantum and ionq qpu
of IONQ for the digital quantum simula-
tion of the ideal indistinguishable photons
case. Fig. 5 shows the results. In contrast
to the theoretical prediction, quantum states
other than |11, 00i and |00, 11i were measured.
It is attributed to errors arising from gate
operations and measurements in real quan-
tum devices. For assessment of the simu-
lation, we performed fidelity calculations af-
ter tomography for ibm brisbane, ibm perth,
ibm lagos, and ibm nairobi on IBM Quan-
tum, and ionq qpu on IONQ. We summa-
rized the tomography and fidelity calculation
results in Supplementary Materials, along
with the technical specifications of the devices
used.

B. HOM dip

We will now simulate the HOM dip (see, e.g., [32]
for a pedagogic review) with a two-dimensional in-
ternal degree of freedom that creates distinguisha-
bility. By denoting the internal state of bosons as s
(= 0, 1), the creation and annihilation operators are
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FIG. 4: Full circuit for HOM experiment. As seen in figures in the second line, TH given by Eq. (32) is
further decomposed into one- or two-qubit gates. We set, for example, RXZX(⇥) = exp[i⇥(X ⌦ Z ⌦X)],
where the index indicates the operator in the exponent.

FIG. 5: Simulation results of the circuit in Fig. 4 using quantum devices: (a) ibm brisbane of
IBM Quantum, and (b) ionq qpu of IONQ.

written as â†
is

and âis with [âis, â
†
jr
] = �ij�sr. Then,

an N -boson state â
†
i1s1

â
†
i2s2

· · · â†
iNsN

|vaci (i↵ 2
{1, · · · , N}, s� 2 {0, 1} for ↵,� 2 {1, · · · , N}) can
e↵ectively be expressed as a fermionic state as fol-
lows:

1p
N !

b̂
†[µ1

i1s1
b̂
†µ2
i2s2

· · · b̂†µN ]
iNsN

|vaci. (34)

Therefore, the general initial state for the HOM
dip with two photons can be written as follows:

| ii = â
†
1|siâ

†
2|ri|vaci ⇠=

1p
2
b̂
†[1
1|sib̂

†2]
2|ri|vaci, (35)

where |si and |ri are the general internal states of
the form ⇣|0i + ⇠|1i (⇣, ⇠ 2 C and |⇣|2 + |⇠|2 = 1).
To simulate this type of HOM dip, we need eight
qubits, which are displayed in Fig. 6. Each qubit
corresponds to the particle states (i, µ, s) as indi-
cated in the figure.

Preparation.— Without loss of generality, we
can assume the internal state of the photons as
|si = |0i and |ri = ⇣|0i + ⇠|1i. Therefore, the ini-
tial state for partially distinguishable photons can
be described as follows:

| ii =
1p
2
b̂
†[1
10 b̂

†2]
2|ri|vaci

=
1p
2

⇣
⇣ b̂

†[1
10 b̂

†2]
20 + ⇠b̂

†[1
10 b̂

†2]
21

⌘
|vaci

=
1p
2

⇣
⇣(|1000, 0010i � |0010, 1000i)

+ ⇠(|1000, 0001i � |0010, 0100i)
⌘
. (36)

We can prepare this state by first creating

1p
2

�
|1000, 0010i � |0010, 1000i

�
, (37)
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FIG. 6: Qubit representation of two photons in two
modes with two-dimensional internal degree of
freedom.

and then applying the following gates:

q0 : •
q1 : • U(✓,�, �) •

between (2, 0, 1) and (2, 1, 1) and between (2, 0, 2)
and (2, 1, 2). The above gates can be represented in
a matrix form as follows:

0

BB@

1 0 0 0
0 e

i� cos( ✓2 ) �e
i� sin( ✓2 ) 0

0 e
�i� sin( ✓2 ) e

�i� cos( ✓2 ) 0
0 0 0 1

1

CCA , (38)

where ⇣, and ⇠ are given with (�,�, ✓) by

⇣ = e
i� cos

⇣
✓

2

⌘
, ⇠ = �e

i� sin
⇣
✓

2

⌘
. (39)

For two indistinguishable bosons (ideal photons),
i.e., ⇣ = 1, and the initial state is as follows:

| iind
i

=
1p
2
b̂
†[1
10 b̂

†2]
20 |vaci

=
1p
2

�
|1000, 0010i � |0010, 1000i

�
. (40)

On the other hand, if two bosons are fully distin-
guishable, i.e., ⇠ = 1, the initial state can be given
without loss of generality as follows:

| idis
i

=
1p
2
b̂
†[1
10 b̂

†2]
21 |vaci

=
1p
2

�
|1000, 0001i � |0010, 0100i

�
. (41)

Evolution.— The evolution operator with dis-
tinguishability is simply obtained by generalizing
Eq. (30) as follows:

TH

= exp[
i⇡

4

X

s,µ

(b̂†µ1s b̂
µ

2s + b̂
†µ
2s b̂

µ

1s)]

= exp[
i⇡

4
(b̂†110b̂

1
20 + b̂

†1
20b̂

1
10)] exp[

i⇡

4
(b̂†111b̂

1
21 + b̂

†1
21b̂

1
11)]

⇥ exp[
i⇡

4
(b̂†210b̂

2
20 + b̂

†2
20b̂

2
10)] exp[

i⇡

4
(b̂†211b̂

2
21 + b̂

†2
21b̂

2
11)].

(42)

Measurement.— When the bosons are indistin-
guishable, the final state | iind

f
is as follows:

| iind
f

=
ip
2

�
b̂
†[1
10 b̂

†2]
10 + b̂

†[1
20 b̂

†2]
20

�
|vaci

=
ip
2
(|1010, 0000i+ |0000, 1010i), (43)

i.e., two particles are always in the same mode
and the coincidence probability (the probability that
each mode simultaneously detect particles) becomes
zero.

When they are distinguishable, the final state
| idis

f
is given as follows:

| idis
f

=
1p
2

�
ib̂

†[1
10 b̂

†2]
11 + b̂

†[1
10 b̂

†2]
21 � b̂

†[1
20 b̂

†2]
11 + ib̂

†[1
20 b̂

†2]
21

�
|vaci

=
ip
2

⇥
i
�
|1001, 0000i � |0110, 0000i

�

+ i
�
|0000, 1001i � |0000, 0110i

�

+
�
|1000, 0001i � |0010, 0100i

�

�
�
|0001, 1000i � |0100, 0010i

�⇤
, (44)

which means that each particle can arrive at each of
the two detectors with probability 0.5.

In general, the final state with an arbitrary dis-
tinguishability (|ri = ⇣|0i+ ⇠|1i) is given by

| if =
i⇣p
2

�
|1010, 0000i+ |0000, 1010i

�

+
⇠

2
p
2

⇣
i
�
|1001, 0000i � |0110, 0000i

�

+
�
|1000, 0001i � |0010, 0100i

�

�
�
|0001, 1000i � |0100, 0010i

�

+ i
�
|0000, 1001i � |0000, 0110i

�⌘
.

(45)

We can predict that the coincidence probability for
the photons varies from 0 (fully indistinguishable)
to 0.5 (fully distinguishable).
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FIG. 7: HOM dip classical simulation graph
according to variation of ✓ from �⇡ to ⇡. The
interval between angles is ⇡/100. All simulations
were performed using Qiskit’s qasm simulator.

The increase in the circuit’s width corresponds to
the rise in the depth for simulating the scattering
process of partially distinguishable photons, which
causes a significant error in the quantum simulation.
Therefore, we executed a classical simulation with
qasm to show the validity of our method. Fig. 7
reveals a clear pattern of the HOM dip.

Remark.— It is worth mentioning that our ex-
ample of the HOM dip simulation with distinguish-
able bosons shows the advantage of our scheme over
other integer-to-bit mappings in, e.g., Ref. [13–19].
Comparing Eq. (27) with Eq. (36), we see that
bosonic system with a 2-dimensional internal degree
of freedom is directly simulated by adding one copy
of 4 qubits. Since our mapping from the bosonic sys-
tem to qubits is set to preserve the exchange sym-
metry, the generalization from ideal bosons to dis-
tinguishable bosons is straightforward. Moreover,
we do not need Schur transformation gates as in
Ref. [12], hence more e�cient. On the other hand,
recent research on the digital simulation of the HOM
experiment with ideal photons in Ref. [33] shows
that a significant amount of qubits are needed to add
distinguishability in integer-to-bit mappings, such as
the gray code encoding.

IV. CONCLUSIONS

We have proposed an alternative method for the
digital simulation of linear-optical networks by using
the property that suitably entangled fermions can
e↵ectively behave like bosons. Unlike other exist-

ing B2QE protocols, our approach provides a simple
and intuitive extension of an ideal bosonic system
to a non-ideal one by introducing additional internal
degrees of freedom. As a proof of concept, we de-
signed quantum circuits for generating the Hong-Ou-
Mandel dip by varying particle distinguishability.
We successfully executed a digital simulation using
the IBM Quantum and IonQ cloud services for the
ideal boson case. For the partially distinguishable
boson case, we showed the validity of our scheme
with a classical simulation using Qiskit’s qasm.

The obvious extension of our B2QE approach
would be the non-number-conserving bosonic system
simulations, such as Gaussian boson sampling [34]
and molecular simulations [35]. However, confining
the infinite bosonic Hilbert space to the finite qubit
Hilbert space will intrinsically generate errors for the
non-number-conserving bosonic problems. In future
work, we will attempt to optimize the required re-
sources and errors induced by the confinement. We
also intend to develop another e�cient quantum al-
gorithm for computing the matrix permanent [36]
based on our B2QE protocol. With the help of
the new B2QE protocol, we envisage developing ef-
ficient qubit-based quantum algorithms for bosonic
systems, e.g., the boson sampling with nonideal pho-
tons, the Bose-Hubbard model, and the spin-boson
model.
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SUPPLEMENTARY MATERIAL

Tomography and Fidelity

Here, we provide a detailed analysis of tomography and fidelity in the Hong-Ou-Mandel (HOM) experiment,
focusing on ideal photon cases. Additionally, we outline the specifications of the quantum devices employed
in these experiments. The tomography calculations were conducted on four IBM Quantum devices and one
IONQ device. The four IBM Quantum devices used are ibm brisbane, ibm perth, ibm lagos, and ibm lairobi.
The IONQ device utilized was ionq qpu, currently referred to as ionq Harmony. We performed tomography
using Pauli strings as the measurement basis for both IBM Quantum and the IONQ device. The density
matrix was reconstructed utilizing the tomography results, and fidelity was subsequently calculated based
on the reconstructed density matrix. All circuits were transpiled using qiskit optimization level 3 for IBM
Quantum devices, and the qiskit version used in all the simulations was ”0.25.1” [1]. The IONQ device
did not require a separate circuit optimization process, as all qubits can be entangled directly with other
qubits. The 127-qubit quantum computer, ibm brisbane, yielded fidelity results ranging from 0.1154 to
0.1504. Other quantum devices, such as ibm Perth, ibm lagos, and ibm nairobi, each with 7 qubits, produced
results ranging from 0.1597 to 0.1814, 0.2661 to 0.2715, and 0.2143 to 0.2343, respectively. Fidelity outcomes
between 0.5428 and 0.6695 were achieved using ionq qpu, an 11-qubit quantum computer. For IBM Quantum
devices, the density matrix was obtained using the proprietary function, StateTomography. However, as this
function was not compatible with ionq qpu, we reconstructed the density matrix using maximum likelihood
estimation after conducting the same measurement. The results are summarized in Table I.

Fidelity
ibm brisbane 0.1154 ⇠ 0.1504
ibm perth 0.1597 ⇠ 0.1814
ibm lagos 0.2661 ⇠ 0.2715
ibm nairobi 0.2143 ⇠ 0.2343
ionq qpu 0.5428 ⇠ 0.6695

TABLE I: Fidelities calculated using tomography results of quantum devices.

Technical Specifications

IBM Quantum devices lack the capability to perform two-qubit gate operations between all qubits, with
each qubit establishing connections to only a select subset of others, contingent upon the specific configura-
tion. This availability of CNOT gate operations among qubits is herein referred to as CNOT connectivity.
Three 7-qubit quantum devices, ibm perth, ibm lagos, and ibm nairobi, all have the same 32 QV (quan-
tum volume) and identical configuration. The 127-qubit quantum computer, ibm brisbane, has no o�cially
available QV but has an extended configuration of a 7-qubit quantum computer. Hence, when simulating
the ideal photon case on ibm brisbane, the identical configuration segment is employed as in the 7-qubit
devices. Consequently, ibm brisbane also displays identical connectivity. Error rates in ibm brisbane range
from 4.600⇥ 10�3 to 1.733⇥ 10�1 for readout error, from 1.008⇥ 10�4 to 4.324⇥ 10�3 for single qubit gates
and from 3.032⇥ 10�3 to 1.000 for echoed cross-resonance gate (ECR) error [2–4]. Error rates in ibm Perth
range from 1.150 ⇥ 10�2 to 3.290 ⇥ 10�2 for readout error, 1.823 ⇥ 10�4 to 5.345 ⇥ 10�4 for single gate
and 4.465 ⇥ 10�3 to 1.068 ⇥ 10�2 for CNOT gates. Error rates in ibm lagos range from 1.110 ⇥ 10�2 to
2.260⇥ 10�2 for readout error, 1.526⇥ 10�4 to 2.313⇥ 10�4 for single gate and 5.907⇥ 10�3 to 1.371⇥ 10�2

for CNOT gates. Error rates in ibm nairobi range from 1.800 ⇥ 10�2 to 9.330 ⇥ 10�2 for readout error,
1.488⇥ 10�4 to 4.379⇥ 10�4 for single gate and 5.882⇥ 10�3 to 1.698⇥ 10�2 for CNOT gates. IONQ for-
mally presents a di↵erent system evaluation criterion. The definitive feature of ionq qpu is its capability for
direct entanglement between any pair of qubits, so no consideration of connectivity is necessary for ionq qpu.
Instead of presenting the readout error, the system reports a State Preparation and Measurement (SPAM)
error of 0.18%. SPAM error encompasses inaccuracies in the initialization of a quantum system to a specific
state and the subsequent measurement of that state after computation. The average error for single-qubit
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gates is 0.4%, as characterized by the 1-qubit Randomized Benchmarking error rate, which was determined
using Cli↵ord Randomized Benchmarking [5]. For two-qubit gates, the average error rate is 2.7%. The
characterization of these two-qubit gates was achieved by utilizing the concatenated Mølmer-Sørensen gate
technique [6]. The technical specifications described so far are summarized in table II.

QV Readout Error Rate(%) Single Qubit Gate Error
Rate(%)

ECR Error Rate(%)

ibm brisbane NA 4.600⇥ 10�3 ⇠ 1.733⇥ 10�1 1.008⇥ 10�4 ⇠ 4.324⇥ 10�3 3.032⇥ 10�3 ⇠ 1.000

QV Readout Error Rate(%) Single Qubit Gate Error
Rate(%)

CNot Gate Error Rate(%)

ibm perth 32 1.150⇥ 10�2 ⇠ 3.290⇥ 10�2 1.823⇥ 10�4 ⇠ 5.345⇥ 10�4 4.465⇥ 10�3 ⇠ 1.068⇥ 10�2

ibm lagos 32 1.110⇥ 10�2 ⇠ 2.260⇥ 10�2 1.526⇥ 10�4 ⇠ 2.313⇥ 10�4 5.907⇥ 10�3 ⇠ 1.371⇥ 10�2

ibm nairobi 32 1.800⇥ 10�2 ⇠ 9.330⇥ 10�2 1.488⇥ 10�4 ⇠ 4.379⇥ 10�4 5.882⇥ 10�3 ⇠ 1.698⇥ 10�2

QV SPAM Error Rate(%) Average Single Qubit Gate
Error Rate(%)

Average Two Qubit Gate
Error Rate(%)

ionq qpu NA 0.18 0.4 2.7

TABLE II: Technical specifications of quantum devices. ’NA’ means no QV information of the device is
o�cially available.
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